Properties

Label 1800.4.f.i.649.2
Level $1800$
Weight $4$
Character 1800.649
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(649,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.649
Dual form 1800.4.f.i.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+34.0000i q^{7} -18.0000 q^{11} -12.0000i q^{13} +106.000i q^{17} +44.0000 q^{19} +56.0000i q^{23} +270.000 q^{29} +204.000 q^{31} +120.000i q^{37} -80.0000 q^{41} -536.000i q^{43} +536.000i q^{47} -813.000 q^{49} +542.000i q^{53} -174.000 q^{59} +186.000 q^{61} +332.000i q^{67} +132.000 q^{71} +602.000i q^{73} -612.000i q^{77} +548.000 q^{79} -492.000i q^{83} -1052.00 q^{89} +408.000 q^{91} +482.000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 36 q^{11} + 88 q^{19} + 540 q^{29} + 408 q^{31} - 160 q^{41} - 1626 q^{49} - 348 q^{59} + 372 q^{61} + 264 q^{71} + 1096 q^{79} - 2104 q^{89} + 816 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 34.0000i 1.83583i 0.396780 + 0.917914i \(0.370128\pi\)
−0.396780 + 0.917914i \(0.629872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −18.0000 −0.493382 −0.246691 0.969094i \(-0.579343\pi\)
−0.246691 + 0.969094i \(0.579343\pi\)
\(12\) 0 0
\(13\) − 12.0000i − 0.256015i −0.991773 0.128008i \(-0.959142\pi\)
0.991773 0.128008i \(-0.0408582\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 106.000i 1.51228i 0.654409 + 0.756140i \(0.272917\pi\)
−0.654409 + 0.756140i \(0.727083\pi\)
\(18\) 0 0
\(19\) 44.0000 0.531279 0.265639 0.964072i \(-0.414417\pi\)
0.265639 + 0.964072i \(0.414417\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 56.0000i 0.507687i 0.967245 + 0.253844i \(0.0816949\pi\)
−0.967245 + 0.253844i \(0.918305\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 270.000 1.72889 0.864444 0.502729i \(-0.167671\pi\)
0.864444 + 0.502729i \(0.167671\pi\)
\(30\) 0 0
\(31\) 204.000 1.18192 0.590959 0.806701i \(-0.298749\pi\)
0.590959 + 0.806701i \(0.298749\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 120.000i 0.533186i 0.963809 + 0.266593i \(0.0858979\pi\)
−0.963809 + 0.266593i \(0.914102\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −80.0000 −0.304729 −0.152365 0.988324i \(-0.548689\pi\)
−0.152365 + 0.988324i \(0.548689\pi\)
\(42\) 0 0
\(43\) − 536.000i − 1.90091i −0.310858 0.950456i \(-0.600617\pi\)
0.310858 0.950456i \(-0.399383\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 536.000i 1.66348i 0.555164 + 0.831741i \(0.312655\pi\)
−0.555164 + 0.831741i \(0.687345\pi\)
\(48\) 0 0
\(49\) −813.000 −2.37026
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 542.000i 1.40471i 0.711829 + 0.702353i \(0.247867\pi\)
−0.711829 + 0.702353i \(0.752133\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −174.000 −0.383947 −0.191973 0.981400i \(-0.561489\pi\)
−0.191973 + 0.981400i \(0.561489\pi\)
\(60\) 0 0
\(61\) 186.000 0.390408 0.195204 0.980763i \(-0.437463\pi\)
0.195204 + 0.980763i \(0.437463\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 332.000i 0.605377i 0.953090 + 0.302688i \(0.0978842\pi\)
−0.953090 + 0.302688i \(0.902116\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 132.000 0.220641 0.110321 0.993896i \(-0.464812\pi\)
0.110321 + 0.993896i \(0.464812\pi\)
\(72\) 0 0
\(73\) 602.000i 0.965189i 0.875844 + 0.482594i \(0.160305\pi\)
−0.875844 + 0.482594i \(0.839695\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 612.000i − 0.905765i
\(78\) 0 0
\(79\) 548.000 0.780441 0.390220 0.920721i \(-0.372399\pi\)
0.390220 + 0.920721i \(0.372399\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 492.000i − 0.650651i −0.945602 0.325325i \(-0.894526\pi\)
0.945602 0.325325i \(-0.105474\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1052.00 −1.25294 −0.626471 0.779445i \(-0.715501\pi\)
−0.626471 + 0.779445i \(0.715501\pi\)
\(90\) 0 0
\(91\) 408.000 0.470000
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 482.000i 0.504533i 0.967658 + 0.252266i \(0.0811759\pi\)
−0.967658 + 0.252266i \(0.918824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1214.00 −1.19601 −0.598007 0.801491i \(-0.704041\pi\)
−0.598007 + 0.801491i \(0.704041\pi\)
\(102\) 0 0
\(103\) − 898.000i − 0.859054i −0.903054 0.429527i \(-0.858680\pi\)
0.903054 0.429527i \(-0.141320\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1364.00i − 1.23236i −0.787604 0.616182i \(-0.788679\pi\)
0.787604 0.616182i \(-0.211321\pi\)
\(108\) 0 0
\(109\) −218.000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1386.00i 1.15384i 0.816801 + 0.576920i \(0.195746\pi\)
−0.816801 + 0.576920i \(0.804254\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3604.00 −2.77629
\(120\) 0 0
\(121\) −1007.00 −0.756574
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 814.000i − 0.568747i −0.958714 0.284373i \(-0.908214\pi\)
0.958714 0.284373i \(-0.0917855\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1282.00 0.855029 0.427515 0.904008i \(-0.359389\pi\)
0.427515 + 0.904008i \(0.359389\pi\)
\(132\) 0 0
\(133\) 1496.00i 0.975336i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3066.00i − 1.91202i −0.293342 0.956008i \(-0.594768\pi\)
0.293342 0.956008i \(-0.405232\pi\)
\(138\) 0 0
\(139\) 1332.00 0.812797 0.406398 0.913696i \(-0.366784\pi\)
0.406398 + 0.913696i \(0.366784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 216.000i 0.126313i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1470.00 −0.808236 −0.404118 0.914707i \(-0.632421\pi\)
−0.404118 + 0.914707i \(0.632421\pi\)
\(150\) 0 0
\(151\) −2592.00 −1.39691 −0.698457 0.715652i \(-0.746130\pi\)
−0.698457 + 0.715652i \(0.746130\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3332.00i − 1.69377i −0.531773 0.846887i \(-0.678474\pi\)
0.531773 0.846887i \(-0.321526\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1904.00 −0.932026
\(162\) 0 0
\(163\) 748.000i 0.359435i 0.983718 + 0.179717i \(0.0575183\pi\)
−0.983718 + 0.179717i \(0.942482\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2560.00i 1.18622i 0.805121 + 0.593110i \(0.202100\pi\)
−0.805121 + 0.593110i \(0.797900\pi\)
\(168\) 0 0
\(169\) 2053.00 0.934456
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1206.00i 0.530003i 0.964248 + 0.265001i \(0.0853724\pi\)
−0.964248 + 0.265001i \(0.914628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1694.00 −0.707349 −0.353675 0.935369i \(-0.615068\pi\)
−0.353675 + 0.935369i \(0.615068\pi\)
\(180\) 0 0
\(181\) 3722.00 1.52848 0.764238 0.644935i \(-0.223115\pi\)
0.764238 + 0.644935i \(0.223115\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1908.00i − 0.746133i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2836.00 −1.07438 −0.537188 0.843463i \(-0.680513\pi\)
−0.537188 + 0.843463i \(0.680513\pi\)
\(192\) 0 0
\(193\) 234.000i 0.0872730i 0.999047 + 0.0436365i \(0.0138943\pi\)
−0.999047 + 0.0436365i \(0.986106\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3814.00i 1.37937i 0.724109 + 0.689686i \(0.242251\pi\)
−0.724109 + 0.689686i \(0.757749\pi\)
\(198\) 0 0
\(199\) −2352.00 −0.837833 −0.418917 0.908025i \(-0.637590\pi\)
−0.418917 + 0.908025i \(0.637590\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9180.00i 3.17394i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −792.000 −0.262123
\(210\) 0 0
\(211\) −3660.00 −1.19415 −0.597073 0.802187i \(-0.703670\pi\)
−0.597073 + 0.802187i \(0.703670\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6936.00i 2.16980i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1272.00 0.387167
\(222\) 0 0
\(223\) 2646.00i 0.794571i 0.917695 + 0.397285i \(0.130048\pi\)
−0.917695 + 0.397285i \(0.869952\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 240.000i − 0.0701734i −0.999384 0.0350867i \(-0.988829\pi\)
0.999384 0.0350867i \(-0.0111707\pi\)
\(228\) 0 0
\(229\) 4698.00 1.35569 0.677844 0.735206i \(-0.262914\pi\)
0.677844 + 0.735206i \(0.262914\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3814.00i 1.07238i 0.844099 + 0.536188i \(0.180136\pi\)
−0.844099 + 0.536188i \(0.819864\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2148.00 −0.581350 −0.290675 0.956822i \(-0.593880\pi\)
−0.290675 + 0.956822i \(0.593880\pi\)
\(240\) 0 0
\(241\) −3370.00 −0.900750 −0.450375 0.892839i \(-0.648710\pi\)
−0.450375 + 0.892839i \(0.648710\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 528.000i − 0.136016i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6134.00 −1.54253 −0.771264 0.636515i \(-0.780375\pi\)
−0.771264 + 0.636515i \(0.780375\pi\)
\(252\) 0 0
\(253\) − 1008.00i − 0.250484i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4566.00i 1.10825i 0.832435 + 0.554123i \(0.186946\pi\)
−0.832435 + 0.554123i \(0.813054\pi\)
\(258\) 0 0
\(259\) −4080.00 −0.978837
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 1920.00i − 0.450161i −0.974340 0.225080i \(-0.927736\pi\)
0.974340 0.225080i \(-0.0722645\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5802.00 −1.31507 −0.657536 0.753423i \(-0.728401\pi\)
−0.657536 + 0.753423i \(0.728401\pi\)
\(270\) 0 0
\(271\) 1640.00 0.367612 0.183806 0.982963i \(-0.441158\pi\)
0.183806 + 0.982963i \(0.441158\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2792.00i − 0.605614i −0.953052 0.302807i \(-0.902076\pi\)
0.953052 0.302807i \(-0.0979237\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1108.00 −0.235223 −0.117612 0.993060i \(-0.537524\pi\)
−0.117612 + 0.993060i \(0.537524\pi\)
\(282\) 0 0
\(283\) − 6028.00i − 1.26617i −0.774080 0.633087i \(-0.781787\pi\)
0.774080 0.633087i \(-0.218213\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2720.00i − 0.559430i
\(288\) 0 0
\(289\) −6323.00 −1.28699
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7994.00i 1.59391i 0.604041 + 0.796953i \(0.293556\pi\)
−0.604041 + 0.796953i \(0.706444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 672.000 0.129976
\(300\) 0 0
\(301\) 18224.0 3.48975
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 736.000i 0.136827i 0.997657 + 0.0684133i \(0.0217936\pi\)
−0.997657 + 0.0684133i \(0.978206\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5380.00 0.980938 0.490469 0.871459i \(-0.336825\pi\)
0.490469 + 0.871459i \(0.336825\pi\)
\(312\) 0 0
\(313\) 1370.00i 0.247402i 0.992320 + 0.123701i \(0.0394764\pi\)
−0.992320 + 0.123701i \(0.960524\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 5770.00i − 1.02232i −0.859486 0.511160i \(-0.829216\pi\)
0.859486 0.511160i \(-0.170784\pi\)
\(318\) 0 0
\(319\) −4860.00 −0.853002
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4664.00i 0.803442i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18224.0 −3.05387
\(330\) 0 0
\(331\) −4172.00 −0.692791 −0.346396 0.938089i \(-0.612594\pi\)
−0.346396 + 0.938089i \(0.612594\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8206.00i 1.32644i 0.748426 + 0.663219i \(0.230810\pi\)
−0.748426 + 0.663219i \(0.769190\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3672.00 −0.583138
\(342\) 0 0
\(343\) − 15980.0i − 2.51557i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 10848.0i − 1.67825i −0.543942 0.839123i \(-0.683069\pi\)
0.543942 0.839123i \(-0.316931\pi\)
\(348\) 0 0
\(349\) 1694.00 0.259822 0.129911 0.991526i \(-0.458531\pi\)
0.129911 + 0.991526i \(0.458531\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6642.00i − 1.00147i −0.865601 0.500734i \(-0.833064\pi\)
0.865601 0.500734i \(-0.166936\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10376.0 −1.52542 −0.762708 0.646743i \(-0.776131\pi\)
−0.762708 + 0.646743i \(0.776131\pi\)
\(360\) 0 0
\(361\) −4923.00 −0.717743
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2198.00i − 0.312629i −0.987707 0.156314i \(-0.950039\pi\)
0.987707 0.156314i \(-0.0499613\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18428.0 −2.57880
\(372\) 0 0
\(373\) 12220.0i 1.69632i 0.529740 + 0.848160i \(0.322290\pi\)
−0.529740 + 0.848160i \(0.677710\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3240.00i − 0.442622i
\(378\) 0 0
\(379\) 10388.0 1.40790 0.703952 0.710247i \(-0.251417\pi\)
0.703952 + 0.710247i \(0.251417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10552.0i 1.40779i 0.710306 + 0.703893i \(0.248557\pi\)
−0.710306 + 0.703893i \(0.751443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8262.00 −1.07686 −0.538432 0.842669i \(-0.680983\pi\)
−0.538432 + 0.842669i \(0.680983\pi\)
\(390\) 0 0
\(391\) −5936.00 −0.767766
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2864.00i 0.362066i 0.983477 + 0.181033i \(0.0579440\pi\)
−0.983477 + 0.181033i \(0.942056\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12588.0 1.56762 0.783809 0.621002i \(-0.213274\pi\)
0.783809 + 0.621002i \(0.213274\pi\)
\(402\) 0 0
\(403\) − 2448.00i − 0.302589i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2160.00i − 0.263064i
\(408\) 0 0
\(409\) −10330.0 −1.24886 −0.624432 0.781079i \(-0.714670\pi\)
−0.624432 + 0.781079i \(0.714670\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 5916.00i − 0.704860i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1250.00 −0.145743 −0.0728717 0.997341i \(-0.523216\pi\)
−0.0728717 + 0.997341i \(0.523216\pi\)
\(420\) 0 0
\(421\) 5670.00 0.656387 0.328193 0.944611i \(-0.393560\pi\)
0.328193 + 0.944611i \(0.393560\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6324.00i 0.716721i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12976.0 1.45019 0.725095 0.688649i \(-0.241796\pi\)
0.725095 + 0.688649i \(0.241796\pi\)
\(432\) 0 0
\(433\) 9050.00i 1.00442i 0.864745 + 0.502212i \(0.167480\pi\)
−0.864745 + 0.502212i \(0.832520\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2464.00i 0.269723i
\(438\) 0 0
\(439\) 17528.0 1.90562 0.952808 0.303572i \(-0.0981794\pi\)
0.952808 + 0.303572i \(0.0981794\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2568.00i 0.275416i 0.990473 + 0.137708i \(0.0439736\pi\)
−0.990473 + 0.137708i \(0.956026\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12652.0 1.32981 0.664905 0.746928i \(-0.268472\pi\)
0.664905 + 0.746928i \(0.268472\pi\)
\(450\) 0 0
\(451\) 1440.00 0.150348
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6230.00i − 0.637696i −0.947806 0.318848i \(-0.896704\pi\)
0.947806 0.318848i \(-0.103296\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5290.00 −0.534447 −0.267223 0.963635i \(-0.586106\pi\)
−0.267223 + 0.963635i \(0.586106\pi\)
\(462\) 0 0
\(463\) − 8110.00i − 0.814047i −0.913418 0.407023i \(-0.866567\pi\)
0.913418 0.407023i \(-0.133433\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2020.00i 0.200159i 0.994979 + 0.100080i \(0.0319098\pi\)
−0.994979 + 0.100080i \(0.968090\pi\)
\(468\) 0 0
\(469\) −11288.0 −1.11137
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9648.00i 0.937876i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9684.00 −0.923744 −0.461872 0.886947i \(-0.652822\pi\)
−0.461872 + 0.886947i \(0.652822\pi\)
\(480\) 0 0
\(481\) 1440.00 0.136504
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 18426.0i − 1.71450i −0.514900 0.857250i \(-0.672171\pi\)
0.514900 0.857250i \(-0.327829\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4558.00 −0.418940 −0.209470 0.977815i \(-0.567174\pi\)
−0.209470 + 0.977815i \(0.567174\pi\)
\(492\) 0 0
\(493\) 28620.0i 2.61456i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4488.00i 0.405059i
\(498\) 0 0
\(499\) 460.000 0.0412674 0.0206337 0.999787i \(-0.493432\pi\)
0.0206337 + 0.999787i \(0.493432\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 8568.00i − 0.759499i −0.925089 0.379750i \(-0.876010\pi\)
0.925089 0.379750i \(-0.123990\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16374.0 1.42586 0.712932 0.701233i \(-0.247367\pi\)
0.712932 + 0.701233i \(0.247367\pi\)
\(510\) 0 0
\(511\) −20468.0 −1.77192
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 9648.00i − 0.820732i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21620.0 −1.81802 −0.909011 0.416772i \(-0.863161\pi\)
−0.909011 + 0.416772i \(0.863161\pi\)
\(522\) 0 0
\(523\) − 16524.0i − 1.38154i −0.723076 0.690769i \(-0.757272\pi\)
0.723076 0.690769i \(-0.242728\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21624.0i 1.78739i
\(528\) 0 0
\(529\) 9031.00 0.742254
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 960.000i 0.0780154i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14634.0 1.16945
\(540\) 0 0
\(541\) −4990.00 −0.396556 −0.198278 0.980146i \(-0.563535\pi\)
−0.198278 + 0.980146i \(0.563535\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 15224.0i − 1.19000i −0.803725 0.595001i \(-0.797152\pi\)
0.803725 0.595001i \(-0.202848\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11880.0 0.918521
\(552\) 0 0
\(553\) 18632.0i 1.43275i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5698.00i 0.433451i 0.976233 + 0.216725i \(0.0695376\pi\)
−0.976233 + 0.216725i \(0.930462\pi\)
\(558\) 0 0
\(559\) −6432.00 −0.486663
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5976.00i 0.447351i 0.974664 + 0.223675i \(0.0718055\pi\)
−0.974664 + 0.223675i \(0.928194\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16460.0 1.21272 0.606361 0.795189i \(-0.292629\pi\)
0.606361 + 0.795189i \(0.292629\pi\)
\(570\) 0 0
\(571\) −18236.0 −1.33652 −0.668260 0.743928i \(-0.732961\pi\)
−0.668260 + 0.743928i \(0.732961\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20842.0i 1.50375i 0.659306 + 0.751875i \(0.270850\pi\)
−0.659306 + 0.751875i \(0.729150\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16728.0 1.19448
\(582\) 0 0
\(583\) − 9756.00i − 0.693057i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11772.0i 0.827738i 0.910336 + 0.413869i \(0.135823\pi\)
−0.910336 + 0.413869i \(0.864177\pi\)
\(588\) 0 0
\(589\) 8976.00 0.627928
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4514.00i 0.312593i 0.987710 + 0.156297i \(0.0499556\pi\)
−0.987710 + 0.156297i \(0.950044\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25096.0 1.71184 0.855922 0.517105i \(-0.172990\pi\)
0.855922 + 0.517105i \(0.172990\pi\)
\(600\) 0 0
\(601\) 16262.0 1.10373 0.551864 0.833934i \(-0.313917\pi\)
0.551864 + 0.833934i \(0.313917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2262.00i 0.151255i 0.997136 + 0.0756275i \(0.0240960\pi\)
−0.997136 + 0.0756275i \(0.975904\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6432.00 0.425877
\(612\) 0 0
\(613\) − 14216.0i − 0.936670i −0.883551 0.468335i \(-0.844854\pi\)
0.883551 0.468335i \(-0.155146\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2558.00i − 0.166906i −0.996512 0.0834532i \(-0.973405\pi\)
0.996512 0.0834532i \(-0.0265949\pi\)
\(618\) 0 0
\(619\) 17044.0 1.10671 0.553357 0.832944i \(-0.313346\pi\)
0.553357 + 0.832944i \(0.313346\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 35768.0i − 2.30018i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12720.0 −0.806327
\(630\) 0 0
\(631\) 20980.0 1.32361 0.661807 0.749674i \(-0.269790\pi\)
0.661807 + 0.749674i \(0.269790\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9756.00i 0.606824i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7176.00 −0.442176 −0.221088 0.975254i \(-0.570961\pi\)
−0.221088 + 0.975254i \(0.570961\pi\)
\(642\) 0 0
\(643\) 2724.00i 0.167067i 0.996505 + 0.0835335i \(0.0266206\pi\)
−0.996505 + 0.0835335i \(0.973379\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10392.0i 0.631455i 0.948850 + 0.315728i \(0.102249\pi\)
−0.948850 + 0.315728i \(0.897751\pi\)
\(648\) 0 0
\(649\) 3132.00 0.189433
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 11958.0i − 0.716620i −0.933603 0.358310i \(-0.883353\pi\)
0.933603 0.358310i \(-0.116647\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13366.0 0.790084 0.395042 0.918663i \(-0.370730\pi\)
0.395042 + 0.918663i \(0.370730\pi\)
\(660\) 0 0
\(661\) 14698.0 0.864880 0.432440 0.901663i \(-0.357653\pi\)
0.432440 + 0.901663i \(0.357653\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15120.0i 0.877734i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3348.00 −0.192620
\(672\) 0 0
\(673\) 7570.00i 0.433584i 0.976218 + 0.216792i \(0.0695593\pi\)
−0.976218 + 0.216792i \(0.930441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 21378.0i − 1.21362i −0.794845 0.606812i \(-0.792448\pi\)
0.794845 0.606812i \(-0.207552\pi\)
\(678\) 0 0
\(679\) −16388.0 −0.926235
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 15804.0i − 0.885393i −0.896672 0.442696i \(-0.854022\pi\)
0.896672 0.442696i \(-0.145978\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6504.00 0.359627
\(690\) 0 0
\(691\) −22028.0 −1.21271 −0.606356 0.795193i \(-0.707370\pi\)
−0.606356 + 0.795193i \(0.707370\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 8480.00i − 0.460836i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1762.00 0.0949356 0.0474678 0.998873i \(-0.484885\pi\)
0.0474678 + 0.998873i \(0.484885\pi\)
\(702\) 0 0
\(703\) 5280.00i 0.283270i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 41276.0i − 2.19568i
\(708\) 0 0
\(709\) 2474.00 0.131048 0.0655240 0.997851i \(-0.479128\pi\)
0.0655240 + 0.997851i \(0.479128\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11424.0i 0.600045i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32040.0 −1.66188 −0.830939 0.556363i \(-0.812196\pi\)
−0.830939 + 0.556363i \(0.812196\pi\)
\(720\) 0 0
\(721\) 30532.0 1.57708
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 12874.0i − 0.656768i −0.944544 0.328384i \(-0.893496\pi\)
0.944544 0.328384i \(-0.106504\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 56816.0 2.87471
\(732\) 0 0
\(733\) − 28208.0i − 1.42140i −0.703495 0.710700i \(-0.748378\pi\)
0.703495 0.710700i \(-0.251622\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5976.00i − 0.298682i
\(738\) 0 0
\(739\) −29068.0 −1.44693 −0.723467 0.690359i \(-0.757452\pi\)
−0.723467 + 0.690359i \(0.757452\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 28152.0i − 1.39004i −0.718992 0.695018i \(-0.755396\pi\)
0.718992 0.695018i \(-0.244604\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 46376.0 2.26241
\(750\) 0 0
\(751\) −29916.0 −1.45360 −0.726798 0.686851i \(-0.758992\pi\)
−0.726798 + 0.686851i \(0.758992\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 32904.0i 1.57981i 0.613229 + 0.789905i \(0.289870\pi\)
−0.613229 + 0.789905i \(0.710130\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21764.0 1.03672 0.518360 0.855162i \(-0.326543\pi\)
0.518360 + 0.855162i \(0.326543\pi\)
\(762\) 0 0
\(763\) − 7412.00i − 0.351681i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2088.00i 0.0982964i
\(768\) 0 0
\(769\) 3570.00 0.167409 0.0837045 0.996491i \(-0.473325\pi\)
0.0837045 + 0.996491i \(0.473325\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 19486.0i − 0.906679i −0.891338 0.453339i \(-0.850233\pi\)
0.891338 0.453339i \(-0.149767\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3520.00 −0.161896
\(780\) 0 0
\(781\) −2376.00 −0.108860
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 19764.0i 0.895185i 0.894238 + 0.447592i \(0.147718\pi\)
−0.894238 + 0.447592i \(0.852282\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −47124.0 −2.11825
\(792\) 0 0
\(793\) − 2232.00i − 0.0999504i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 14390.0i − 0.639548i −0.947494 0.319774i \(-0.896393\pi\)
0.947494 0.319774i \(-0.103607\pi\)
\(798\) 0 0
\(799\) −56816.0 −2.51565
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 10836.0i − 0.476207i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28536.0 1.24014 0.620069 0.784547i \(-0.287104\pi\)
0.620069 + 0.784547i \(0.287104\pi\)
\(810\) 0 0
\(811\) 27732.0 1.20074 0.600371 0.799721i \(-0.295019\pi\)
0.600371 + 0.799721i \(0.295019\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 23584.0i − 1.00991i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8086.00 −0.343731 −0.171866 0.985120i \(-0.554979\pi\)
−0.171866 + 0.985120i \(0.554979\pi\)
\(822\) 0 0
\(823\) − 39854.0i − 1.68800i −0.536344 0.843999i \(-0.680195\pi\)
0.536344 0.843999i \(-0.319805\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17752.0i 0.746430i 0.927745 + 0.373215i \(0.121745\pi\)
−0.927745 + 0.373215i \(0.878255\pi\)
\(828\) 0 0
\(829\) −23858.0 −0.999545 −0.499772 0.866157i \(-0.666583\pi\)
−0.499772 + 0.866157i \(0.666583\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 86178.0i − 3.58450i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13888.0 0.571474 0.285737 0.958308i \(-0.407762\pi\)
0.285737 + 0.958308i \(0.407762\pi\)
\(840\) 0 0
\(841\) 48511.0 1.98905
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 34238.0i − 1.38894i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6720.00 −0.270692
\(852\) 0 0
\(853\) 16568.0i 0.665038i 0.943097 + 0.332519i \(0.107899\pi\)
−0.943097 + 0.332519i \(0.892101\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13034.0i 0.519525i 0.965673 + 0.259763i \(0.0836443\pi\)
−0.965673 + 0.259763i \(0.916356\pi\)
\(858\) 0 0
\(859\) 34356.0 1.36462 0.682312 0.731061i \(-0.260975\pi\)
0.682312 + 0.731061i \(0.260975\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16016.0i 0.631739i 0.948803 + 0.315870i \(0.102296\pi\)
−0.948803 + 0.315870i \(0.897704\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9864.00 −0.385056
\(870\) 0 0
\(871\) 3984.00 0.154986
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19780.0i 0.761600i 0.924657 + 0.380800i \(0.124351\pi\)
−0.924657 + 0.380800i \(0.875649\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41036.0 1.56928 0.784641 0.619950i \(-0.212847\pi\)
0.784641 + 0.619950i \(0.212847\pi\)
\(882\) 0 0
\(883\) 35108.0i 1.33803i 0.743250 + 0.669014i \(0.233283\pi\)
−0.743250 + 0.669014i \(0.766717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 18648.0i − 0.705906i −0.935641 0.352953i \(-0.885178\pi\)
0.935641 0.352953i \(-0.114822\pi\)
\(888\) 0 0
\(889\) 27676.0 1.04412
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23584.0i 0.883772i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 55080.0 2.04340
\(900\) 0 0
\(901\) −57452.0 −2.12431
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 21688.0i 0.793978i 0.917823 + 0.396989i \(0.129945\pi\)
−0.917823 + 0.396989i \(0.870055\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42064.0 1.52979 0.764897 0.644153i \(-0.222790\pi\)
0.764897 + 0.644153i \(0.222790\pi\)
\(912\) 0 0
\(913\) 8856.00i 0.321020i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43588.0i 1.56969i
\(918\) 0 0
\(919\) 44420.0 1.59443 0.797215 0.603696i \(-0.206306\pi\)
0.797215 + 0.603696i \(0.206306\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1584.00i − 0.0564875i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17124.0 −0.604758 −0.302379 0.953188i \(-0.597781\pi\)
−0.302379 + 0.953188i \(0.597781\pi\)
\(930\) 0 0
\(931\) −35772.0 −1.25927
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 11110.0i − 0.387351i −0.981066 0.193675i \(-0.937959\pi\)
0.981066 0.193675i \(-0.0620409\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12962.0 −0.449043 −0.224521 0.974469i \(-0.572082\pi\)
−0.224521 + 0.974469i \(0.572082\pi\)
\(942\) 0 0
\(943\) − 4480.00i − 0.154707i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25672.0i 0.880916i 0.897773 + 0.440458i \(0.145184\pi\)
−0.897773 + 0.440458i \(0.854816\pi\)
\(948\) 0 0
\(949\) 7224.00 0.247103
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2082.00i 0.0707687i 0.999374 + 0.0353844i \(0.0112655\pi\)
−0.999374 + 0.0353844i \(0.988734\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 104244. 3.51013
\(960\) 0 0
\(961\) 11825.0 0.396932
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5666.00i 0.188424i 0.995552 + 0.0942121i \(0.0300332\pi\)
−0.995552 + 0.0942121i \(0.969967\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28622.0 −0.945956 −0.472978 0.881074i \(-0.656821\pi\)
−0.472978 + 0.881074i \(0.656821\pi\)
\(972\) 0 0
\(973\) 45288.0i 1.49215i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24586.0i 0.805093i 0.915400 + 0.402546i \(0.131875\pi\)
−0.915400 + 0.402546i \(0.868125\pi\)
\(978\) 0 0
\(979\) 18936.0 0.618179
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40632.0i 1.31837i 0.751980 + 0.659186i \(0.229099\pi\)
−0.751980 + 0.659186i \(0.770901\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30016.0 0.965069
\(990\) 0 0
\(991\) 8768.00 0.281054 0.140527 0.990077i \(-0.455120\pi\)
0.140527 + 0.990077i \(0.455120\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 37212.0i 1.18206i 0.806649 + 0.591031i \(0.201279\pi\)
−0.806649 + 0.591031i \(0.798721\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.f.i.649.2 2
3.2 odd 2 1800.4.f.o.649.2 2
5.2 odd 4 1800.4.a.a.1.1 1
5.3 odd 4 360.4.a.o.1.1 yes 1
5.4 even 2 inner 1800.4.f.i.649.1 2
15.2 even 4 1800.4.a.b.1.1 1
15.8 even 4 360.4.a.g.1.1 1
15.14 odd 2 1800.4.f.o.649.1 2
20.3 even 4 720.4.a.p.1.1 1
60.23 odd 4 720.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.a.g.1.1 1 15.8 even 4
360.4.a.o.1.1 yes 1 5.3 odd 4
720.4.a.a.1.1 1 60.23 odd 4
720.4.a.p.1.1 1 20.3 even 4
1800.4.a.a.1.1 1 5.2 odd 4
1800.4.a.b.1.1 1 15.2 even 4
1800.4.f.i.649.1 2 5.4 even 2 inner
1800.4.f.i.649.2 2 1.1 even 1 trivial
1800.4.f.o.649.1 2 15.14 odd 2
1800.4.f.o.649.2 2 3.2 odd 2