Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(649,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 360) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.649 |
Dual form | 1800.4.f.o.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1001\) | \(1351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 34.0000i | − 1.83583i | −0.396780 | − | 0.917914i | \(-0.629872\pi\) | ||||
0.396780 | − | 0.917914i | \(-0.370128\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 18.0000 | 0.493382 | 0.246691 | − | 0.969094i | \(-0.420657\pi\) | ||||
0.246691 | + | 0.969094i | \(0.420657\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 12.0000i | 0.256015i | 0.991773 | + | 0.128008i | \(0.0408582\pi\) | ||||
−0.991773 | + | 0.128008i | \(0.959142\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 106.000i | 1.51228i | 0.654409 | + | 0.756140i | \(0.272917\pi\) | ||||
−0.654409 | + | 0.756140i | \(0.727083\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 44.0000 | 0.531279 | 0.265639 | − | 0.964072i | \(-0.414417\pi\) | ||||
0.265639 | + | 0.964072i | \(0.414417\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 56.0000i | 0.507687i | 0.967245 | + | 0.253844i | \(0.0816949\pi\) | ||||
−0.967245 | + | 0.253844i | \(0.918305\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −270.000 | −1.72889 | −0.864444 | − | 0.502729i | \(-0.832329\pi\) | ||||
−0.864444 | + | 0.502729i | \(0.832329\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 204.000 | 1.18192 | 0.590959 | − | 0.806701i | \(-0.298749\pi\) | ||||
0.590959 | + | 0.806701i | \(0.298749\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 120.000i | − 0.533186i | −0.963809 | − | 0.266593i | \(-0.914102\pi\) | ||||
0.963809 | − | 0.266593i | \(-0.0858979\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 80.0000 | 0.304729 | 0.152365 | − | 0.988324i | \(-0.451311\pi\) | ||||
0.152365 | + | 0.988324i | \(0.451311\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 536.000i | 1.90091i | 0.310858 | + | 0.950456i | \(0.399383\pi\) | ||||
−0.310858 | + | 0.950456i | \(0.600617\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 536.000i | 1.66348i | 0.555164 | + | 0.831741i | \(0.312655\pi\) | ||||
−0.555164 | + | 0.831741i | \(0.687345\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −813.000 | −2.37026 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 542.000i | 1.40471i | 0.711829 | + | 0.702353i | \(0.247867\pi\) | ||||
−0.711829 | + | 0.702353i | \(0.752133\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 174.000 | 0.383947 | 0.191973 | − | 0.981400i | \(-0.438511\pi\) | ||||
0.191973 | + | 0.981400i | \(0.438511\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 186.000 | 0.390408 | 0.195204 | − | 0.980763i | \(-0.437463\pi\) | ||||
0.195204 | + | 0.980763i | \(0.437463\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 332.000i | − 0.605377i | −0.953090 | − | 0.302688i | \(-0.902116\pi\) | ||||
0.953090 | − | 0.302688i | \(-0.0978842\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −132.000 | −0.220641 | −0.110321 | − | 0.993896i | \(-0.535188\pi\) | ||||
−0.110321 | + | 0.993896i | \(0.535188\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 602.000i | − 0.965189i | −0.875844 | − | 0.482594i | \(-0.839695\pi\) | ||||
0.875844 | − | 0.482594i | \(-0.160305\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 612.000i | − 0.905765i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 548.000 | 0.780441 | 0.390220 | − | 0.920721i | \(-0.372399\pi\) | ||||
0.390220 | + | 0.920721i | \(0.372399\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 492.000i | − 0.650651i | −0.945602 | − | 0.325325i | \(-0.894526\pi\) | ||||
0.945602 | − | 0.325325i | \(-0.105474\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 1052.00 | 1.25294 | 0.626471 | − | 0.779445i | \(-0.284499\pi\) | ||||
0.626471 | + | 0.779445i | \(0.284499\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 408.000 | 0.470000 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 482.000i | − 0.504533i | −0.967658 | − | 0.252266i | \(-0.918824\pi\) | ||||
0.967658 | − | 0.252266i | \(-0.0811759\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 1214.00 | 1.19601 | 0.598007 | − | 0.801491i | \(-0.295959\pi\) | ||||
0.598007 | + | 0.801491i | \(0.295959\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 898.000i | 0.859054i | 0.903054 | + | 0.429527i | \(0.141320\pi\) | ||||
−0.903054 | + | 0.429527i | \(0.858680\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 1364.00i | − 1.23236i | −0.787604 | − | 0.616182i | \(-0.788679\pi\) | ||||
0.787604 | − | 0.616182i | \(-0.211321\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −218.000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 1386.00i | 1.15384i | 0.816801 | + | 0.576920i | \(0.195746\pi\) | ||||
−0.816801 | + | 0.576920i | \(0.804254\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 3604.00 | 2.77629 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1007.00 | −0.756574 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 814.000i | 0.568747i | 0.958714 | + | 0.284373i | \(0.0917855\pi\) | ||||
−0.958714 | + | 0.284373i | \(0.908214\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −1282.00 | −0.855029 | −0.427515 | − | 0.904008i | \(-0.640611\pi\) | ||||
−0.427515 | + | 0.904008i | \(0.640611\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 1496.00i | − 0.975336i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 3066.00i | − 1.91202i | −0.293342 | − | 0.956008i | \(-0.594768\pi\) | ||||
0.293342 | − | 0.956008i | \(-0.405232\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 1332.00 | 0.812797 | 0.406398 | − | 0.913696i | \(-0.366784\pi\) | ||||
0.406398 | + | 0.913696i | \(0.366784\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 216.000i | 0.126313i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 1470.00 | 0.808236 | 0.404118 | − | 0.914707i | \(-0.367579\pi\) | ||||
0.404118 | + | 0.914707i | \(0.367579\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −2592.00 | −1.39691 | −0.698457 | − | 0.715652i | \(-0.746130\pi\) | ||||
−0.698457 | + | 0.715652i | \(0.746130\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 3332.00i | 1.69377i | 0.531773 | + | 0.846887i | \(0.321526\pi\) | ||||
−0.531773 | + | 0.846887i | \(0.678474\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 1904.00 | 0.932026 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 748.000i | − 0.359435i | −0.983718 | − | 0.179717i | \(-0.942482\pi\) | ||||
0.983718 | − | 0.179717i | \(-0.0575183\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 2560.00i | 1.18622i | 0.805121 | + | 0.593110i | \(0.202100\pi\) | ||||
−0.805121 | + | 0.593110i | \(0.797900\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 2053.00 | 0.934456 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 1206.00i | 0.530003i | 0.964248 | + | 0.265001i | \(0.0853724\pi\) | ||||
−0.964248 | + | 0.265001i | \(0.914628\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 1694.00 | 0.707349 | 0.353675 | − | 0.935369i | \(-0.384932\pi\) | ||||
0.353675 | + | 0.935369i | \(0.384932\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3722.00 | 1.52848 | 0.764238 | − | 0.644935i | \(-0.223115\pi\) | ||||
0.764238 | + | 0.644935i | \(0.223115\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 1908.00i | 0.746133i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 2836.00 | 1.07438 | 0.537188 | − | 0.843463i | \(-0.319487\pi\) | ||||
0.537188 | + | 0.843463i | \(0.319487\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 234.000i | − 0.0872730i | −0.999047 | − | 0.0436365i | \(-0.986106\pi\) | ||||
0.999047 | − | 0.0436365i | \(-0.0138943\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 3814.00i | 1.37937i | 0.724109 | + | 0.689686i | \(0.242251\pi\) | ||||
−0.724109 | + | 0.689686i | \(0.757749\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −2352.00 | −0.837833 | −0.418917 | − | 0.908025i | \(-0.637590\pi\) | ||||
−0.418917 | + | 0.908025i | \(0.637590\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 9180.00i | 3.17394i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 792.000 | 0.262123 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −3660.00 | −1.19415 | −0.597073 | − | 0.802187i | \(-0.703670\pi\) | ||||
−0.597073 | + | 0.802187i | \(0.703670\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 6936.00i | − 2.16980i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −1272.00 | −0.387167 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 2646.00i | − 0.794571i | −0.917695 | − | 0.397285i | \(-0.869952\pi\) | ||||
0.917695 | − | 0.397285i | \(-0.130048\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 240.000i | − 0.0701734i | −0.999384 | − | 0.0350867i | \(-0.988829\pi\) | ||||
0.999384 | − | 0.0350867i | \(-0.0111707\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 4698.00 | 1.35569 | 0.677844 | − | 0.735206i | \(-0.262914\pi\) | ||||
0.677844 | + | 0.735206i | \(0.262914\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 3814.00i | 1.07238i | 0.844099 | + | 0.536188i | \(0.180136\pi\) | ||||
−0.844099 | + | 0.536188i | \(0.819864\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 2148.00 | 0.581350 | 0.290675 | − | 0.956822i | \(-0.406120\pi\) | ||||
0.290675 | + | 0.956822i | \(0.406120\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −3370.00 | −0.900750 | −0.450375 | − | 0.892839i | \(-0.648710\pi\) | ||||
−0.450375 | + | 0.892839i | \(0.648710\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 528.000i | 0.136016i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 6134.00 | 1.54253 | 0.771264 | − | 0.636515i | \(-0.219625\pi\) | ||||
0.771264 | + | 0.636515i | \(0.219625\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 1008.00i | 0.250484i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 4566.00i | 1.10825i | 0.832435 | + | 0.554123i | \(0.186946\pi\) | ||||
−0.832435 | + | 0.554123i | \(0.813054\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −4080.00 | −0.978837 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 1920.00i | − 0.450161i | −0.974340 | − | 0.225080i | \(-0.927736\pi\) | ||||
0.974340 | − | 0.225080i | \(-0.0722645\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 5802.00 | 1.31507 | 0.657536 | − | 0.753423i | \(-0.271599\pi\) | ||||
0.657536 | + | 0.753423i | \(0.271599\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 1640.00 | 0.367612 | 0.183806 | − | 0.982963i | \(-0.441158\pi\) | ||||
0.183806 | + | 0.982963i | \(0.441158\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2792.00i | 0.605614i | 0.953052 | + | 0.302807i | \(0.0979237\pi\) | ||||
−0.953052 | + | 0.302807i | \(0.902076\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 1108.00 | 0.235223 | 0.117612 | − | 0.993060i | \(-0.462476\pi\) | ||||
0.117612 | + | 0.993060i | \(0.462476\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 6028.00i | 1.26617i | 0.774080 | + | 0.633087i | \(0.218213\pi\) | ||||
−0.774080 | + | 0.633087i | \(0.781787\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 2720.00i | − 0.559430i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −6323.00 | −1.28699 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 7994.00i | 1.59391i | 0.604041 | + | 0.796953i | \(0.293556\pi\) | ||||
−0.604041 | + | 0.796953i | \(0.706444\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −672.000 | −0.129976 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 18224.0 | 3.48975 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 736.000i | − 0.136827i | −0.997657 | − | 0.0684133i | \(-0.978206\pi\) | ||||
0.997657 | − | 0.0684133i | \(-0.0217936\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −5380.00 | −0.980938 | −0.490469 | − | 0.871459i | \(-0.663175\pi\) | ||||
−0.490469 | + | 0.871459i | \(0.663175\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 1370.00i | − 0.247402i | −0.992320 | − | 0.123701i | \(-0.960524\pi\) | ||||
0.992320 | − | 0.123701i | \(-0.0394764\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 5770.00i | − 1.02232i | −0.859486 | − | 0.511160i | \(-0.829216\pi\) | ||||
0.859486 | − | 0.511160i | \(-0.170784\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −4860.00 | −0.853002 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 4664.00i | 0.803442i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 18224.0 | 3.05387 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −4172.00 | −0.692791 | −0.346396 | − | 0.938089i | \(-0.612594\pi\) | ||||
−0.346396 | + | 0.938089i | \(0.612594\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 8206.00i | − 1.32644i | −0.748426 | − | 0.663219i | \(-0.769190\pi\) | ||||
0.748426 | − | 0.663219i | \(-0.230810\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 3672.00 | 0.583138 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 15980.0i | 2.51557i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 10848.0i | − 1.67825i | −0.543942 | − | 0.839123i | \(-0.683069\pi\) | ||||
0.543942 | − | 0.839123i | \(-0.316931\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 1694.00 | 0.259822 | 0.129911 | − | 0.991526i | \(-0.458531\pi\) | ||||
0.129911 | + | 0.991526i | \(0.458531\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 6642.00i | − 1.00147i | −0.865601 | − | 0.500734i | \(-0.833064\pi\) | ||||
0.865601 | − | 0.500734i | \(-0.166936\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 10376.0 | 1.52542 | 0.762708 | − | 0.646743i | \(-0.223869\pi\) | ||||
0.762708 | + | 0.646743i | \(0.223869\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −4923.00 | −0.717743 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 2198.00i | 0.312629i | 0.987707 | + | 0.156314i | \(0.0499613\pi\) | ||||
−0.987707 | + | 0.156314i | \(0.950039\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 18428.0 | 2.57880 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 12220.0i | − 1.69632i | −0.529740 | − | 0.848160i | \(-0.677710\pi\) | ||||
0.529740 | − | 0.848160i | \(-0.322290\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 3240.00i | − 0.442622i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 10388.0 | 1.40790 | 0.703952 | − | 0.710247i | \(-0.251417\pi\) | ||||
0.703952 | + | 0.710247i | \(0.251417\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 10552.0i | 1.40779i | 0.710306 | + | 0.703893i | \(0.248557\pi\) | ||||
−0.710306 | + | 0.703893i | \(0.751443\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 8262.00 | 1.07686 | 0.538432 | − | 0.842669i | \(-0.319017\pi\) | ||||
0.538432 | + | 0.842669i | \(0.319017\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −5936.00 | −0.767766 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2864.00i | − 0.362066i | −0.983477 | − | 0.181033i | \(-0.942056\pi\) | ||||
0.983477 | − | 0.181033i | \(-0.0579440\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −12588.0 | −1.56762 | −0.783809 | − | 0.621002i | \(-0.786726\pi\) | ||||
−0.783809 | + | 0.621002i | \(0.786726\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 2448.00i | 0.302589i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 2160.00i | − 0.263064i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10330.0 | −1.24886 | −0.624432 | − | 0.781079i | \(-0.714670\pi\) | ||||
−0.624432 | + | 0.781079i | \(0.714670\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 5916.00i | − 0.704860i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 1250.00 | 0.145743 | 0.0728717 | − | 0.997341i | \(-0.476784\pi\) | ||||
0.0728717 | + | 0.997341i | \(0.476784\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 5670.00 | 0.656387 | 0.328193 | − | 0.944611i | \(-0.393560\pi\) | ||||
0.328193 | + | 0.944611i | \(0.393560\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 6324.00i | − 0.716721i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −12976.0 | −1.45019 | −0.725095 | − | 0.688649i | \(-0.758204\pi\) | ||||
−0.725095 | + | 0.688649i | \(0.758204\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 9050.00i | − 1.00442i | −0.864745 | − | 0.502212i | \(-0.832520\pi\) | ||||
0.864745 | − | 0.502212i | \(-0.167480\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 2464.00i | 0.269723i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 17528.0 | 1.90562 | 0.952808 | − | 0.303572i | \(-0.0981794\pi\) | ||||
0.952808 | + | 0.303572i | \(0.0981794\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 2568.00i | 0.275416i | 0.990473 | + | 0.137708i | \(0.0439736\pi\) | ||||
−0.990473 | + | 0.137708i | \(0.956026\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −12652.0 | −1.32981 | −0.664905 | − | 0.746928i | \(-0.731528\pi\) | ||||
−0.664905 | + | 0.746928i | \(0.731528\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 1440.00 | 0.150348 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 6230.00i | 0.637696i | 0.947806 | + | 0.318848i | \(0.103296\pi\) | ||||
−0.947806 | + | 0.318848i | \(0.896704\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 5290.00 | 0.534447 | 0.267223 | − | 0.963635i | \(-0.413894\pi\) | ||||
0.267223 | + | 0.963635i | \(0.413894\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8110.00i | 0.814047i | 0.913418 | + | 0.407023i | \(0.133433\pi\) | ||||
−0.913418 | + | 0.407023i | \(0.866567\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 2020.00i | 0.200159i | 0.994979 | + | 0.100080i | \(0.0319098\pi\) | ||||
−0.994979 | + | 0.100080i | \(0.968090\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −11288.0 | −1.11137 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 9648.00i | 0.937876i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 9684.00 | 0.923744 | 0.461872 | − | 0.886947i | \(-0.347178\pi\) | ||||
0.461872 | + | 0.886947i | \(0.347178\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 1440.00 | 0.136504 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 18426.0i | 1.71450i | 0.514900 | + | 0.857250i | \(0.327829\pi\) | ||||
−0.514900 | + | 0.857250i | \(0.672171\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 4558.00 | 0.418940 | 0.209470 | − | 0.977815i | \(-0.432826\pi\) | ||||
0.209470 | + | 0.977815i | \(0.432826\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 28620.0i | − 2.61456i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 4488.00i | 0.405059i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 460.000 | 0.0412674 | 0.0206337 | − | 0.999787i | \(-0.493432\pi\) | ||||
0.0206337 | + | 0.999787i | \(0.493432\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 8568.00i | − 0.759499i | −0.925089 | − | 0.379750i | \(-0.876010\pi\) | ||||
0.925089 | − | 0.379750i | \(-0.123990\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −16374.0 | −1.42586 | −0.712932 | − | 0.701233i | \(-0.752633\pi\) | ||||
−0.712932 | + | 0.701233i | \(0.752633\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −20468.0 | −1.77192 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 9648.00i | 0.820732i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 21620.0 | 1.81802 | 0.909011 | − | 0.416772i | \(-0.136839\pi\) | ||||
0.909011 | + | 0.416772i | \(0.136839\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 16524.0i | 1.38154i | 0.723076 | + | 0.690769i | \(0.242728\pi\) | ||||
−0.723076 | + | 0.690769i | \(0.757272\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 21624.0i | 1.78739i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 9031.00 | 0.742254 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 960.000i | 0.0780154i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −14634.0 | −1.16945 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −4990.00 | −0.396556 | −0.198278 | − | 0.980146i | \(-0.563535\pi\) | ||||
−0.198278 | + | 0.980146i | \(0.563535\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 15224.0i | 1.19000i | 0.803725 | + | 0.595001i | \(0.202848\pi\) | ||||
−0.803725 | + | 0.595001i | \(0.797152\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −11880.0 | −0.918521 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 18632.0i | − 1.43275i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 5698.00i | 0.433451i | 0.976233 | + | 0.216725i | \(0.0695376\pi\) | ||||
−0.976233 | + | 0.216725i | \(0.930462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −6432.00 | −0.486663 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 5976.00i | 0.447351i | 0.974664 | + | 0.223675i | \(0.0718055\pi\) | ||||
−0.974664 | + | 0.223675i | \(0.928194\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −16460.0 | −1.21272 | −0.606361 | − | 0.795189i | \(-0.707371\pi\) | ||||
−0.606361 | + | 0.795189i | \(0.707371\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −18236.0 | −1.33652 | −0.668260 | − | 0.743928i | \(-0.732961\pi\) | ||||
−0.668260 | + | 0.743928i | \(0.732961\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 20842.0i | − 1.50375i | −0.659306 | − | 0.751875i | \(-0.729150\pi\) | ||||
0.659306 | − | 0.751875i | \(-0.270850\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16728.0 | −1.19448 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 9756.00i | 0.693057i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 11772.0i | 0.827738i | 0.910336 | + | 0.413869i | \(0.135823\pi\) | ||||
−0.910336 | + | 0.413869i | \(0.864177\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8976.00 | 0.627928 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 4514.00i | 0.312593i | 0.987710 | + | 0.156297i | \(0.0499556\pi\) | ||||
−0.987710 | + | 0.156297i | \(0.950044\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −25096.0 | −1.71184 | −0.855922 | − | 0.517105i | \(-0.827010\pi\) | ||||
−0.855922 | + | 0.517105i | \(0.827010\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 16262.0 | 1.10373 | 0.551864 | − | 0.833934i | \(-0.313917\pi\) | ||||
0.551864 | + | 0.833934i | \(0.313917\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 2262.00i | − 0.151255i | −0.997136 | − | 0.0756275i | \(-0.975904\pi\) | ||||
0.997136 | − | 0.0756275i | \(-0.0240960\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −6432.00 | −0.425877 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 14216.0i | 0.936670i | 0.883551 | + | 0.468335i | \(0.155146\pi\) | ||||
−0.883551 | + | 0.468335i | \(0.844854\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 2558.00i | − 0.166906i | −0.996512 | − | 0.0834532i | \(-0.973405\pi\) | ||||
0.996512 | − | 0.0834532i | \(-0.0265949\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 17044.0 | 1.10671 | 0.553357 | − | 0.832944i | \(-0.313346\pi\) | ||||
0.553357 | + | 0.832944i | \(0.313346\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 35768.0i | − 2.30018i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12720.0 | 0.806327 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20980.0 | 1.32361 | 0.661807 | − | 0.749674i | \(-0.269790\pi\) | ||||
0.661807 | + | 0.749674i | \(0.269790\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 9756.00i | − 0.606824i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 7176.00 | 0.442176 | 0.221088 | − | 0.975254i | \(-0.429039\pi\) | ||||
0.221088 | + | 0.975254i | \(0.429039\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 2724.00i | − 0.167067i | −0.996505 | − | 0.0835335i | \(-0.973379\pi\) | ||||
0.996505 | − | 0.0835335i | \(-0.0266206\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 10392.0i | 0.631455i | 0.948850 | + | 0.315728i | \(0.102249\pi\) | ||||
−0.948850 | + | 0.315728i | \(0.897751\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 3132.00 | 0.189433 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 11958.0i | − 0.716620i | −0.933603 | − | 0.358310i | \(-0.883353\pi\) | ||||
0.933603 | − | 0.358310i | \(-0.116647\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −13366.0 | −0.790084 | −0.395042 | − | 0.918663i | \(-0.629270\pi\) | ||||
−0.395042 | + | 0.918663i | \(0.629270\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 14698.0 | 0.864880 | 0.432440 | − | 0.901663i | \(-0.357653\pi\) | ||||
0.432440 | + | 0.901663i | \(0.357653\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 15120.0i | − 0.877734i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 3348.00 | 0.192620 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 7570.00i | − 0.433584i | −0.976218 | − | 0.216792i | \(-0.930441\pi\) | ||||
0.976218 | − | 0.216792i | \(-0.0695593\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 21378.0i | − 1.21362i | −0.794845 | − | 0.606812i | \(-0.792448\pi\) | ||||
0.794845 | − | 0.606812i | \(-0.207552\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −16388.0 | −0.926235 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 15804.0i | − 0.885393i | −0.896672 | − | 0.442696i | \(-0.854022\pi\) | ||||
0.896672 | − | 0.442696i | \(-0.145978\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −6504.00 | −0.359627 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −22028.0 | −1.21271 | −0.606356 | − | 0.795193i | \(-0.707370\pi\) | ||||
−0.606356 | + | 0.795193i | \(0.707370\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 8480.00i | 0.460836i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −1762.00 | −0.0949356 | −0.0474678 | − | 0.998873i | \(-0.515115\pi\) | ||||
−0.0474678 | + | 0.998873i | \(0.515115\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 5280.00i | − 0.283270i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 41276.0i | − 2.19568i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 2474.00 | 0.131048 | 0.0655240 | − | 0.997851i | \(-0.479128\pi\) | ||||
0.0655240 | + | 0.997851i | \(0.479128\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 11424.0i | 0.600045i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 32040.0 | 1.66188 | 0.830939 | − | 0.556363i | \(-0.187804\pi\) | ||||
0.830939 | + | 0.556363i | \(0.187804\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 30532.0 | 1.57708 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 12874.0i | 0.656768i | 0.944544 | + | 0.328384i | \(0.106504\pi\) | ||||
−0.944544 | + | 0.328384i | \(0.893496\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −56816.0 | −2.87471 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 28208.0i | 1.42140i | 0.703495 | + | 0.710700i | \(0.251622\pi\) | ||||
−0.703495 | + | 0.710700i | \(0.748378\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 5976.00i | − 0.298682i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −29068.0 | −1.44693 | −0.723467 | − | 0.690359i | \(-0.757452\pi\) | ||||
−0.723467 | + | 0.690359i | \(0.757452\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 28152.0i | − 1.39004i | −0.718992 | − | 0.695018i | \(-0.755396\pi\) | ||||
0.718992 | − | 0.695018i | \(-0.244604\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −46376.0 | −2.26241 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −29916.0 | −1.45360 | −0.726798 | − | 0.686851i | \(-0.758992\pi\) | ||||
−0.726798 | + | 0.686851i | \(0.758992\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 32904.0i | − 1.57981i | −0.613229 | − | 0.789905i | \(-0.710130\pi\) | ||||
0.613229 | − | 0.789905i | \(-0.289870\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −21764.0 | −1.03672 | −0.518360 | − | 0.855162i | \(-0.673457\pi\) | ||||
−0.518360 | + | 0.855162i | \(0.673457\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 7412.00i | 0.351681i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 2088.00i | 0.0982964i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 3570.00 | 0.167409 | 0.0837045 | − | 0.996491i | \(-0.473325\pi\) | ||||
0.0837045 | + | 0.996491i | \(0.473325\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 19486.0i | − 0.906679i | −0.891338 | − | 0.453339i | \(-0.850233\pi\) | ||||
0.891338 | − | 0.453339i | \(-0.149767\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 3520.00 | 0.161896 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −2376.00 | −0.108860 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 19764.0i | − 0.895185i | −0.894238 | − | 0.447592i | \(-0.852282\pi\) | ||||
0.894238 | − | 0.447592i | \(-0.147718\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 47124.0 | 2.11825 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 2232.00i | 0.0999504i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 14390.0i | − 0.639548i | −0.947494 | − | 0.319774i | \(-0.896393\pi\) | ||||
0.947494 | − | 0.319774i | \(-0.103607\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −56816.0 | −2.51565 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 10836.0i | − 0.476207i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −28536.0 | −1.24014 | −0.620069 | − | 0.784547i | \(-0.712896\pi\) | ||||
−0.620069 | + | 0.784547i | \(0.712896\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 27732.0 | 1.20074 | 0.600371 | − | 0.799721i | \(-0.295019\pi\) | ||||
0.600371 | + | 0.799721i | \(0.295019\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 23584.0i | 1.00991i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 8086.00 | 0.343731 | 0.171866 | − | 0.985120i | \(-0.445021\pi\) | ||||
0.171866 | + | 0.985120i | \(0.445021\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 39854.0i | 1.68800i | 0.536344 | + | 0.843999i | \(0.319805\pi\) | ||||
−0.536344 | + | 0.843999i | \(0.680195\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 17752.0i | 0.746430i | 0.927745 | + | 0.373215i | \(0.121745\pi\) | ||||
−0.927745 | + | 0.373215i | \(0.878255\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −23858.0 | −0.999545 | −0.499772 | − | 0.866157i | \(-0.666583\pi\) | ||||
−0.499772 | + | 0.866157i | \(0.666583\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 86178.0i | − 3.58450i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −13888.0 | −0.571474 | −0.285737 | − | 0.958308i | \(-0.592238\pi\) | ||||
−0.285737 | + | 0.958308i | \(0.592238\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 48511.0 | 1.98905 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 34238.0i | 1.38894i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 6720.00 | 0.270692 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 16568.0i | − 0.665038i | −0.943097 | − | 0.332519i | \(-0.892101\pi\) | ||||
0.943097 | − | 0.332519i | \(-0.107899\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 13034.0i | 0.519525i | 0.965673 | + | 0.259763i | \(0.0836443\pi\) | ||||
−0.965673 | + | 0.259763i | \(0.916356\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 34356.0 | 1.36462 | 0.682312 | − | 0.731061i | \(-0.260975\pi\) | ||||
0.682312 | + | 0.731061i | \(0.260975\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 16016.0i | 0.631739i | 0.948803 | + | 0.315870i | \(0.102296\pi\) | ||||
−0.948803 | + | 0.315870i | \(0.897704\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 9864.00 | 0.385056 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 3984.00 | 0.154986 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 19780.0i | − 0.761600i | −0.924657 | − | 0.380800i | \(-0.875649\pi\) | ||||
0.924657 | − | 0.380800i | \(-0.124351\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −41036.0 | −1.56928 | −0.784641 | − | 0.619950i | \(-0.787153\pi\) | ||||
−0.784641 | + | 0.619950i | \(0.787153\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 35108.0i | − 1.33803i | −0.743250 | − | 0.669014i | \(-0.766717\pi\) | ||||
0.743250 | − | 0.669014i | \(-0.233283\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 18648.0i | − 0.705906i | −0.935641 | − | 0.352953i | \(-0.885178\pi\) | ||||
0.935641 | − | 0.352953i | \(-0.114822\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 27676.0 | 1.04412 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 23584.0i | 0.883772i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −55080.0 | −2.04340 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −57452.0 | −2.12431 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 21688.0i | − 0.793978i | −0.917823 | − | 0.396989i | \(-0.870055\pi\) | ||||
0.917823 | − | 0.396989i | \(-0.129945\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −42064.0 | −1.52979 | −0.764897 | − | 0.644153i | \(-0.777210\pi\) | ||||
−0.764897 | + | 0.644153i | \(0.777210\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 8856.00i | − 0.321020i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 43588.0i | 1.56969i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 44420.0 | 1.59443 | 0.797215 | − | 0.603696i | \(-0.206306\pi\) | ||||
0.797215 | + | 0.603696i | \(0.206306\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 1584.00i | − 0.0564875i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 17124.0 | 0.604758 | 0.302379 | − | 0.953188i | \(-0.402219\pi\) | ||||
0.302379 | + | 0.953188i | \(0.402219\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −35772.0 | −1.25927 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 11110.0i | 0.387351i | 0.981066 | + | 0.193675i | \(0.0620409\pi\) | ||||
−0.981066 | + | 0.193675i | \(0.937959\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 12962.0 | 0.449043 | 0.224521 | − | 0.974469i | \(-0.427918\pi\) | ||||
0.224521 | + | 0.974469i | \(0.427918\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 4480.00i | 0.154707i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 25672.0i | 0.880916i | 0.897773 | + | 0.440458i | \(0.145184\pi\) | ||||
−0.897773 | + | 0.440458i | \(0.854816\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 7224.00 | 0.247103 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 2082.00i | 0.0707687i | 0.999374 | + | 0.0353844i | \(0.0112655\pi\) | ||||
−0.999374 | + | 0.0353844i | \(0.988734\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −104244. | −3.51013 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 11825.0 | 0.396932 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 5666.00i | − 0.188424i | −0.995552 | − | 0.0942121i | \(-0.969967\pi\) | ||||
0.995552 | − | 0.0942121i | \(-0.0300332\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 28622.0 | 0.945956 | 0.472978 | − | 0.881074i | \(-0.343179\pi\) | ||||
0.472978 | + | 0.881074i | \(0.343179\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 45288.0i | − 1.49215i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 24586.0i | 0.805093i | 0.915400 | + | 0.402546i | \(0.131875\pi\) | ||||
−0.915400 | + | 0.402546i | \(0.868125\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 18936.0 | 0.618179 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 40632.0i | 1.31837i | 0.751980 | + | 0.659186i | \(0.229099\pi\) | ||||
−0.751980 | + | 0.659186i | \(0.770901\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −30016.0 | −0.965069 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 8768.00 | 0.281054 | 0.140527 | − | 0.990077i | \(-0.455120\pi\) | ||||
0.140527 | + | 0.990077i | \(0.455120\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 37212.0i | − 1.18206i | −0.806649 | − | 0.591031i | \(-0.798721\pi\) | ||||
0.806649 | − | 0.591031i | \(-0.201279\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.f.o.649.1 | 2 | ||
3.2 | odd | 2 | 1800.4.f.i.649.1 | 2 | |||
5.2 | odd | 4 | 360.4.a.g.1.1 | ✓ | 1 | ||
5.3 | odd | 4 | 1800.4.a.b.1.1 | 1 | |||
5.4 | even | 2 | inner | 1800.4.f.o.649.2 | 2 | ||
15.2 | even | 4 | 360.4.a.o.1.1 | yes | 1 | ||
15.8 | even | 4 | 1800.4.a.a.1.1 | 1 | |||
15.14 | odd | 2 | 1800.4.f.i.649.2 | 2 | |||
20.7 | even | 4 | 720.4.a.a.1.1 | 1 | |||
60.47 | odd | 4 | 720.4.a.p.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
360.4.a.g.1.1 | ✓ | 1 | 5.2 | odd | 4 | ||
360.4.a.o.1.1 | yes | 1 | 15.2 | even | 4 | ||
720.4.a.a.1.1 | 1 | 20.7 | even | 4 | |||
720.4.a.p.1.1 | 1 | 60.47 | odd | 4 | |||
1800.4.a.a.1.1 | 1 | 15.8 | even | 4 | |||
1800.4.a.b.1.1 | 1 | 5.3 | odd | 4 | |||
1800.4.f.i.649.1 | 2 | 3.2 | odd | 2 | |||
1800.4.f.i.649.2 | 2 | 15.14 | odd | 2 | |||
1800.4.f.o.649.1 | 2 | 1.1 | even | 1 | trivial | ||
1800.4.f.o.649.2 | 2 | 5.4 | even | 2 | inner |