Properties

Label 1805.2.a.o.1.1
Level 18051805
Weight 22
Character 1805.1
Self dual yes
Analytic conductor 14.41314.413
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.412997564814.4129975648
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.7537.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x35x2+4x+3 x^{4} - x^{3} - 5x^{2} + 4x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.159762.15976 of defining polynomial
Character χ\chi == 1805.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.66454q21.15976q3+0.770710q4+1.00000q5+1.93047q62.43525q7+2.04621q81.65497q91.66454q105.75477q110.893835q121.59501q13+4.05359q141.15976q154.94743q165.98406q17+2.75477q18+0.770710q20+2.82430q21+9.57907q220.940044q232.37310q24+1.00000q25+2.65497q26+5.39862q271.87687q28+2.61834q29+1.93047q305.26913q31+4.14280q32+6.67412q33+9.96073q342.43525q351.27550q362.89384q37+1.84982q39+2.04621q406.31534q414.70118q42+4.53922q434.43525q441.65497q45+1.56475q46+8.95437q47+5.73781q481.06953q491.66454q50+6.94004q511.22929q522.19639q538.98625q545.75477q554.98304q564.35834q5810.7988q590.893835q6010.5287q61+8.77071q62+4.03027q63+2.99898q641.59501q6511.1094q66+1.00958q674.61197q68+1.09022q69+4.05359q70+8.83388q713.38641q7210.2500q73+4.81692q741.15976q75+14.0143q773.07911q78+7.60459q794.94743q801.29619q81+10.5122q82+3.11355q83+2.17672q845.98406q857.55574q863.03663q8711.7755q8811.1141q89+2.75477q90+3.88426q910.724501q92+6.11091q9314.9049q944.80463q96+4.05776q97+1.78029q98+9.52395q99+O(q100)q-1.66454 q^{2} -1.15976 q^{3} +0.770710 q^{4} +1.00000 q^{5} +1.93047 q^{6} -2.43525 q^{7} +2.04621 q^{8} -1.65497 q^{9} -1.66454 q^{10} -5.75477 q^{11} -0.893835 q^{12} -1.59501 q^{13} +4.05359 q^{14} -1.15976 q^{15} -4.94743 q^{16} -5.98406 q^{17} +2.75477 q^{18} +0.770710 q^{20} +2.82430 q^{21} +9.57907 q^{22} -0.940044 q^{23} -2.37310 q^{24} +1.00000 q^{25} +2.65497 q^{26} +5.39862 q^{27} -1.87687 q^{28} +2.61834 q^{29} +1.93047 q^{30} -5.26913 q^{31} +4.14280 q^{32} +6.67412 q^{33} +9.96073 q^{34} -2.43525 q^{35} -1.27550 q^{36} -2.89384 q^{37} +1.84982 q^{39} +2.04621 q^{40} -6.31534 q^{41} -4.70118 q^{42} +4.53922 q^{43} -4.43525 q^{44} -1.65497 q^{45} +1.56475 q^{46} +8.95437 q^{47} +5.73781 q^{48} -1.06953 q^{49} -1.66454 q^{50} +6.94004 q^{51} -1.22929 q^{52} -2.19639 q^{53} -8.98625 q^{54} -5.75477 q^{55} -4.98304 q^{56} -4.35834 q^{58} -10.7988 q^{59} -0.893835 q^{60} -10.5287 q^{61} +8.77071 q^{62} +4.03027 q^{63} +2.99898 q^{64} -1.59501 q^{65} -11.1094 q^{66} +1.00958 q^{67} -4.61197 q^{68} +1.09022 q^{69} +4.05359 q^{70} +8.83388 q^{71} -3.38641 q^{72} -10.2500 q^{73} +4.81692 q^{74} -1.15976 q^{75} +14.0143 q^{77} -3.07911 q^{78} +7.60459 q^{79} -4.94743 q^{80} -1.29619 q^{81} +10.5122 q^{82} +3.11355 q^{83} +2.17672 q^{84} -5.98406 q^{85} -7.55574 q^{86} -3.03663 q^{87} -11.7755 q^{88} -11.1141 q^{89} +2.75477 q^{90} +3.88426 q^{91} -0.724501 q^{92} +6.11091 q^{93} -14.9049 q^{94} -4.80463 q^{96} +4.05776 q^{97} +1.78029 q^{98} +9.52395 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2+3q3+5q4+4q5+2q64q7+12q8+q9+q102q11+6q12+7q13q14+3q15+7q16q1710q18+5q204q21++38q99+O(q100) 4 q + q^{2} + 3 q^{3} + 5 q^{4} + 4 q^{5} + 2 q^{6} - 4 q^{7} + 12 q^{8} + q^{9} + q^{10} - 2 q^{11} + 6 q^{12} + 7 q^{13} - q^{14} + 3 q^{15} + 7 q^{16} - q^{17} - 10 q^{18} + 5 q^{20} - 4 q^{21}+ \cdots + 38 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.66454 −1.17701 −0.588506 0.808493i 0.700283π-0.700283\pi
−0.588506 + 0.808493i 0.700283π0.700283\pi
33 −1.15976 −0.669585 −0.334793 0.942292i 0.608666π-0.608666\pi
−0.334793 + 0.942292i 0.608666π0.608666\pi
44 0.770710 0.385355
55 1.00000 0.447214
66 1.93047 0.788109
77 −2.43525 −0.920440 −0.460220 0.887805i 0.652229π-0.652229\pi
−0.460220 + 0.887805i 0.652229π0.652229\pi
88 2.04621 0.723444
99 −1.65497 −0.551656
1010 −1.66454 −0.526375
1111 −5.75477 −1.73513 −0.867564 0.497326i 0.834315π-0.834315\pi
−0.867564 + 0.497326i 0.834315π0.834315\pi
1212 −0.893835 −0.258028
1313 −1.59501 −0.442376 −0.221188 0.975231i 0.570993π-0.570993\pi
−0.221188 + 0.975231i 0.570993π0.570993\pi
1414 4.05359 1.08337
1515 −1.15976 −0.299448
1616 −4.94743 −1.23686
1717 −5.98406 −1.45135 −0.725673 0.688039i 0.758472π-0.758472\pi
−0.725673 + 0.688039i 0.758472π0.758472\pi
1818 2.75477 0.649305
1919 0 0
2020 0.770710 0.172336
2121 2.82430 0.616313
2222 9.57907 2.04226
2323 −0.940044 −0.196013 −0.0980064 0.995186i 0.531247π-0.531247\pi
−0.0980064 + 0.995186i 0.531247π0.531247\pi
2424 −2.37310 −0.484407
2525 1.00000 0.200000
2626 2.65497 0.520682
2727 5.39862 1.03897
2828 −1.87687 −0.354696
2929 2.61834 0.486213 0.243106 0.970000i 0.421834π-0.421834\pi
0.243106 + 0.970000i 0.421834π0.421834\pi
3030 1.93047 0.352453
3131 −5.26913 −0.946364 −0.473182 0.880965i 0.656895π-0.656895\pi
−0.473182 + 0.880965i 0.656895π0.656895\pi
3232 4.14280 0.732350
3333 6.67412 1.16182
3434 9.96073 1.70825
3535 −2.43525 −0.411633
3636 −1.27550 −0.212583
3737 −2.89384 −0.475744 −0.237872 0.971297i 0.576450π-0.576450\pi
−0.237872 + 0.971297i 0.576450π0.576450\pi
3838 0 0
3939 1.84982 0.296209
4040 2.04621 0.323534
4141 −6.31534 −0.986291 −0.493145 0.869947i 0.664153π-0.664153\pi
−0.493145 + 0.869947i 0.664153π0.664153\pi
4242 −4.70118 −0.725407
4343 4.53922 0.692225 0.346113 0.938193i 0.387502π-0.387502\pi
0.346113 + 0.938193i 0.387502π0.387502\pi
4444 −4.43525 −0.668640
4545 −1.65497 −0.246708
4646 1.56475 0.230709
4747 8.95437 1.30613 0.653064 0.757303i 0.273483π-0.273483\pi
0.653064 + 0.757303i 0.273483π0.273483\pi
4848 5.73781 0.828181
4949 −1.06953 −0.152791
5050 −1.66454 −0.235402
5151 6.94004 0.971801
5252 −1.22929 −0.170472
5353 −2.19639 −0.301697 −0.150848 0.988557i 0.548201π-0.548201\pi
−0.150848 + 0.988557i 0.548201π0.548201\pi
5454 −8.98625 −1.22287
5555 −5.75477 −0.775973
5656 −4.98304 −0.665887
5757 0 0
5858 −4.35834 −0.572278
5959 −10.7988 −1.40588 −0.702941 0.711249i 0.748130π-0.748130\pi
−0.702941 + 0.711249i 0.748130π0.748130\pi
6060 −0.893835 −0.115394
6161 −10.5287 −1.34806 −0.674030 0.738704i 0.735438π-0.735438\pi
−0.674030 + 0.738704i 0.735438π0.735438\pi
6262 8.77071 1.11388
6363 4.03027 0.507766
6464 2.99898 0.374873
6565 −1.59501 −0.197837
6666 −11.1094 −1.36747
6767 1.00958 0.123340 0.0616698 0.998097i 0.480357π-0.480357\pi
0.0616698 + 0.998097i 0.480357π0.480357\pi
6868 −4.61197 −0.559284
6969 1.09022 0.131247
7070 4.05359 0.484497
7171 8.83388 1.04839 0.524194 0.851599i 0.324367π-0.324367\pi
0.524194 + 0.851599i 0.324367π0.324367\pi
7272 −3.38641 −0.399092
7373 −10.2500 −1.19967 −0.599835 0.800124i 0.704767π-0.704767\pi
−0.599835 + 0.800124i 0.704767π0.704767\pi
7474 4.81692 0.559955
7575 −1.15976 −0.133917
7676 0 0
7777 14.0143 1.59708
7878 −3.07911 −0.348641
7979 7.60459 0.855583 0.427792 0.903877i 0.359292π-0.359292\pi
0.427792 + 0.903877i 0.359292π0.359292\pi
8080 −4.94743 −0.553139
8181 −1.29619 −0.144021
8282 10.5122 1.16088
8383 3.11355 0.341756 0.170878 0.985292i 0.445340π-0.445340\pi
0.170878 + 0.985292i 0.445340π0.445340\pi
8484 2.17672 0.237499
8585 −5.98406 −0.649062
8686 −7.55574 −0.814757
8787 −3.03663 −0.325561
8888 −11.7755 −1.25527
8989 −11.1141 −1.17809 −0.589047 0.808099i 0.700497π-0.700497\pi
−0.589047 + 0.808099i 0.700497π0.700497\pi
9090 2.75477 0.290378
9191 3.88426 0.407181
9292 −0.724501 −0.0755345
9393 6.11091 0.633672
9494 −14.9049 −1.53733
9595 0 0
9696 −4.80463 −0.490371
9797 4.05776 0.412003 0.206002 0.978552i 0.433955π-0.433955\pi
0.206002 + 0.978552i 0.433955π0.433955\pi
9898 1.78029 0.179836
9999 9.52395 0.957193
100100 0.770710 0.0770710
101101 −11.1301 −1.10748 −0.553741 0.832689i 0.686800π-0.686800\pi
−0.553741 + 0.832689i 0.686800π0.686800\pi
102102 −11.5520 −1.14382
103103 11.5791 1.14092 0.570460 0.821326i 0.306765π-0.306765\pi
0.570460 + 0.821326i 0.306765π0.306765\pi
104104 −3.26372 −0.320035
105105 2.82430 0.275624
106106 3.65598 0.355101
107107 17.9177 1.73217 0.866086 0.499894i 0.166628π-0.166628\pi
0.866086 + 0.499894i 0.166628π0.166628\pi
108108 4.16077 0.400371
109109 5.62470 0.538749 0.269374 0.963036i 0.413183π-0.413183\pi
0.269374 + 0.963036i 0.413183π0.413183\pi
110110 9.57907 0.913328
111111 3.35614 0.318551
112112 12.0482 1.13845
113113 −15.6789 −1.47494 −0.737472 0.675378i 0.763981π-0.763981\pi
−0.737472 + 0.675378i 0.763981π0.763981\pi
114114 0 0
115115 −0.940044 −0.0876595
116116 2.01798 0.187364
117117 2.63969 0.244039
118118 17.9751 1.65474
119119 14.5727 1.33588
120120 −2.37310 −0.216634
121121 22.1173 2.01067
122122 17.5255 1.58668
123123 7.32425 0.660406
124124 −4.06097 −0.364686
125125 1.00000 0.0894427
126126 −6.70856 −0.597646
127127 6.11991 0.543054 0.271527 0.962431i 0.412471π-0.412471\pi
0.271527 + 0.962431i 0.412471π0.412471\pi
128128 −13.2775 −1.17358
129129 −5.26439 −0.463504
130130 2.65497 0.232856
131131 −14.8811 −1.30017 −0.650084 0.759862i 0.725266π-0.725266\pi
−0.650084 + 0.759862i 0.725266π0.725266\pi
132132 5.14381 0.447711
133133 0 0
134134 −1.68049 −0.145172
135135 5.39862 0.464640
136136 −12.2446 −1.04997
137137 17.3504 1.48234 0.741170 0.671317i 0.234271π-0.234271\pi
0.741170 + 0.671317i 0.234271π0.234271\pi
138138 −1.81472 −0.154479
139139 −6.70534 −0.568740 −0.284370 0.958715i 0.591784π-0.591784\pi
−0.284370 + 0.958715i 0.591784π0.591784\pi
140140 −1.87687 −0.158625
141141 −10.3849 −0.874564
142142 −14.7044 −1.23396
143143 9.17891 0.767579
144144 8.18782 0.682319
145145 2.61834 0.217441
146146 17.0615 1.41202
147147 1.24040 0.102306
148148 −2.23031 −0.183330
149149 14.3928 1.17911 0.589553 0.807729i 0.299304π-0.299304\pi
0.589553 + 0.807729i 0.299304π0.299304\pi
150150 1.93047 0.157622
151151 12.7219 1.03529 0.517645 0.855595i 0.326809π-0.326809\pi
0.517645 + 0.855595i 0.326809π0.326809\pi
152152 0 0
153153 9.90341 0.800644
154154 −23.3275 −1.87978
155155 −5.26913 −0.423227
156156 1.42568 0.114145
157157 −3.37530 −0.269378 −0.134689 0.990888i 0.543004π-0.543004\pi
−0.134689 + 0.990888i 0.543004π0.543004\pi
158158 −12.6582 −1.00703
159159 2.54727 0.202012
160160 4.14280 0.327517
161161 2.28925 0.180418
162162 2.15756 0.169514
163163 0.307960 0.0241213 0.0120607 0.999927i 0.496161π-0.496161\pi
0.0120607 + 0.999927i 0.496161π0.496161\pi
164164 −4.86730 −0.380072
165165 6.67412 0.519580
166166 −5.18264 −0.402251
167167 14.2643 1.10380 0.551902 0.833909i 0.313902π-0.313902\pi
0.551902 + 0.833909i 0.313902π0.313902\pi
168168 5.77911 0.445868
169169 −10.4559 −0.804303
170170 9.96073 0.763953
171171 0 0
172172 3.49842 0.266752
173173 13.3471 1.01476 0.507382 0.861721i 0.330613π-0.330613\pi
0.507382 + 0.861721i 0.330613π0.330613\pi
174174 5.05461 0.383189
175175 −2.43525 −0.184088
176176 28.4713 2.14610
177177 12.5239 0.941357
178178 18.5000 1.38663
179179 −14.2207 −1.06291 −0.531454 0.847087i 0.678354π-0.678354\pi
−0.531454 + 0.847087i 0.678354π0.678354\pi
180180 −1.27550 −0.0950701
181181 9.88263 0.734570 0.367285 0.930108i 0.380287π-0.380287\pi
0.367285 + 0.930108i 0.380287π0.380287\pi
182182 −6.46552 −0.479256
183183 12.2107 0.902641
184184 −1.92353 −0.141804
185185 −2.89384 −0.212759
186186 −10.1719 −0.745839
187187 34.4368 2.51827
188188 6.90122 0.503323
189189 −13.1470 −0.956305
190190 0 0
191191 −12.9942 −0.940228 −0.470114 0.882606i 0.655787π-0.655787\pi
−0.470114 + 0.882606i 0.655787π0.655787\pi
192192 −3.47809 −0.251009
193193 14.5159 1.04488 0.522439 0.852677i 0.325022π-0.325022\pi
0.522439 + 0.852677i 0.325022π0.325022\pi
194194 −6.75432 −0.484932
195195 1.84982 0.132469
196196 −0.824301 −0.0588786
197197 −25.0010 −1.78125 −0.890624 0.454740i 0.849732π-0.849732\pi
−0.890624 + 0.454740i 0.849732π0.849732\pi
198198 −15.8530 −1.12663
199199 −2.25539 −0.159880 −0.0799401 0.996800i 0.525473π-0.525473\pi
−0.0799401 + 0.996800i 0.525473π0.525473\pi
200200 2.04621 0.144689
201201 −1.17086 −0.0825864
202202 18.5265 1.30352
203203 −6.37632 −0.447530
204204 5.34876 0.374488
205205 −6.31534 −0.441083
206206 −19.2739 −1.34287
207207 1.55574 0.108131
208208 7.89120 0.547156
209209 0 0
210210 −4.70118 −0.324412
211211 22.2161 1.52942 0.764710 0.644374i 0.222882π-0.222882\pi
0.764710 + 0.644374i 0.222882π0.222882\pi
212212 −1.69278 −0.116260
213213 −10.2451 −0.701986
214214 −29.8249 −2.03879
215215 4.53922 0.309572
216216 11.0467 0.751634
217217 12.8317 0.871071
218218 −9.36257 −0.634113
219219 11.8875 0.803281
220220 −4.43525 −0.299025
221221 9.54463 0.642041
222222 −5.58645 −0.374938
223223 10.2160 0.684113 0.342056 0.939679i 0.388877π-0.388877\pi
0.342056 + 0.939679i 0.388877π0.388877\pi
224224 −10.0888 −0.674084
225225 −1.65497 −0.110331
226226 26.0982 1.73602
227227 4.15180 0.275565 0.137782 0.990463i 0.456003π-0.456003\pi
0.137782 + 0.990463i 0.456003π0.456003\pi
228228 0 0
229229 6.53286 0.431703 0.215852 0.976426i 0.430747π-0.430747\pi
0.215852 + 0.976426i 0.430747π0.430747\pi
230230 1.56475 0.103176
231231 −16.2532 −1.06938
232232 5.35766 0.351748
233233 5.14820 0.337270 0.168635 0.985679i 0.446064π-0.446064\pi
0.168635 + 0.985679i 0.446064π0.446064\pi
234234 −4.39388 −0.287237
235235 8.95437 0.584118
236236 −8.32272 −0.541763
237237 −8.81947 −0.572886
238238 −24.2569 −1.57234
239239 13.9962 0.905338 0.452669 0.891679i 0.350472π-0.350472\pi
0.452669 + 0.891679i 0.350472π0.350472\pi
240240 5.73781 0.370374
241241 15.2257 0.980773 0.490387 0.871505i 0.336856π-0.336856\pi
0.490387 + 0.871505i 0.336856π0.336856\pi
242242 −36.8153 −2.36658
243243 −14.6926 −0.942532
244244 −8.11456 −0.519482
245245 −1.06953 −0.0683300
246246 −12.1916 −0.777305
247247 0 0
248248 −10.7817 −0.684642
249249 −3.61095 −0.228835
250250 −1.66454 −0.105275
251251 −6.11259 −0.385823 −0.192912 0.981216i 0.561793π-0.561793\pi
−0.192912 + 0.981216i 0.561793π0.561793\pi
252252 3.10616 0.195670
253253 5.40973 0.340107
254254 −10.1869 −0.639181
255255 6.94004 0.434602
256256 16.1031 1.00644
257257 0.122683 0.00765274 0.00382637 0.999993i 0.498782π-0.498782\pi
0.00382637 + 0.999993i 0.498782π0.498782\pi
258258 8.76281 0.545549
259259 7.04723 0.437893
260260 −1.22929 −0.0762373
261261 −4.33326 −0.268222
262262 24.7703 1.53031
263263 −10.0605 −0.620359 −0.310179 0.950678i 0.600389π-0.600389\pi
−0.310179 + 0.950678i 0.600389π0.600389\pi
264264 13.6566 0.840509
265265 −2.19639 −0.134923
266266 0 0
267267 12.8897 0.788835
268268 0.778092 0.0475295
269269 5.71228 0.348284 0.174142 0.984721i 0.444285π-0.444285\pi
0.174142 + 0.984721i 0.444285π0.444285\pi
270270 −8.98625 −0.546886
271271 −12.7112 −0.772150 −0.386075 0.922467i 0.626169π-0.626169\pi
−0.386075 + 0.922467i 0.626169π0.626169\pi
272272 29.6057 1.79511
273273 −4.50479 −0.272642
274274 −28.8804 −1.74473
275275 −5.75477 −0.347025
276276 0.840244 0.0505768
277277 17.6019 1.05760 0.528799 0.848747i 0.322642π-0.322642\pi
0.528799 + 0.848747i 0.322642π0.322642\pi
278278 11.1613 0.669413
279279 8.72024 0.522067
280280 −4.98304 −0.297794
281281 −20.5004 −1.22295 −0.611476 0.791263i 0.709424π-0.709424\pi
−0.611476 + 0.791263i 0.709424π0.709424\pi
282282 17.2861 1.02937
283283 −11.8561 −0.704772 −0.352386 0.935855i 0.614630π-0.614630\pi
−0.352386 + 0.935855i 0.614630π0.614630\pi
284284 6.80836 0.404002
285285 0 0
286286 −15.2787 −0.903449
287287 15.3795 0.907821
288288 −6.85619 −0.404005
289289 18.8089 1.10641
290290 −4.35834 −0.255930
291291 −4.70601 −0.275871
292292 −7.89976 −0.462298
293293 −24.9814 −1.45943 −0.729715 0.683751i 0.760347π-0.760347\pi
−0.729715 + 0.683751i 0.760347π0.760347\pi
294294 −2.06470 −0.120416
295295 −10.7988 −0.628729
296296 −5.92139 −0.344174
297297 −31.0678 −1.80274
298298 −23.9575 −1.38782
299299 1.49938 0.0867114
300300 −0.893835 −0.0516056
301301 −11.0542 −0.637151
302302 −21.1761 −1.21855
303303 12.9082 0.741554
304304 0 0
305305 −10.5287 −0.602871
306306 −16.4847 −0.942366
307307 16.9199 0.965671 0.482836 0.875711i 0.339607π-0.339607\pi
0.482836 + 0.875711i 0.339607π0.339607\pi
308308 10.8010 0.615443
309309 −13.4289 −0.763943
310310 8.77071 0.498143
311311 −15.2133 −0.862670 −0.431335 0.902192i 0.641957π-0.641957\pi
−0.431335 + 0.902192i 0.641957π0.641957\pi
312312 3.78512 0.214290
313313 24.9273 1.40898 0.704488 0.709716i 0.251177π-0.251177\pi
0.704488 + 0.709716i 0.251177π0.251177\pi
314314 5.61834 0.317061
315315 4.03027 0.227080
316316 5.86093 0.329703
317317 −25.2304 −1.41708 −0.708541 0.705669i 0.750646π-0.750646\pi
−0.708541 + 0.705669i 0.750646π0.750646\pi
318318 −4.24005 −0.237770
319319 −15.0679 −0.843641
320320 2.99898 0.167648
321321 −20.7802 −1.15984
322322 −3.81055 −0.212354
323323 0 0
324324 −0.998983 −0.0554991
325325 −1.59501 −0.0884753
326326 −0.512614 −0.0283911
327327 −6.52328 −0.360738
328328 −12.9225 −0.713526
329329 −21.8062 −1.20221
330330 −11.1094 −0.611551
331331 −20.2063 −1.11064 −0.555320 0.831637i 0.687404π-0.687404\pi
−0.555320 + 0.831637i 0.687404π0.687404\pi
332332 2.39964 0.131697
333333 4.78920 0.262447
334334 −23.7436 −1.29919
335335 1.00958 0.0551592
336336 −13.9730 −0.762291
337337 −31.8247 −1.73360 −0.866800 0.498657i 0.833827π-0.833827\pi
−0.866800 + 0.498657i 0.833827π0.833827\pi
338338 17.4044 0.946674
339339 18.1837 0.987601
340340 −4.61197 −0.250119
341341 30.3226 1.64206
342342 0 0
343343 19.6514 1.06107
344344 9.28820 0.500786
345345 1.09022 0.0586955
346346 −22.2169 −1.19439
347347 −3.30255 −0.177290 −0.0886451 0.996063i 0.528254π-0.528254\pi
−0.0886451 + 0.996063i 0.528254π0.528254\pi
348348 −2.34036 −0.125457
349349 17.8486 0.955416 0.477708 0.878519i 0.341468π-0.341468\pi
0.477708 + 0.878519i 0.341468π0.341468\pi
350350 4.05359 0.216674
351351 −8.61086 −0.459614
352352 −23.8408 −1.27072
353353 −8.29523 −0.441511 −0.220755 0.975329i 0.570852π-0.570852\pi
−0.220755 + 0.975329i 0.570852π0.570852\pi
354354 −20.8467 −1.10799
355355 8.83388 0.468854
356356 −8.56576 −0.453984
357357 −16.9008 −0.894484
358358 23.6710 1.25105
359359 8.35022 0.440708 0.220354 0.975420i 0.429279π-0.429279\pi
0.220354 + 0.975420i 0.429279π0.429279\pi
360360 −3.38641 −0.178479
361361 0 0
362362 −16.4501 −0.864598
363363 −25.6507 −1.34631
364364 2.99363 0.156909
365365 −10.2500 −0.536508
366366 −20.3253 −1.06242
367367 14.4198 0.752705 0.376353 0.926477i 0.377178π-0.377178\pi
0.376353 + 0.926477i 0.377178π0.377178\pi
368368 4.65080 0.242440
369369 10.4517 0.544093
370370 4.81692 0.250420
371371 5.34876 0.277694
372372 4.70974 0.244188
373373 −24.1157 −1.24866 −0.624332 0.781159i 0.714629π-0.714629\pi
−0.624332 + 0.781159i 0.714629π0.714629\pi
374374 −57.3217 −2.96403
375375 −1.15976 −0.0598895
376376 18.3225 0.944911
377377 −4.17627 −0.215089
378378 21.8838 1.12558
379379 16.6757 0.856571 0.428285 0.903644i 0.359118π-0.359118\pi
0.428285 + 0.903644i 0.359118π0.359118\pi
380380 0 0
381381 −7.09760 −0.363621
382382 21.6294 1.10666
383383 −10.8779 −0.555834 −0.277917 0.960605i 0.589644π-0.589644\pi
−0.277917 + 0.960605i 0.589644π0.589644\pi
384384 15.3987 0.785811
385385 14.0143 0.714236
386386 −24.1624 −1.22983
387387 −7.51226 −0.381870
388388 3.12736 0.158767
389389 36.4543 1.84831 0.924154 0.382021i 0.124772π-0.124772\pi
0.924154 + 0.382021i 0.124772π0.124772\pi
390390 −3.07911 −0.155917
391391 5.62528 0.284482
392392 −2.18849 −0.110535
393393 17.2584 0.870573
394394 41.6153 2.09655
395395 7.60459 0.382628
396396 7.34020 0.368859
397397 8.58381 0.430809 0.215405 0.976525i 0.430893π-0.430893\pi
0.215405 + 0.976525i 0.430893π0.430893\pi
398398 3.75419 0.188181
399399 0 0
400400 −4.94743 −0.247371
401401 −17.0557 −0.851721 −0.425860 0.904789i 0.640029π-0.640029\pi
−0.425860 + 0.904789i 0.640029π0.640029\pi
402402 1.94896 0.0972051
403403 8.40432 0.418649
404404 −8.57805 −0.426774
405405 −1.29619 −0.0644080
406406 10.6137 0.526747
407407 16.6533 0.825476
408408 14.2008 0.703043
409409 −11.7940 −0.583178 −0.291589 0.956544i 0.594184π-0.594184\pi
−0.291589 + 0.956544i 0.594184π0.594184\pi
410410 10.5122 0.519159
411411 −20.1222 −0.992553
412412 8.92410 0.439659
413413 26.2978 1.29403
414414 −2.58960 −0.127272
415415 3.11355 0.152838
416416 −6.60780 −0.323974
417417 7.77656 0.380820
418418 0 0
419419 1.14280 0.0558292 0.0279146 0.999610i 0.491113π-0.491113\pi
0.0279146 + 0.999610i 0.491113π0.491113\pi
420420 2.17672 0.106213
421421 19.5189 0.951292 0.475646 0.879637i 0.342214π-0.342214\pi
0.475646 + 0.879637i 0.342214π0.342214\pi
422422 −36.9797 −1.80014
423423 −14.8192 −0.720533
424424 −4.49426 −0.218261
425425 −5.98406 −0.290269
426426 17.0535 0.826245
427427 25.6400 1.24081
428428 13.8094 0.667501
429429 −10.6453 −0.513960
430430 −7.55574 −0.364370
431431 −36.8785 −1.77637 −0.888187 0.459483i 0.848035π-0.848035\pi
−0.888187 + 0.459483i 0.848035π0.848035\pi
432432 −26.7093 −1.28505
433433 0.368933 0.0177298 0.00886490 0.999961i 0.497178π-0.497178\pi
0.00886490 + 0.999961i 0.497178π0.497178\pi
434434 −21.3589 −1.02526
435435 −3.03663 −0.145595
436436 4.33501 0.207609
437437 0 0
438438 −19.7872 −0.945470
439439 −2.26439 −0.108073 −0.0540367 0.998539i 0.517209π-0.517209\pi
−0.0540367 + 0.998539i 0.517209π0.517209\pi
440440 −11.7755 −0.561373
441441 1.77004 0.0842878
442442 −15.8875 −0.755690
443443 −16.4627 −0.782169 −0.391084 0.920355i 0.627900π-0.627900\pi
−0.391084 + 0.920355i 0.627900π0.627900\pi
444444 2.58661 0.122755
445445 −11.1141 −0.526860
446446 −17.0050 −0.805209
447447 −16.6922 −0.789513
448448 −7.30329 −0.345048
449449 14.1613 0.668315 0.334158 0.942517i 0.391548π-0.391548\pi
0.334158 + 0.942517i 0.391548π0.391548\pi
450450 2.75477 0.129861
451451 36.3433 1.71134
452452 −12.0839 −0.568377
453453 −14.7543 −0.693215
454454 −6.91086 −0.324343
455455 3.88426 0.182097
456456 0 0
457457 1.22073 0.0571033 0.0285516 0.999592i 0.490910π-0.490910\pi
0.0285516 + 0.999592i 0.490910π0.490910\pi
458458 −10.8742 −0.508120
459459 −32.3057 −1.50790
460460 −0.724501 −0.0337800
461461 −8.69160 −0.404808 −0.202404 0.979302i 0.564875π-0.564875\pi
−0.202404 + 0.979302i 0.564875π0.564875\pi
462462 27.0542 1.25867
463463 −19.7149 −0.916229 −0.458114 0.888893i 0.651475π-0.651475\pi
−0.458114 + 0.888893i 0.651475π0.651475\pi
464464 −12.9540 −0.601375
465465 6.11091 0.283387
466466 −8.56942 −0.396971
467467 −11.4795 −0.531207 −0.265604 0.964082i 0.585571π-0.585571\pi
−0.265604 + 0.964082i 0.585571π0.585571\pi
468468 2.03443 0.0940418
469469 −2.45858 −0.113527
470470 −14.9049 −0.687514
471471 3.91452 0.180372
472472 −22.0966 −1.01708
473473 −26.1222 −1.20110
474474 14.6804 0.674293
475475 0 0
476476 11.2313 0.514787
477477 3.63495 0.166433
478478 −23.2973 −1.06559
479479 39.2631 1.79398 0.896989 0.442053i 0.145750π-0.145750\pi
0.896989 + 0.442053i 0.145750π0.145750\pi
480480 −4.80463 −0.219300
481481 4.61570 0.210458
482482 −25.3439 −1.15438
483483 −2.65497 −0.120805
484484 17.0460 0.774820
485485 4.05776 0.184253
486486 24.4565 1.10937
487487 31.5943 1.43168 0.715838 0.698266i 0.246045π-0.246045\pi
0.715838 + 0.698266i 0.246045π0.246045\pi
488488 −21.5439 −0.975246
489489 −0.357159 −0.0161513
490490 1.78029 0.0804252
491491 −11.0637 −0.499300 −0.249650 0.968336i 0.580316π-0.580316\pi
−0.249650 + 0.968336i 0.580316π0.580316\pi
492492 5.64487 0.254491
493493 −15.6683 −0.705663
494494 0 0
495495 9.52395 0.428070
496496 26.0686 1.17052
497497 −21.5127 −0.964979
498498 6.01060 0.269341
499499 −20.3735 −0.912045 −0.456023 0.889968i 0.650726π-0.650726\pi
−0.456023 + 0.889968i 0.650726π0.650726\pi
500500 0.770710 0.0344672
501501 −16.5431 −0.739091
502502 10.1747 0.454118
503503 −13.6724 −0.609624 −0.304812 0.952413i 0.598594π-0.598594\pi
−0.304812 + 0.952413i 0.598594π0.598594\pi
504504 8.24676 0.367340
505505 −11.1301 −0.495281
506506 −9.00474 −0.400310
507507 12.1263 0.538550
508508 4.71668 0.209269
509509 −7.72393 −0.342357 −0.171179 0.985240i 0.554757π-0.554757\pi
−0.171179 + 0.985240i 0.554757π0.554757\pi
510510 −11.5520 −0.511532
511511 24.9613 1.10422
512512 −0.249240 −0.0110150
513513 0 0
514514 −0.204211 −0.00900736
515515 11.5791 0.510235
516516 −4.05732 −0.178613
517517 −51.5303 −2.26630
518518 −11.7304 −0.515405
519519 −15.4794 −0.679471
520520 −3.26372 −0.143124
521521 −2.16876 −0.0950151 −0.0475075 0.998871i 0.515128π-0.515128\pi
−0.0475075 + 0.998871i 0.515128π0.515128\pi
522522 7.21290 0.315700
523523 −23.8932 −1.04478 −0.522389 0.852707i 0.674959π-0.674959\pi
−0.522389 + 0.852707i 0.674959π0.674959\pi
524524 −11.4690 −0.501026
525525 2.82430 0.123263
526526 16.7462 0.730169
527527 31.5308 1.37350
528528 −33.0197 −1.43700
529529 −22.1163 −0.961579
530530 3.65598 0.158806
531531 17.8716 0.775562
532532 0 0
533533 10.0730 0.436312
534534 −21.4554 −0.928467
535535 17.9177 0.774651
536536 2.06581 0.0892293
537537 16.4926 0.711707
538538 −9.50835 −0.409934
539539 6.15492 0.265111
540540 4.16077 0.179051
541541 42.4550 1.82528 0.912641 0.408762i 0.134039π-0.134039\pi
0.912641 + 0.408762i 0.134039π0.134039\pi
542542 21.1584 0.908829
543543 −11.4614 −0.491858
544544 −24.7907 −1.06289
545545 5.62470 0.240936
546546 7.49842 0.320903
547547 12.0307 0.514396 0.257198 0.966359i 0.417201π-0.417201\pi
0.257198 + 0.966359i 0.417201π0.417201\pi
548548 13.3721 0.571227
549549 17.4246 0.743665
550550 9.57907 0.408453
551551 0 0
552552 2.23082 0.0949500
553553 −18.5191 −0.787513
554554 −29.2992 −1.24481
555555 3.35614 0.142460
556556 −5.16787 −0.219167
557557 −8.75270 −0.370864 −0.185432 0.982657i 0.559368π-0.559368\pi
−0.185432 + 0.982657i 0.559368π0.559368\pi
558558 −14.5152 −0.614479
559559 −7.24011 −0.306224
560560 12.0482 0.509131
561561 −39.9383 −1.68620
562562 34.1238 1.43943
563563 −35.9707 −1.51598 −0.757991 0.652265i 0.773819π-0.773819\pi
−0.757991 + 0.652265i 0.773819π0.773819\pi
564564 −8.00373 −0.337018
565565 −15.6789 −0.659615
566566 19.7350 0.829524
567567 3.15654 0.132562
568568 18.0760 0.758450
569569 −20.3125 −0.851543 −0.425772 0.904831i 0.639997π-0.639997\pi
−0.425772 + 0.904831i 0.639997π0.639997\pi
570570 0 0
571571 10.1773 0.425906 0.212953 0.977062i 0.431692π-0.431692\pi
0.212953 + 0.977062i 0.431692π0.431692\pi
572572 7.07428 0.295790
573573 15.0701 0.629563
574574 −25.5998 −1.06852
575575 −0.940044 −0.0392025
576576 −4.96322 −0.206801
577577 −32.7441 −1.36316 −0.681578 0.731745i 0.738706π-0.738706\pi
−0.681578 + 0.731745i 0.738706π0.738706\pi
578578 −31.3083 −1.30225
579579 −16.8349 −0.699634
580580 2.01798 0.0837919
581581 −7.58228 −0.314566
582582 7.83337 0.324703
583583 12.6397 0.523482
584584 −20.9736 −0.867893
585585 2.63969 0.109138
586586 41.5827 1.71777
587587 8.77326 0.362111 0.181056 0.983473i 0.442049π-0.442049\pi
0.181056 + 0.983473i 0.442049π0.442049\pi
588588 0.955987 0.0394243
589589 0 0
590590 17.9751 0.740021
591591 28.9951 1.19270
592592 14.3170 0.588427
593593 −32.3207 −1.32725 −0.663625 0.748065i 0.730983π-0.730983\pi
−0.663625 + 0.748065i 0.730983π0.730983\pi
594594 51.7138 2.12184
595595 14.5727 0.597423
596596 11.0927 0.454375
597597 2.61570 0.107053
598598 −2.49579 −0.102060
599599 −19.5504 −0.798807 −0.399404 0.916775i 0.630783π-0.630783\pi
−0.399404 + 0.916775i 0.630783π0.630783\pi
600600 −2.37310 −0.0968815
601601 −0.401837 −0.0163913 −0.00819564 0.999966i 0.502609π-0.502609\pi
−0.00819564 + 0.999966i 0.502609π0.502609\pi
602602 18.4002 0.749934
603603 −1.67082 −0.0680410
604604 9.80486 0.398954
605605 22.1173 0.899198
606606 −21.4862 −0.872817
607607 13.4453 0.545727 0.272863 0.962053i 0.412029π-0.412029\pi
0.272863 + 0.962053i 0.412029π0.412029\pi
608608 0 0
609609 7.39497 0.299659
610610 17.5255 0.709586
611611 −14.2823 −0.577800
612612 7.63266 0.308532
613613 −20.7053 −0.836280 −0.418140 0.908383i 0.637318π-0.637318\pi
−0.418140 + 0.908383i 0.637318π0.637318\pi
614614 −28.1640 −1.13661
615615 7.32425 0.295342
616616 28.6762 1.15540
617617 −9.27871 −0.373547 −0.186773 0.982403i 0.559803π-0.559803\pi
−0.186773 + 0.982403i 0.559803π0.559803\pi
618618 22.3530 0.899169
619619 −2.89129 −0.116211 −0.0581053 0.998310i 0.518506π-0.518506\pi
−0.0581053 + 0.998310i 0.518506π0.518506\pi
620620 −4.06097 −0.163093
621621 −5.07494 −0.203650
622622 25.3233 1.01537
623623 27.0657 1.08437
624624 −9.15186 −0.366368
625625 1.00000 0.0400000
626626 −41.4926 −1.65838
627627 0 0
628628 −2.60138 −0.103806
629629 17.3169 0.690469
630630 −6.70856 −0.267275
631631 30.4540 1.21236 0.606178 0.795329i 0.292702π-0.292702\pi
0.606178 + 0.795329i 0.292702π0.292702\pi
632632 15.5606 0.618966
633633 −25.7653 −1.02408
634634 41.9972 1.66792
635635 6.11991 0.242861
636636 1.96321 0.0778462
637637 1.70592 0.0675910
638638 25.0812 0.992975
639639 −14.6198 −0.578349
640640 −13.2775 −0.524841
641641 −20.0738 −0.792869 −0.396434 0.918063i 0.629753π-0.629753\pi
−0.396434 + 0.918063i 0.629753π0.629753\pi
642642 34.5896 1.36514
643643 −2.08913 −0.0823874 −0.0411937 0.999151i 0.513116π-0.513116\pi
−0.0411937 + 0.999151i 0.513116π0.513116\pi
644644 1.76434 0.0695249
645645 −5.26439 −0.207285
646646 0 0
647647 −2.10623 −0.0828043 −0.0414021 0.999143i 0.513182π-0.513182\pi
−0.0414021 + 0.999143i 0.513182π0.513182\pi
648648 −2.65227 −0.104191
649649 62.1444 2.43938
650650 2.65497 0.104136
651651 −14.8816 −0.583257
652652 0.237348 0.00929527
653653 1.83067 0.0716395 0.0358197 0.999358i 0.488596π-0.488596\pi
0.0358197 + 0.999358i 0.488596π0.488596\pi
654654 10.8583 0.424593
655655 −14.8811 −0.581453
656656 31.2447 1.21990
657657 16.9634 0.661804
658658 36.2973 1.41502
659659 24.0536 0.936994 0.468497 0.883465i 0.344796π-0.344796\pi
0.468497 + 0.883465i 0.344796π0.344796\pi
660660 5.14381 0.200223
661661 −17.4422 −0.678423 −0.339211 0.940710i 0.610160π-0.610160\pi
−0.339211 + 0.940710i 0.610160π0.610160\pi
662662 33.6343 1.30723
663663 −11.0694 −0.429902
664664 6.37097 0.247241
665665 0 0
666666 −7.97184 −0.308902
667667 −2.46135 −0.0953039
668668 10.9936 0.425356
669669 −11.8480 −0.458072
670670 −1.68049 −0.0649229
671671 60.5901 2.33906
672672 11.7005 0.451357
673673 47.5187 1.83171 0.915856 0.401506i 0.131513π-0.131513\pi
0.915856 + 0.401506i 0.131513π0.131513\pi
674674 52.9736 2.04047
675675 5.39862 0.207793
676676 −8.05850 −0.309942
677677 14.5531 0.559321 0.279661 0.960099i 0.409778π-0.409778\pi
0.279661 + 0.960099i 0.409778π0.409778\pi
678678 −30.2675 −1.16242
679679 −9.88168 −0.379224
680680 −12.2446 −0.469560
681681 −4.81507 −0.184514
682682 −50.4734 −1.93273
683683 3.33714 0.127692 0.0638460 0.997960i 0.479663π-0.479663\pi
0.0638460 + 0.997960i 0.479663π0.479663\pi
684684 0 0
685685 17.3504 0.662923
686686 −32.7106 −1.24890
687687 −7.57652 −0.289062
688688 −22.4575 −0.856183
689689 3.50326 0.133464
690690 −1.81472 −0.0690853
691691 −19.3318 −0.735415 −0.367708 0.929941i 0.619857π-0.619857\pi
−0.367708 + 0.929941i 0.619857π0.619857\pi
692692 10.2868 0.391044
693693 −23.1932 −0.881038
694694 5.49724 0.208673
695695 −6.70534 −0.254348
696696 −6.21358 −0.235525
697697 37.7914 1.43145
698698 −29.7099 −1.12454
699699 −5.97066 −0.225831
700700 −1.87687 −0.0709392
701701 9.93785 0.375347 0.187674 0.982231i 0.439905π-0.439905\pi
0.187674 + 0.982231i 0.439905π0.439905\pi
702702 14.3332 0.540971
703703 0 0
704704 −17.2584 −0.650452
705705 −10.3849 −0.391117
706706 13.8078 0.519663
707707 27.1045 1.01937
708708 9.65233 0.362757
709709 37.2119 1.39752 0.698760 0.715356i 0.253735π-0.253735\pi
0.698760 + 0.715356i 0.253735π0.253735\pi
710710 −14.7044 −0.551846
711711 −12.5853 −0.471987
712712 −22.7418 −0.852285
713713 4.95322 0.185499
714714 28.1321 1.05282
715715 9.17891 0.343272
716716 −10.9601 −0.409596
717717 −16.2322 −0.606201
718718 −13.8993 −0.518718
719719 −2.64218 −0.0985365 −0.0492683 0.998786i 0.515689π-0.515689\pi
−0.0492683 + 0.998786i 0.515689π0.515689\pi
720720 8.18782 0.305142
721721 −28.1980 −1.05015
722722 0 0
723723 −17.6581 −0.656711
724724 7.61664 0.283070
725725 2.61834 0.0972426
726726 42.6968 1.58463
727727 −10.1731 −0.377298 −0.188649 0.982045i 0.560411π-0.560411\pi
−0.188649 + 0.982045i 0.560411π0.560411\pi
728728 7.94800 0.294572
729729 20.9284 0.775126
730730 17.0615 0.631476
731731 −27.1630 −1.00466
732732 9.41091 0.347837
733733 14.8222 0.547472 0.273736 0.961805i 0.411741π-0.411741\pi
0.273736 + 0.961805i 0.411741π0.411741\pi
734734 −24.0023 −0.885942
735735 1.24040 0.0457528
736736 −3.89441 −0.143550
737737 −5.80989 −0.214010
738738 −17.3973 −0.640403
739739 35.4866 1.30539 0.652697 0.757619i 0.273637π-0.273637\pi
0.652697 + 0.757619i 0.273637π0.273637\pi
740740 −2.23031 −0.0819877
741741 0 0
742742 −8.90325 −0.326849
743743 −8.73882 −0.320596 −0.160298 0.987069i 0.551246π-0.551246\pi
−0.160298 + 0.987069i 0.551246π0.551246\pi
744744 12.5042 0.458426
745745 14.3928 0.527313
746746 40.1417 1.46969
747747 −5.15282 −0.188532
748748 26.5408 0.970428
749749 −43.6342 −1.59436
750750 1.93047 0.0704906
751751 13.0991 0.477994 0.238997 0.971020i 0.423181π-0.423181\pi
0.238997 + 0.971020i 0.423181π0.423181\pi
752752 −44.3011 −1.61549
753753 7.08911 0.258342
754754 6.95160 0.253162
755755 12.7219 0.462996
756756 −10.1325 −0.368517
757757 −16.4380 −0.597450 −0.298725 0.954339i 0.596561π-0.596561\pi
−0.298725 + 0.954339i 0.596561π0.596561\pi
758758 −27.7574 −1.00819
759759 −6.27397 −0.227731
760760 0 0
761761 16.3918 0.594203 0.297101 0.954846i 0.403980π-0.403980\pi
0.297101 + 0.954846i 0.403980π0.403980\pi
762762 11.8143 0.427986
763763 −13.6976 −0.495886
764764 −10.0148 −0.362321
765765 9.90341 0.358059
766766 18.1067 0.654223
767767 17.2242 0.621929
768768 −18.6756 −0.673899
769769 −50.0421 −1.80456 −0.902282 0.431147i 0.858109π-0.858109\pi
−0.902282 + 0.431147i 0.858109π0.858109\pi
770770 −23.3275 −0.840664
771771 −0.142282 −0.00512416
772772 11.1875 0.402649
773773 48.6873 1.75116 0.875580 0.483074i 0.160480π-0.160480\pi
0.875580 + 0.483074i 0.160480π0.160480\pi
774774 12.5045 0.449465
775775 −5.26913 −0.189273
776776 8.30302 0.298061
777777 −8.17306 −0.293207
778778 −60.6799 −2.17548
779779 0 0
780780 1.42568 0.0510474
781781 −50.8369 −1.81909
782782 −9.36352 −0.334839
783783 14.1354 0.505158
784784 5.29144 0.188980
785785 −3.37530 −0.120470
786786 −28.7275 −1.02467
787787 6.51678 0.232298 0.116149 0.993232i 0.462945π-0.462945\pi
0.116149 + 0.993232i 0.462945π0.462945\pi
788788 −19.2685 −0.686413
789789 11.6678 0.415383
790790 −12.6582 −0.450358
791791 38.1820 1.35760
792792 19.4880 0.692475
793793 16.7934 0.596350
794794 −14.2881 −0.507067
795795 2.54727 0.0903424
796796 −1.73825 −0.0616106
797797 38.3796 1.35947 0.679737 0.733456i 0.262094π-0.262094\pi
0.679737 + 0.733456i 0.262094π0.262094\pi
798798 0 0
799799 −53.5834 −1.89565
800800 4.14280 0.146470
801801 18.3935 0.649902
802802 28.3900 1.00248
803803 58.9862 2.08158
804804 −0.902397 −0.0318251
805805 2.28925 0.0806853
806806 −13.9894 −0.492755
807807 −6.62485 −0.233206
808808 −22.7744 −0.801202
809809 25.1409 0.883906 0.441953 0.897038i 0.354286π-0.354286\pi
0.441953 + 0.897038i 0.354286π0.354286\pi
810810 2.15756 0.0758089
811811 −47.0106 −1.65077 −0.825383 0.564573i 0.809041π-0.809041\pi
−0.825383 + 0.564573i 0.809041π0.809041\pi
812812 −4.91429 −0.172458
813813 14.7419 0.517020
814814 −27.7202 −0.971594
815815 0.307960 0.0107874
816816 −34.3354 −1.20198
817817 0 0
818818 19.6317 0.686406
819819 −6.42832 −0.224624
820820 −4.86730 −0.169973
821821 −19.8204 −0.691737 −0.345869 0.938283i 0.612416π-0.612416\pi
−0.345869 + 0.938283i 0.612416π0.612416\pi
822822 33.4943 1.16825
823823 −39.2168 −1.36701 −0.683505 0.729946i 0.739545π-0.739545\pi
−0.683505 + 0.729946i 0.739545π0.739545\pi
824824 23.6932 0.825391
825825 6.67412 0.232363
826826 −43.7738 −1.52309
827827 −11.8435 −0.411839 −0.205920 0.978569i 0.566019π-0.566019\pi
−0.205920 + 0.978569i 0.566019π0.566019\pi
828828 1.19903 0.0416690
829829 46.9321 1.63002 0.815010 0.579447i 0.196731π-0.196731\pi
0.815010 + 0.579447i 0.196731π0.196731\pi
830830 −5.18264 −0.179892
831831 −20.4140 −0.708153
832832 −4.78341 −0.165835
833833 6.40015 0.221752
834834 −12.9444 −0.448229
835835 14.2643 0.493636
836836 0 0
837837 −28.4461 −0.983240
838838 −1.90223 −0.0657116
839839 −53.1339 −1.83438 −0.917192 0.398445i 0.869550π-0.869550\pi
−0.917192 + 0.398445i 0.869550π0.869550\pi
840840 5.77911 0.199398
841841 −22.1443 −0.763597
842842 −32.4901 −1.11968
843843 23.7755 0.818870
844844 17.1222 0.589370
845845 −10.4559 −0.359695
846846 24.6672 0.848075
847847 −53.8613 −1.85070
848848 10.8665 0.373156
849849 13.7502 0.471905
850850 9.96073 0.341650
851851 2.72033 0.0932518
852852 −7.89603 −0.270514
853853 42.2998 1.44832 0.724159 0.689633i 0.242228π-0.242228\pi
0.724159 + 0.689633i 0.242228π0.242228\pi
854854 −42.6790 −1.46045
855855 0 0
856856 36.6634 1.25313
857857 23.5384 0.804056 0.402028 0.915627i 0.368305π-0.368305\pi
0.402028 + 0.915627i 0.368305π0.368305\pi
858858 17.7196 0.604936
859859 9.48124 0.323496 0.161748 0.986832i 0.448287π-0.448287\pi
0.161748 + 0.986832i 0.448287π0.448287\pi
860860 3.49842 0.119295
861861 −17.8364 −0.607864
862862 61.3859 2.09081
863863 22.8204 0.776816 0.388408 0.921487i 0.373025π-0.373025\pi
0.388408 + 0.921487i 0.373025π0.373025\pi
864864 22.3654 0.760886
865865 13.3471 0.453816
866866 −0.614106 −0.0208682
867867 −21.8138 −0.740834
868868 9.88950 0.335672
869869 −43.7626 −1.48455
870870 5.05461 0.171367
871871 −1.61029 −0.0545625
872872 11.5093 0.389755
873873 −6.71546 −0.227284
874874 0 0
875875 −2.43525 −0.0823266
876876 9.16179 0.309548
877877 −25.2942 −0.854124 −0.427062 0.904222i 0.640451π-0.640451\pi
−0.427062 + 0.904222i 0.640451π0.640451\pi
878878 3.76918 0.127204
879879 28.9723 0.977213
880880 28.4713 0.959767
881881 −33.2871 −1.12147 −0.560736 0.827995i 0.689482π-0.689482\pi
−0.560736 + 0.827995i 0.689482π0.689482\pi
882882 −2.94632 −0.0992077
883883 −15.3109 −0.515252 −0.257626 0.966245i 0.582940π-0.582940\pi
−0.257626 + 0.966245i 0.582940π0.582940\pi
884884 7.35614 0.247414
885885 12.5239 0.420988
886886 27.4030 0.920621
887887 43.2055 1.45070 0.725349 0.688381i 0.241678π-0.241678\pi
0.725349 + 0.688381i 0.241678π0.241678\pi
888888 6.86737 0.230454
889889 −14.9035 −0.499849
890890 18.5000 0.620120
891891 7.45925 0.249894
892892 7.87356 0.263626
893893 0 0
894894 27.7849 0.929265
895895 −14.2207 −0.475347
896896 32.3342 1.08021
897897 −1.73891 −0.0580607
898898 −23.5722 −0.786614
899899 −13.7964 −0.460134
900900 −1.27550 −0.0425166
901901 13.1433 0.437867
902902 −60.4951 −2.01427
903903 12.8201 0.426627
904904 −32.0822 −1.06704
905905 9.88263 0.328510
906906 24.5591 0.815922
907907 14.3278 0.475748 0.237874 0.971296i 0.423549π-0.423549\pi
0.237874 + 0.971296i 0.423549π0.423549\pi
908908 3.19983 0.106190
909909 18.4199 0.610949
910910 −6.46552 −0.214330
911911 −4.61162 −0.152790 −0.0763949 0.997078i 0.524341π-0.524341\pi
−0.0763949 + 0.997078i 0.524341π0.524341\pi
912912 0 0
913913 −17.9177 −0.592990
914914 −2.03196 −0.0672112
915915 12.2107 0.403674
916916 5.03494 0.166359
917917 36.2393 1.19673
918918 53.7742 1.77481
919919 26.4921 0.873892 0.436946 0.899488i 0.356060π-0.356060\pi
0.436946 + 0.899488i 0.356060π0.356060\pi
920920 −1.92353 −0.0634168
921921 −19.6230 −0.646599
922922 14.4676 0.476464
923923 −14.0901 −0.463782
924924 −12.5265 −0.412091
925925 −2.89384 −0.0951487
926926 32.8163 1.07841
927927 −19.1630 −0.629394
928928 10.8472 0.356078
929929 −4.75725 −0.156080 −0.0780402 0.996950i 0.524866π-0.524866\pi
−0.0780402 + 0.996950i 0.524866π0.524866\pi
930930 −10.1719 −0.333549
931931 0 0
932932 3.96777 0.129969
933933 17.6438 0.577631
934934 19.1081 0.625237
935935 34.4368 1.12621
936936 5.40135 0.176549
937937 −11.9367 −0.389954 −0.194977 0.980808i 0.562463π-0.562463\pi
−0.194977 + 0.980808i 0.562463π0.562463\pi
938938 4.09242 0.133622
939939 −28.9096 −0.943429
940940 6.90122 0.225093
941941 −17.9943 −0.586597 −0.293299 0.956021i 0.594753π-0.594753\pi
−0.293299 + 0.956021i 0.594753π0.594753\pi
942942 −6.51590 −0.212299
943943 5.93670 0.193326
944944 53.4262 1.73887
945945 −13.1470 −0.427673
946946 43.4815 1.41371
947947 −25.2191 −0.819511 −0.409755 0.912195i 0.634386π-0.634386\pi
−0.409755 + 0.912195i 0.634386π0.634386\pi
948948 −6.79725 −0.220764
949949 16.3488 0.530705
950950 0 0
951951 29.2611 0.948858
952952 29.8188 0.966433
953953 42.3179 1.37081 0.685405 0.728162i 0.259625π-0.259625\pi
0.685405 + 0.728162i 0.259625π0.259625\pi
954954 −6.05053 −0.195893
955955 −12.9942 −0.420483
956956 10.7870 0.348876
957957 17.4751 0.564890
958958 −65.3552 −2.11153
959959 −42.2525 −1.36441
960960 −3.47809 −0.112255
961961 −3.23623 −0.104395
962962 −7.68304 −0.247711
963963 −29.6533 −0.955563
964964 11.7346 0.377946
965965 14.5159 0.467283
966966 4.41931 0.142189
967967 −13.6964 −0.440447 −0.220223 0.975449i 0.570679π-0.570679\pi
−0.220223 + 0.975449i 0.570679π0.570679\pi
968968 45.2567 1.45460
969969 0 0
970970 −6.75432 −0.216868
971971 −38.5812 −1.23813 −0.619065 0.785339i 0.712488π-0.712488\pi
−0.619065 + 0.785339i 0.712488π0.712488\pi
972972 −11.3237 −0.363209
973973 16.3292 0.523491
974974 −52.5902 −1.68510
975975 1.84982 0.0592417
976976 52.0899 1.66736
977977 −17.4592 −0.558568 −0.279284 0.960209i 0.590097π-0.590097\pi
−0.279284 + 0.960209i 0.590097π0.590097\pi
978978 0.594507 0.0190102
979979 63.9592 2.04414
980980 −0.824301 −0.0263313
981981 −9.30869 −0.297204
982982 18.4161 0.587681
983983 43.9161 1.40071 0.700353 0.713796i 0.253026π-0.253026\pi
0.700353 + 0.713796i 0.253026π0.253026\pi
984984 14.9870 0.477767
985985 −25.0010 −0.796599
986986 26.0805 0.830574
987987 25.2898 0.804984
988988 0 0
989989 −4.26707 −0.135685
990990 −15.8530 −0.503843
991991 46.3462 1.47224 0.736118 0.676853i 0.236657π-0.236657\pi
0.736118 + 0.676853i 0.236657π0.236657\pi
992992 −21.8289 −0.693070
993993 23.4344 0.743668
994994 35.8089 1.13579
995995 −2.25539 −0.0715006
996996 −2.78300 −0.0881827
997997 11.7371 0.371719 0.185859 0.982576i 0.440493π-0.440493\pi
0.185859 + 0.982576i 0.440493π0.440493\pi
998998 33.9127 1.07349
999999 −15.6227 −0.494281
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.a.o.1.1 4
5.4 even 2 9025.2.a.bg.1.4 4
19.7 even 3 95.2.e.c.11.4 8
19.11 even 3 95.2.e.c.26.4 yes 8
19.18 odd 2 1805.2.a.i.1.4 4
57.11 odd 6 855.2.k.h.406.1 8
57.26 odd 6 855.2.k.h.676.1 8
76.7 odd 6 1520.2.q.o.961.1 8
76.11 odd 6 1520.2.q.o.881.1 8
95.7 odd 12 475.2.j.c.49.7 16
95.49 even 6 475.2.e.e.26.1 8
95.64 even 6 475.2.e.e.201.1 8
95.68 odd 12 475.2.j.c.349.7 16
95.83 odd 12 475.2.j.c.49.2 16
95.87 odd 12 475.2.j.c.349.2 16
95.94 odd 2 9025.2.a.bp.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.4 8 19.7 even 3
95.2.e.c.26.4 yes 8 19.11 even 3
475.2.e.e.26.1 8 95.49 even 6
475.2.e.e.201.1 8 95.64 even 6
475.2.j.c.49.2 16 95.83 odd 12
475.2.j.c.49.7 16 95.7 odd 12
475.2.j.c.349.2 16 95.87 odd 12
475.2.j.c.349.7 16 95.68 odd 12
855.2.k.h.406.1 8 57.11 odd 6
855.2.k.h.676.1 8 57.26 odd 6
1520.2.q.o.881.1 8 76.11 odd 6
1520.2.q.o.961.1 8 76.7 odd 6
1805.2.a.i.1.4 4 19.18 odd 2
1805.2.a.o.1.1 4 1.1 even 1 trivial
9025.2.a.bg.1.4 4 5.4 even 2
9025.2.a.bp.1.1 4 95.94 odd 2