Properties

Label 475.2.j.c.349.7
Level $475$
Weight $2$
Character 475.349
Analytic conductor $3.793$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(49,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1387535264013605949997056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 82x^{12} - 337x^{10} + 1006x^{8} - 1596x^{6} + 1765x^{4} - 414x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.7
Root \(1.87040 + 1.07988i\) of defining polynomial
Character \(\chi\) \(=\) 475.349
Dual form 475.2.j.c.49.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.44154 - 0.832272i) q^{2} +(-1.00438 + 0.579878i) q^{3} +(0.385355 - 0.667454i) q^{4} +(-0.965233 + 1.67183i) q^{6} +2.43525i q^{7} +2.04621i q^{8} +(-0.827483 + 1.43324i) q^{9} -5.75477 q^{11} +0.893835i q^{12} +(1.38132 + 0.797505i) q^{13} +(2.02680 + 3.51051i) q^{14} +(2.47371 + 4.28460i) q^{16} +(5.18234 - 2.99203i) q^{17} +2.75477i q^{18} +(-0.149412 + 4.35634i) q^{19} +(-1.41215 - 2.44592i) q^{21} +(-8.29572 + 4.78953i) q^{22} +(0.814102 + 0.470022i) q^{23} +(-1.18655 - 2.05517i) q^{24} +2.65497 q^{26} -5.39862i q^{27} +(1.62542 + 0.938437i) q^{28} +(1.30917 - 2.26755i) q^{29} -5.26913 q^{31} +(3.58777 + 2.07140i) q^{32} +(5.77996 - 3.33706i) q^{33} +(4.98037 - 8.62625i) q^{34} +(0.637749 + 1.10461i) q^{36} +2.89384i q^{37} +(3.41028 + 6.40418i) q^{38} -1.84982 q^{39} +(3.15767 + 5.46925i) q^{41} +(-4.07134 - 2.35059i) q^{42} +(3.93108 - 2.26961i) q^{43} +(-2.21763 + 3.84104i) q^{44} +1.56475 q^{46} +(7.75471 + 4.47718i) q^{47} +(-4.96909 - 2.86890i) q^{48} +1.06953 q^{49} +(-3.47002 + 6.01025i) q^{51} +(1.06460 - 0.614645i) q^{52} +(1.90213 + 1.09819i) q^{53} +(-4.49313 - 7.78232i) q^{54} -4.98304 q^{56} +(-2.37608 - 4.46205i) q^{57} -4.35834i q^{58} +(-5.39939 - 9.35202i) q^{59} +(5.26434 - 9.11811i) q^{61} +(-7.59566 + 4.38535i) q^{62} +(-3.49031 - 2.01513i) q^{63} -2.99898 q^{64} +(5.55469 - 9.62100i) q^{66} +(0.874320 + 0.504789i) q^{67} -4.61197i q^{68} -1.09022 q^{69} +(-4.41694 - 7.65036i) q^{71} +(-2.93271 - 1.69320i) q^{72} +(-8.87674 + 5.12499i) q^{73} +(2.40846 + 4.17157i) q^{74} +(2.85008 + 1.77846i) q^{76} -14.0143i q^{77} +(-2.66659 + 1.53956i) q^{78} +(3.80229 + 6.58577i) q^{79} +(0.648093 + 1.12253i) q^{81} +(9.10381 + 5.25609i) q^{82} +3.11355i q^{83} -2.17672 q^{84} +(3.77787 - 6.54346i) q^{86} +3.03663i q^{87} -11.7755i q^{88} +(-5.55706 + 9.62511i) q^{89} +(-1.94213 + 3.36387i) q^{91} +(0.627436 - 0.362251i) q^{92} +(5.29220 - 3.05545i) q^{93} +14.9049 q^{94} -4.80463 q^{96} +(-3.51412 + 2.02888i) q^{97} +(1.54177 - 0.890144i) q^{98} +(4.76197 - 8.24798i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 4 q^{6} + 2 q^{9} - 8 q^{11} - 2 q^{14} - 14 q^{16} - 10 q^{19} + 8 q^{21} + 46 q^{24} + 12 q^{26} - 2 q^{29} + 30 q^{34} + 14 q^{36} - 60 q^{39} + 16 q^{41} - 24 q^{44} + 48 q^{46} + 40 q^{49}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.44154 0.832272i 1.01932 0.588506i 0.105414 0.994428i \(-0.466383\pi\)
0.913907 + 0.405923i \(0.133050\pi\)
\(3\) −1.00438 + 0.579878i −0.579878 + 0.334793i −0.761085 0.648652i \(-0.775333\pi\)
0.181207 + 0.983445i \(0.442000\pi\)
\(4\) 0.385355 0.667454i 0.192677 0.333727i
\(5\) 0 0
\(6\) −0.965233 + 1.67183i −0.394055 + 0.682523i
\(7\) 2.43525i 0.920440i 0.887805 + 0.460220i \(0.152229\pi\)
−0.887805 + 0.460220i \(0.847771\pi\)
\(8\) 2.04621i 0.723444i
\(9\) −0.827483 + 1.43324i −0.275828 + 0.477748i
\(10\) 0 0
\(11\) −5.75477 −1.73513 −0.867564 0.497326i \(-0.834315\pi\)
−0.867564 + 0.497326i \(0.834315\pi\)
\(12\) 0.893835i 0.258028i
\(13\) 1.38132 + 0.797505i 0.383109 + 0.221188i 0.679170 0.733981i \(-0.262340\pi\)
−0.296061 + 0.955169i \(0.595673\pi\)
\(14\) 2.02680 + 3.51051i 0.541684 + 0.938224i
\(15\) 0 0
\(16\) 2.47371 + 4.28460i 0.618428 + 1.07115i
\(17\) 5.18234 2.99203i 1.25690 0.725673i 0.284432 0.958696i \(-0.408195\pi\)
0.972471 + 0.233023i \(0.0748617\pi\)
\(18\) 2.75477i 0.649305i
\(19\) −0.149412 + 4.35634i −0.0342775 + 0.999412i
\(20\) 0 0
\(21\) −1.41215 2.44592i −0.308156 0.533743i
\(22\) −8.29572 + 4.78953i −1.76865 + 1.02113i
\(23\) 0.814102 + 0.470022i 0.169752 + 0.0980064i 0.582469 0.812853i \(-0.302087\pi\)
−0.412717 + 0.910859i \(0.635420\pi\)
\(24\) −1.18655 2.05517i −0.242204 0.419509i
\(25\) 0 0
\(26\) 2.65497 0.520682
\(27\) 5.39862i 1.03897i
\(28\) 1.62542 + 0.938437i 0.307176 + 0.177348i
\(29\) 1.30917 2.26755i 0.243106 0.421073i −0.718491 0.695536i \(-0.755167\pi\)
0.961598 + 0.274463i \(0.0885002\pi\)
\(30\) 0 0
\(31\) −5.26913 −0.946364 −0.473182 0.880965i \(-0.656895\pi\)
−0.473182 + 0.880965i \(0.656895\pi\)
\(32\) 3.58777 + 2.07140i 0.634233 + 0.366175i
\(33\) 5.77996 3.33706i 1.00616 0.580908i
\(34\) 4.98037 8.62625i 0.854126 1.47939i
\(35\) 0 0
\(36\) 0.637749 + 1.10461i 0.106292 + 0.184102i
\(37\) 2.89384i 0.475744i 0.971297 + 0.237872i \(0.0764498\pi\)
−0.971297 + 0.237872i \(0.923550\pi\)
\(38\) 3.41028 + 6.40418i 0.553220 + 1.03889i
\(39\) −1.84982 −0.296209
\(40\) 0 0
\(41\) 3.15767 + 5.46925i 0.493145 + 0.854153i 0.999969 0.00789701i \(-0.00251372\pi\)
−0.506823 + 0.862050i \(0.669180\pi\)
\(42\) −4.07134 2.35059i −0.628221 0.362704i
\(43\) 3.93108 2.26961i 0.599485 0.346113i −0.169354 0.985555i \(-0.554168\pi\)
0.768839 + 0.639443i \(0.220835\pi\)
\(44\) −2.21763 + 3.84104i −0.334320 + 0.579059i
\(45\) 0 0
\(46\) 1.56475 0.230709
\(47\) 7.75471 + 4.47718i 1.13114 + 0.653064i 0.944221 0.329311i \(-0.106816\pi\)
0.186919 + 0.982375i \(0.440150\pi\)
\(48\) −4.96909 2.86890i −0.717226 0.414090i
\(49\) 1.06953 0.152791
\(50\) 0 0
\(51\) −3.47002 + 6.01025i −0.485900 + 0.841604i
\(52\) 1.06460 0.614645i 0.147633 0.0852359i
\(53\) 1.90213 + 1.09819i 0.261277 + 0.150848i 0.624917 0.780691i \(-0.285133\pi\)
−0.363640 + 0.931540i \(0.618466\pi\)
\(54\) −4.49313 7.78232i −0.611437 1.05904i
\(55\) 0 0
\(56\) −4.98304 −0.665887
\(57\) −2.37608 4.46205i −0.314719 0.591013i
\(58\) 4.35834i 0.572278i
\(59\) −5.39939 9.35202i −0.702941 1.21753i −0.967430 0.253140i \(-0.918537\pi\)
0.264489 0.964389i \(-0.414797\pi\)
\(60\) 0 0
\(61\) 5.26434 9.11811i 0.674030 1.16745i −0.302721 0.953079i \(-0.597895\pi\)
0.976751 0.214375i \(-0.0687716\pi\)
\(62\) −7.59566 + 4.38535i −0.964649 + 0.556941i
\(63\) −3.49031 2.01513i −0.439738 0.253883i
\(64\) −2.99898 −0.374873
\(65\) 0 0
\(66\) 5.55469 9.62100i 0.683735 1.18426i
\(67\) 0.874320 + 0.504789i 0.106815 + 0.0616698i 0.552456 0.833542i \(-0.313691\pi\)
−0.445641 + 0.895212i \(0.647024\pi\)
\(68\) 4.61197i 0.559284i
\(69\) −1.09022 −0.131247
\(70\) 0 0
\(71\) −4.41694 7.65036i −0.524194 0.907931i −0.999603 0.0281662i \(-0.991033\pi\)
0.475409 0.879765i \(-0.342300\pi\)
\(72\) −2.93271 1.69320i −0.345624 0.199546i
\(73\) −8.87674 + 5.12499i −1.03894 + 0.599835i −0.919534 0.393011i \(-0.871434\pi\)
−0.119410 + 0.992845i \(0.538100\pi\)
\(74\) 2.40846 + 4.17157i 0.279978 + 0.484936i
\(75\) 0 0
\(76\) 2.85008 + 1.77846i 0.326927 + 0.204004i
\(77\) 14.0143i 1.59708i
\(78\) −2.66659 + 1.53956i −0.301932 + 0.174320i
\(79\) 3.80229 + 6.58577i 0.427792 + 0.740957i 0.996677 0.0814604i \(-0.0259584\pi\)
−0.568885 + 0.822417i \(0.692625\pi\)
\(80\) 0 0
\(81\) 0.648093 + 1.12253i 0.0720103 + 0.124726i
\(82\) 9.10381 + 5.25609i 1.00535 + 0.580438i
\(83\) 3.11355i 0.341756i 0.985292 + 0.170878i \(0.0546604\pi\)
−0.985292 + 0.170878i \(0.945340\pi\)
\(84\) −2.17672 −0.237499
\(85\) 0 0
\(86\) 3.77787 6.54346i 0.407378 0.705600i
\(87\) 3.03663i 0.325561i
\(88\) 11.7755i 1.25527i
\(89\) −5.55706 + 9.62511i −0.589047 + 1.02026i 0.405310 + 0.914179i \(0.367163\pi\)
−0.994358 + 0.106081i \(0.966170\pi\)
\(90\) 0 0
\(91\) −1.94213 + 3.36387i −0.203590 + 0.352629i
\(92\) 0.627436 0.362251i 0.0654148 0.0377672i
\(93\) 5.29220 3.05545i 0.548776 0.316836i
\(94\) 14.9049 1.53733
\(95\) 0 0
\(96\) −4.80463 −0.490371
\(97\) −3.51412 + 2.02888i −0.356805 + 0.206002i −0.667678 0.744450i \(-0.732712\pi\)
0.310873 + 0.950451i \(0.399379\pi\)
\(98\) 1.54177 0.890144i 0.155743 0.0899181i
\(99\) 4.76197 8.24798i 0.478596 0.828953i
\(100\) 0 0
\(101\) 5.56503 9.63892i 0.553741 0.959108i −0.444259 0.895898i \(-0.646533\pi\)
0.998000 0.0632098i \(-0.0201337\pi\)
\(102\) 11.5520i 1.14382i
\(103\) 11.5791i 1.14092i 0.821326 + 0.570460i \(0.193235\pi\)
−0.821326 + 0.570460i \(0.806765\pi\)
\(104\) −1.63186 + 2.82647i −0.160017 + 0.277158i
\(105\) 0 0
\(106\) 3.65598 0.355101
\(107\) 17.9177i 1.73217i −0.499894 0.866086i \(-0.666628\pi\)
0.499894 0.866086i \(-0.333372\pi\)
\(108\) −3.60333 2.08039i −0.346731 0.200185i
\(109\) 2.81235 + 4.87113i 0.269374 + 0.466570i 0.968700 0.248233i \(-0.0798498\pi\)
−0.699326 + 0.714803i \(0.746516\pi\)
\(110\) 0 0
\(111\) −1.67807 2.90650i −0.159275 0.275873i
\(112\) −10.4341 + 6.02412i −0.985928 + 0.569226i
\(113\) 15.6789i 1.47494i −0.675378 0.737472i \(-0.736019\pi\)
0.675378 0.737472i \(-0.263981\pi\)
\(114\) −7.13885 4.45467i −0.668614 0.417218i
\(115\) 0 0
\(116\) −1.00899 1.74762i −0.0936822 0.162262i
\(117\) −2.28604 + 1.31984i −0.211344 + 0.122020i
\(118\) −15.5669 8.98753i −1.43304 0.827369i
\(119\) 7.28635 + 12.6203i 0.667939 + 1.15690i
\(120\) 0 0
\(121\) 22.1173 2.01067
\(122\) 17.5255i 1.58668i
\(123\) −6.34299 3.66213i −0.571928 0.330203i
\(124\) −2.03049 + 3.51691i −0.182343 + 0.315827i
\(125\) 0 0
\(126\) −6.70856 −0.597646
\(127\) 5.30000 + 3.05996i 0.470299 + 0.271527i 0.716365 0.697726i \(-0.245805\pi\)
−0.246066 + 0.969253i \(0.579138\pi\)
\(128\) −11.4987 + 6.63877i −1.01635 + 0.586790i
\(129\) −2.63220 + 4.55910i −0.231752 + 0.401406i
\(130\) 0 0
\(131\) 7.44055 + 12.8874i 0.650084 + 1.12598i 0.983102 + 0.183058i \(0.0585997\pi\)
−0.333018 + 0.942920i \(0.608067\pi\)
\(132\) 5.14381i 0.447711i
\(133\) −10.6088 0.363857i −0.919899 0.0315504i
\(134\) 1.68049 0.145172
\(135\) 0 0
\(136\) 6.12231 + 10.6042i 0.524984 + 0.909299i
\(137\) 15.0258 + 8.67518i 1.28374 + 0.741170i 0.977531 0.210793i \(-0.0676044\pi\)
0.306214 + 0.951963i \(0.400938\pi\)
\(138\) −1.57160 + 0.907361i −0.133783 + 0.0772397i
\(139\) −3.35267 + 5.80700i −0.284370 + 0.492543i −0.972456 0.233086i \(-0.925118\pi\)
0.688086 + 0.725629i \(0.258451\pi\)
\(140\) 0 0
\(141\) −10.3849 −0.874564
\(142\) −12.7344 7.35219i −1.06864 0.616982i
\(143\) −7.94917 4.58946i −0.664743 0.383790i
\(144\) −8.18782 −0.682319
\(145\) 0 0
\(146\) −8.53077 + 14.7757i −0.706012 + 1.22285i
\(147\) −1.07422 + 0.620199i −0.0885999 + 0.0511532i
\(148\) 1.93150 + 1.11515i 0.158769 + 0.0916651i
\(149\) 7.19642 + 12.4646i 0.589553 + 1.02114i 0.994291 + 0.106704i \(0.0340296\pi\)
−0.404737 + 0.914433i \(0.632637\pi\)
\(150\) 0 0
\(151\) 12.7219 1.03529 0.517645 0.855595i \(-0.326809\pi\)
0.517645 + 0.855595i \(0.326809\pi\)
\(152\) −8.91398 0.305729i −0.723019 0.0247979i
\(153\) 9.90341i 0.800644i
\(154\) −11.6637 20.2022i −0.939890 1.62794i
\(155\) 0 0
\(156\) −0.712838 + 1.23467i −0.0570727 + 0.0988529i
\(157\) 2.92309 1.68765i 0.233288 0.134689i −0.378800 0.925479i \(-0.623663\pi\)
0.612088 + 0.790790i \(0.290330\pi\)
\(158\) 10.9623 + 6.32909i 0.872114 + 0.503515i
\(159\) −2.54727 −0.202012
\(160\) 0 0
\(161\) −1.14462 + 1.98255i −0.0902089 + 0.156246i
\(162\) 1.86850 + 1.07878i 0.146803 + 0.0847569i
\(163\) 0.307960i 0.0241213i 0.999927 + 0.0120607i \(0.00383912\pi\)
−0.999927 + 0.0120607i \(0.996161\pi\)
\(164\) 4.86730 0.380072
\(165\) 0 0
\(166\) 2.59132 + 4.48830i 0.201125 + 0.348359i
\(167\) 12.3532 + 7.13215i 0.955923 + 0.551902i 0.894916 0.446235i \(-0.147235\pi\)
0.0610070 + 0.998137i \(0.480569\pi\)
\(168\) 5.00486 2.88955i 0.386133 0.222934i
\(169\) −5.22797 9.05511i −0.402152 0.696547i
\(170\) 0 0
\(171\) −6.12005 3.81894i −0.468012 0.292042i
\(172\) 3.49842i 0.266752i
\(173\) 11.5590 6.67357i 0.878811 0.507382i 0.00854514 0.999963i \(-0.497280\pi\)
0.870266 + 0.492581i \(0.163947\pi\)
\(174\) 2.52730 + 4.37742i 0.191594 + 0.331851i
\(175\) 0 0
\(176\) −14.2356 24.6569i −1.07305 1.85858i
\(177\) 10.8461 + 6.26197i 0.815239 + 0.470679i
\(178\) 18.5000i 1.38663i
\(179\) 14.2207 1.06291 0.531454 0.847087i \(-0.321646\pi\)
0.531454 + 0.847087i \(0.321646\pi\)
\(180\) 0 0
\(181\) −4.94132 + 8.55861i −0.367285 + 0.636157i −0.989140 0.146976i \(-0.953046\pi\)
0.621855 + 0.783133i \(0.286379\pi\)
\(182\) 6.46552i 0.479256i
\(183\) 12.2107i 0.902641i
\(184\) −0.961763 + 1.66582i −0.0709021 + 0.122806i
\(185\) 0 0
\(186\) 5.08594 8.80911i 0.372919 0.645915i
\(187\) −29.8232 + 17.2184i −2.18089 + 1.25914i
\(188\) 5.97663 3.45061i 0.435891 0.251661i
\(189\) 13.1470 0.956305
\(190\) 0 0
\(191\) −12.9942 −0.940228 −0.470114 0.882606i \(-0.655787\pi\)
−0.470114 + 0.882606i \(0.655787\pi\)
\(192\) 3.01211 1.73904i 0.217380 0.125505i
\(193\) 12.5711 7.25795i 0.904890 0.522439i 0.0261066 0.999659i \(-0.491689\pi\)
0.878784 + 0.477221i \(0.158356\pi\)
\(194\) −3.37716 + 5.84942i −0.242466 + 0.419964i
\(195\) 0 0
\(196\) 0.412150 0.713865i 0.0294393 0.0509904i
\(197\) 25.0010i 1.78125i 0.454740 + 0.890624i \(0.349732\pi\)
−0.454740 + 0.890624i \(0.650268\pi\)
\(198\) 15.8530i 1.12663i
\(199\) −1.12769 + 1.95322i −0.0799401 + 0.138460i −0.903224 0.429170i \(-0.858806\pi\)
0.823284 + 0.567630i \(0.192140\pi\)
\(200\) 0 0
\(201\) −1.17086 −0.0825864
\(202\) 18.5265i 1.30352i
\(203\) 5.52205 + 3.18816i 0.387572 + 0.223765i
\(204\) 2.67438 + 4.63216i 0.187244 + 0.324316i
\(205\) 0 0
\(206\) 9.63694 + 16.6917i 0.671437 + 1.16296i
\(207\) −1.34731 + 0.777871i −0.0936446 + 0.0540657i
\(208\) 7.89120i 0.547156i
\(209\) 0.859833 25.0697i 0.0594759 1.73411i
\(210\) 0 0
\(211\) −11.1081 19.2397i −0.764710 1.32452i −0.940400 0.340071i \(-0.889549\pi\)
0.175689 0.984446i \(-0.443785\pi\)
\(212\) 1.46599 0.846388i 0.100684 0.0581302i
\(213\) 8.87255 + 5.12257i 0.607937 + 0.350993i
\(214\) −14.9124 25.8291i −1.01939 1.76564i
\(215\) 0 0
\(216\) 11.0467 0.751634
\(217\) 12.8317i 0.871071i
\(218\) 8.10822 + 4.68128i 0.549158 + 0.317057i
\(219\) 5.94373 10.2949i 0.401640 0.695662i
\(220\) 0 0
\(221\) 9.54463 0.642041
\(222\) −4.83801 2.79322i −0.324706 0.187469i
\(223\) 8.84730 5.10799i 0.592459 0.342056i −0.173610 0.984814i \(-0.555543\pi\)
0.766069 + 0.642758i \(0.222210\pi\)
\(224\) −5.04438 + 8.73712i −0.337042 + 0.583774i
\(225\) 0 0
\(226\) −13.0491 22.6017i −0.868012 1.50344i
\(227\) 4.15180i 0.275565i −0.990463 0.137782i \(-0.956003\pi\)
0.990463 0.137782i \(-0.0439974\pi\)
\(228\) −3.89385 0.133550i −0.257876 0.00884456i
\(229\) −6.53286 −0.431703 −0.215852 0.976426i \(-0.569253\pi\)
−0.215852 + 0.976426i \(0.569253\pi\)
\(230\) 0 0
\(231\) 8.12660 + 14.0757i 0.534691 + 0.926111i
\(232\) 4.63987 + 2.67883i 0.304623 + 0.175874i
\(233\) 4.45848 2.57410i 0.292084 0.168635i −0.346797 0.937940i \(-0.612731\pi\)
0.638882 + 0.769305i \(0.279397\pi\)
\(234\) −2.19694 + 3.80521i −0.143618 + 0.248755i
\(235\) 0 0
\(236\) −8.32272 −0.541763
\(237\) −7.63788 4.40973i −0.496134 0.286443i
\(238\) 21.0071 + 12.1285i 1.36169 + 0.786171i
\(239\) −13.9962 −0.905338 −0.452669 0.891679i \(-0.649528\pi\)
−0.452669 + 0.891679i \(0.649528\pi\)
\(240\) 0 0
\(241\) −7.61285 + 13.1858i −0.490387 + 0.849375i −0.999939 0.0110652i \(-0.996478\pi\)
0.509552 + 0.860440i \(0.329811\pi\)
\(242\) 31.8830 18.4076i 2.04952 1.18329i
\(243\) 12.7242 + 7.34631i 0.816256 + 0.471266i
\(244\) −4.05728 7.02742i −0.259741 0.449884i
\(245\) 0 0
\(246\) −12.1916 −0.777305
\(247\) −3.68059 + 5.89834i −0.234190 + 0.375302i
\(248\) 10.7817i 0.684642i
\(249\) −1.80548 3.12718i −0.114417 0.198177i
\(250\) 0 0
\(251\) 3.05630 5.29366i 0.192912 0.334133i −0.753302 0.657674i \(-0.771540\pi\)
0.946214 + 0.323542i \(0.104874\pi\)
\(252\) −2.69002 + 1.55308i −0.169455 + 0.0978350i
\(253\) −4.68497 2.70487i −0.294541 0.170053i
\(254\) 10.1869 0.639181
\(255\) 0 0
\(256\) −8.05154 + 13.9457i −0.503221 + 0.871605i
\(257\) 0.106246 + 0.0613414i 0.00662747 + 0.00382637i 0.503310 0.864106i \(-0.332115\pi\)
−0.496683 + 0.867932i \(0.665449\pi\)
\(258\) 8.76281i 0.545549i
\(259\) −7.04723 −0.437893
\(260\) 0 0
\(261\) 2.16663 + 3.75271i 0.134111 + 0.232287i
\(262\) 21.4517 + 12.3851i 1.32529 + 0.765156i
\(263\) −8.71267 + 5.03027i −0.537247 + 0.310179i −0.743962 0.668222i \(-0.767056\pi\)
0.206716 + 0.978401i \(0.433722\pi\)
\(264\) 6.82832 + 11.8270i 0.420254 + 0.727902i
\(265\) 0 0
\(266\) −15.5958 + 8.30489i −0.956240 + 0.509206i
\(267\) 12.8897i 0.788835i
\(268\) 0.673847 0.389046i 0.0411618 0.0237648i
\(269\) 2.85614 + 4.94698i 0.174142 + 0.301623i 0.939864 0.341549i \(-0.110951\pi\)
−0.765722 + 0.643172i \(0.777618\pi\)
\(270\) 0 0
\(271\) 6.35560 + 11.0082i 0.386075 + 0.668702i 0.991918 0.126883i \(-0.0404972\pi\)
−0.605843 + 0.795585i \(0.707164\pi\)
\(272\) 25.6393 + 14.8028i 1.55461 + 0.897554i
\(273\) 4.50479i 0.272642i
\(274\) 28.8804 1.74473
\(275\) 0 0
\(276\) −0.420122 + 0.727673i −0.0252884 + 0.0438008i
\(277\) 17.6019i 1.05760i −0.848747 0.528799i \(-0.822642\pi\)
0.848747 0.528799i \(-0.177358\pi\)
\(278\) 11.1613i 0.669413i
\(279\) 4.36012 7.55195i 0.261034 0.452123i
\(280\) 0 0
\(281\) 10.2502 17.7539i 0.611476 1.05911i −0.379516 0.925185i \(-0.623910\pi\)
0.990992 0.133922i \(-0.0427571\pi\)
\(282\) −14.9702 + 8.64305i −0.891462 + 0.514686i
\(283\) −10.2677 + 5.92805i −0.610350 + 0.352386i −0.773103 0.634281i \(-0.781296\pi\)
0.162752 + 0.986667i \(0.447963\pi\)
\(284\) −6.80836 −0.404002
\(285\) 0 0
\(286\) −15.2787 −0.903449
\(287\) −13.3190 + 7.68973i −0.786196 + 0.453911i
\(288\) −5.93763 + 3.42809i −0.349878 + 0.202002i
\(289\) 9.40447 16.2890i 0.553204 0.958177i
\(290\) 0 0
\(291\) 2.35301 4.07552i 0.137936 0.238911i
\(292\) 7.89976i 0.462298i
\(293\) 24.9814i 1.45943i −0.683751 0.729715i \(-0.739653\pi\)
0.683751 0.729715i \(-0.260347\pi\)
\(294\) −1.03235 + 1.78808i −0.0602079 + 0.104283i
\(295\) 0 0
\(296\) −5.92139 −0.344174
\(297\) 31.0678i 1.80274i
\(298\) 20.7478 + 11.9788i 1.20189 + 0.693911i
\(299\) 0.749690 + 1.29850i 0.0433557 + 0.0750943i
\(300\) 0 0
\(301\) 5.52708 + 9.57319i 0.318576 + 0.551789i
\(302\) 18.3391 10.5881i 1.05529 0.609274i
\(303\) 12.9082i 0.741554i
\(304\) −19.0348 + 10.1362i −1.09172 + 0.581348i
\(305\) 0 0
\(306\) 8.24234 + 14.2761i 0.471183 + 0.816113i
\(307\) −14.6531 + 8.45997i −0.836296 + 0.482836i −0.856003 0.516970i \(-0.827060\pi\)
0.0197074 + 0.999806i \(0.493727\pi\)
\(308\) −9.35392 5.40049i −0.532989 0.307721i
\(309\) −6.71444 11.6298i −0.381971 0.661594i
\(310\) 0 0
\(311\) −15.2133 −0.862670 −0.431335 0.902192i \(-0.641957\pi\)
−0.431335 + 0.902192i \(0.641957\pi\)
\(312\) 3.78512i 0.214290i
\(313\) −21.5877 12.4637i −1.22021 0.704488i −0.255246 0.966876i \(-0.582156\pi\)
−0.964962 + 0.262389i \(0.915490\pi\)
\(314\) 2.80917 4.86562i 0.158531 0.274583i
\(315\) 0 0
\(316\) 5.86093 0.329703
\(317\) −21.8502 12.6152i −1.22723 0.708541i −0.260780 0.965398i \(-0.583980\pi\)
−0.966449 + 0.256857i \(0.917313\pi\)
\(318\) −3.67199 + 2.12002i −0.205915 + 0.118885i
\(319\) −7.53396 + 13.0492i −0.421821 + 0.730615i
\(320\) 0 0
\(321\) 10.3901 + 17.9962i 0.579919 + 1.00445i
\(322\) 3.81055i 0.212354i
\(323\) 12.2600 + 23.0231i 0.682163 + 1.28104i
\(324\) 0.998983 0.0554991
\(325\) 0 0
\(326\) 0.256307 + 0.443937i 0.0141955 + 0.0245874i
\(327\) −5.64933 3.26164i −0.312408 0.180369i
\(328\) −11.1912 + 6.46125i −0.617932 + 0.356763i
\(329\) −10.9031 + 18.8847i −0.601106 + 1.04115i
\(330\) 0 0
\(331\) −20.2063 −1.11064 −0.555320 0.831637i \(-0.687404\pi\)
−0.555320 + 0.831637i \(0.687404\pi\)
\(332\) 2.07815 + 1.19982i 0.114053 + 0.0658487i
\(333\) −4.14757 2.39460i −0.227285 0.131223i
\(334\) 23.7436 1.29919
\(335\) 0 0
\(336\) 6.98651 12.1010i 0.381145 0.660163i
\(337\) 27.5610 15.9123i 1.50134 0.866800i 0.501342 0.865249i \(-0.332840\pi\)
0.999999 0.00155051i \(-0.000493543\pi\)
\(338\) −15.0726 8.70219i −0.819843 0.473337i
\(339\) 9.09183 + 15.7475i 0.493800 + 0.855287i
\(340\) 0 0
\(341\) 30.3226 1.64206
\(342\) −12.0007 0.411596i −0.648923 0.0222566i
\(343\) 19.6514i 1.06107i
\(344\) 4.64410 + 8.04382i 0.250393 + 0.433693i
\(345\) 0 0
\(346\) 11.1085 19.2404i 0.597194 1.03437i
\(347\) 2.86009 1.65128i 0.153538 0.0886451i −0.421263 0.906939i \(-0.638413\pi\)
0.574801 + 0.818294i \(0.305080\pi\)
\(348\) 2.02681 + 1.17018i 0.108649 + 0.0627283i
\(349\) −17.8486 −0.955416 −0.477708 0.878519i \(-0.658532\pi\)
−0.477708 + 0.878519i \(0.658532\pi\)
\(350\) 0 0
\(351\) 4.30543 7.45723i 0.229807 0.398037i
\(352\) −20.6468 11.9204i −1.10048 0.635360i
\(353\) 8.29523i 0.441511i −0.975329 0.220755i \(-0.929148\pi\)
0.975329 0.220755i \(-0.0708522\pi\)
\(354\) 20.8467 1.10799
\(355\) 0 0
\(356\) 4.28288 + 7.41817i 0.226992 + 0.393162i
\(357\) −14.6365 8.45039i −0.774646 0.447242i
\(358\) 20.4997 11.8355i 1.08344 0.625527i
\(359\) 4.17511 + 7.23150i 0.220354 + 0.381664i 0.954915 0.296878i \(-0.0959455\pi\)
−0.734562 + 0.678542i \(0.762612\pi\)
\(360\) 0 0
\(361\) −18.9554 1.30178i −0.997650 0.0685148i
\(362\) 16.4501i 0.864598i
\(363\) −22.2142 + 12.8254i −1.16594 + 0.673156i
\(364\) 1.49682 + 2.59256i 0.0784545 + 0.135887i
\(365\) 0 0
\(366\) 10.1626 + 17.6022i 0.531209 + 0.920082i
\(367\) 12.4879 + 7.20988i 0.651862 + 0.376353i 0.789169 0.614176i \(-0.210511\pi\)
−0.137307 + 0.990528i \(0.543845\pi\)
\(368\) 4.65080i 0.242440i
\(369\) −10.4517 −0.544093
\(370\) 0 0
\(371\) −2.67438 + 4.63216i −0.138847 + 0.240490i
\(372\) 4.70974i 0.244188i
\(373\) 24.1157i 1.24866i −0.781159 0.624332i \(-0.785371\pi\)
0.781159 0.624332i \(-0.214629\pi\)
\(374\) −28.6608 + 49.6420i −1.48202 + 2.56693i
\(375\) 0 0
\(376\) −9.16125 + 15.8678i −0.472455 + 0.818317i
\(377\) 3.61676 2.08814i 0.186273 0.107545i
\(378\) 18.9519 10.9419i 0.974783 0.562791i
\(379\) −16.6757 −0.856571 −0.428285 0.903644i \(-0.640882\pi\)
−0.428285 + 0.903644i \(0.640882\pi\)
\(380\) 0 0
\(381\) −7.09760 −0.363621
\(382\) −18.7316 + 10.8147i −0.958395 + 0.553329i
\(383\) −9.42053 + 5.43895i −0.481367 + 0.277917i −0.720986 0.692950i \(-0.756311\pi\)
0.239619 + 0.970867i \(0.422977\pi\)
\(384\) 7.69935 13.3357i 0.392906 0.680533i
\(385\) 0 0
\(386\) 12.0812 20.9252i 0.614916 1.06507i
\(387\) 7.51226i 0.381870i
\(388\) 3.12736i 0.158767i
\(389\) 18.2272 31.5704i 0.924154 1.60068i 0.131237 0.991351i \(-0.458105\pi\)
0.792917 0.609330i \(-0.208562\pi\)
\(390\) 0 0
\(391\) 5.62528 0.284482
\(392\) 2.18849i 0.110535i
\(393\) −14.9463 8.62922i −0.753939 0.435287i
\(394\) 20.8077 + 36.0399i 1.04827 + 1.81566i
\(395\) 0 0
\(396\) −3.67010 6.35680i −0.184429 0.319441i
\(397\) −7.43380 + 4.29191i −0.373092 + 0.215405i −0.674808 0.737993i \(-0.735774\pi\)
0.301717 + 0.953398i \(0.402440\pi\)
\(398\) 3.75419i 0.188181i
\(399\) 10.8662 5.78635i 0.543992 0.289680i
\(400\) 0 0
\(401\) 8.52785 + 14.7707i 0.425860 + 0.737612i 0.996500 0.0835885i \(-0.0266381\pi\)
−0.570640 + 0.821200i \(0.693305\pi\)
\(402\) −1.68785 + 0.974478i −0.0841821 + 0.0486026i
\(403\) −7.27836 4.20216i −0.362561 0.209325i
\(404\) −4.28903 7.42881i −0.213387 0.369597i
\(405\) 0 0
\(406\) 10.6137 0.526747
\(407\) 16.6533i 0.825476i
\(408\) −12.2982 7.10039i −0.608853 0.351522i
\(409\) −5.89702 + 10.2139i −0.291589 + 0.505047i −0.974186 0.225749i \(-0.927517\pi\)
0.682597 + 0.730795i \(0.260851\pi\)
\(410\) 0 0
\(411\) −20.1222 −0.992553
\(412\) 7.72850 + 4.46205i 0.380756 + 0.219829i
\(413\) 22.7745 13.1489i 1.12066 0.647015i
\(414\) −1.29480 + 2.24266i −0.0636360 + 0.110221i
\(415\) 0 0
\(416\) 3.30390 + 5.72252i 0.161987 + 0.280570i
\(417\) 7.77656i 0.380820i
\(418\) −19.6253 36.8546i −0.959907 1.80261i
\(419\) −1.14280 −0.0558292 −0.0279146 0.999610i \(-0.508887\pi\)
−0.0279146 + 0.999610i \(0.508887\pi\)
\(420\) 0 0
\(421\) −9.75944 16.9039i −0.475646 0.823843i 0.523965 0.851740i \(-0.324452\pi\)
−0.999611 + 0.0278967i \(0.991119\pi\)
\(422\) −32.0254 18.4899i −1.55897 0.900072i
\(423\) −12.8338 + 7.40959i −0.624000 + 0.360266i
\(424\) −2.24713 + 3.89215i −0.109130 + 0.189019i
\(425\) 0 0
\(426\) 17.0535 0.826245
\(427\) 22.2049 + 12.8200i 1.07457 + 0.620404i
\(428\) −11.9593 6.90469i −0.578073 0.333751i
\(429\) 10.6453 0.513960
\(430\) 0 0
\(431\) 18.4392 31.9377i 0.888187 1.53838i 0.0461694 0.998934i \(-0.485299\pi\)
0.842017 0.539451i \(-0.181368\pi\)
\(432\) 23.1309 13.3546i 1.11289 0.642526i
\(433\) −0.319506 0.184467i −0.0153545 0.00886490i 0.492303 0.870424i \(-0.336155\pi\)
−0.507658 + 0.861559i \(0.669488\pi\)
\(434\) −10.6795 18.4974i −0.512630 0.887902i
\(435\) 0 0
\(436\) 4.33501 0.207609
\(437\) −2.16921 + 3.47628i −0.103767 + 0.166293i
\(438\) 19.7872i 0.945470i
\(439\) −1.13220 1.96102i −0.0540367 0.0935944i 0.837742 0.546067i \(-0.183875\pi\)
−0.891778 + 0.452472i \(0.850542\pi\)
\(440\) 0 0
\(441\) −0.885022 + 1.53290i −0.0421439 + 0.0729954i
\(442\) 13.7590 7.94373i 0.654447 0.377845i
\(443\) 14.2572 + 8.23137i 0.677378 + 0.391084i 0.798866 0.601508i \(-0.205433\pi\)
−0.121488 + 0.992593i \(0.538767\pi\)
\(444\) −2.58661 −0.122755
\(445\) 0 0
\(446\) 8.50248 14.7267i 0.402604 0.697331i
\(447\) −14.4558 8.34609i −0.683738 0.394756i
\(448\) 7.30329i 0.345048i
\(449\) −14.1613 −0.668315 −0.334158 0.942517i \(-0.608452\pi\)
−0.334158 + 0.942517i \(0.608452\pi\)
\(450\) 0 0
\(451\) −18.1717 31.4742i −0.855670 1.48206i
\(452\) −10.4649 6.04193i −0.492229 0.284188i
\(453\) −12.7776 + 7.37713i −0.600342 + 0.346608i
\(454\) −3.45543 5.98498i −0.162171 0.280889i
\(455\) 0 0
\(456\) 9.13029 4.86195i 0.427565 0.227682i
\(457\) 1.22073i 0.0571033i −0.999592 0.0285516i \(-0.990910\pi\)
0.999592 0.0285516i \(-0.00908950\pi\)
\(458\) −9.41736 + 5.43712i −0.440045 + 0.254060i
\(459\) −16.1528 27.9775i −0.753950 1.30588i
\(460\) 0 0
\(461\) 4.34580 + 7.52714i 0.202404 + 0.350574i 0.949303 0.314364i \(-0.101791\pi\)
−0.746898 + 0.664938i \(0.768458\pi\)
\(462\) 23.4296 + 13.5271i 1.09004 + 0.629337i
\(463\) 19.7149i 0.916229i −0.888893 0.458114i \(-0.848525\pi\)
0.888893 0.458114i \(-0.151475\pi\)
\(464\) 12.9540 0.601375
\(465\) 0 0
\(466\) 4.28471 7.42133i 0.198485 0.343787i
\(467\) 11.4795i 0.531207i 0.964082 + 0.265604i \(0.0855713\pi\)
−0.964082 + 0.265604i \(0.914429\pi\)
\(468\) 2.03443i 0.0940418i
\(469\) −1.22929 + 2.12919i −0.0567633 + 0.0983170i
\(470\) 0 0
\(471\) −1.95726 + 3.39008i −0.0901858 + 0.156206i
\(472\) 19.1362 11.0483i 0.880814 0.508538i
\(473\) −22.6225 + 13.0611i −1.04018 + 0.600549i
\(474\) −14.6804 −0.674293
\(475\) 0 0
\(476\) 11.2313 0.514787
\(477\) −3.14796 + 1.81747i −0.144135 + 0.0832164i
\(478\) −20.1760 + 11.6486i −0.922830 + 0.532796i
\(479\) 19.6316 34.0029i 0.896989 1.55363i 0.0656652 0.997842i \(-0.479083\pi\)
0.831324 0.555789i \(-0.187584\pi\)
\(480\) 0 0
\(481\) −2.30785 + 3.99731i −0.105229 + 0.182262i
\(482\) 25.3439i 1.15438i
\(483\) 2.65497i 0.120805i
\(484\) 8.52302 14.7623i 0.387410 0.671014i
\(485\) 0 0
\(486\) 24.4565 1.10937
\(487\) 31.5943i 1.43168i −0.698266 0.715838i \(-0.746045\pi\)
0.698266 0.715838i \(-0.253955\pi\)
\(488\) 18.6576 + 10.7719i 0.844588 + 0.487623i
\(489\) −0.178579 0.309309i −0.00807564 0.0139874i
\(490\) 0 0
\(491\) 5.53187 + 9.58148i 0.249650 + 0.432406i 0.963429 0.267965i \(-0.0863511\pi\)
−0.713779 + 0.700371i \(0.753018\pi\)
\(492\) −4.88861 + 2.82244i −0.220395 + 0.127245i
\(493\) 15.6683i 0.705663i
\(494\) −0.396685 + 11.5659i −0.0178477 + 0.520376i
\(495\) 0 0
\(496\) −13.0343 22.5761i −0.585258 1.01370i
\(497\) 18.6306 10.7564i 0.835696 0.482489i
\(498\) −5.20533 3.00530i −0.233256 0.134671i
\(499\) −10.1868 17.6440i −0.456023 0.789854i 0.542724 0.839911i \(-0.317393\pi\)
−0.998746 + 0.0500570i \(0.984060\pi\)
\(500\) 0 0
\(501\) −16.5431 −0.739091
\(502\) 10.1747i 0.454118i
\(503\) 11.8407 + 6.83622i 0.527950 + 0.304812i 0.740181 0.672407i \(-0.234740\pi\)
−0.212231 + 0.977219i \(0.568073\pi\)
\(504\) 4.12338 7.14191i 0.183670 0.318126i
\(505\) 0 0
\(506\) −9.00474 −0.400310
\(507\) 10.5017 + 6.06317i 0.466398 + 0.269275i
\(508\) 4.08476 2.35834i 0.181232 0.104634i
\(509\) −3.86196 + 6.68912i −0.171179 + 0.296490i −0.938832 0.344375i \(-0.888091\pi\)
0.767654 + 0.640865i \(0.221424\pi\)
\(510\) 0 0
\(511\) −12.4807 21.6171i −0.552112 0.956285i
\(512\) 0.249240i 0.0110150i
\(513\) 23.5182 + 0.806621i 1.03836 + 0.0356132i
\(514\) 0.204211 0.00900736
\(515\) 0 0
\(516\) 2.02866 + 3.51374i 0.0893067 + 0.154684i
\(517\) −44.6265 25.7651i −1.96267 1.13315i
\(518\) −10.1588 + 5.86521i −0.446354 + 0.257703i
\(519\) −7.73971 + 13.4056i −0.339736 + 0.588439i
\(520\) 0 0
\(521\) −2.16876 −0.0950151 −0.0475075 0.998871i \(-0.515128\pi\)
−0.0475075 + 0.998871i \(0.515128\pi\)
\(522\) 6.24656 + 3.60645i 0.273404 + 0.157850i
\(523\) 20.6921 + 11.9466i 0.904804 + 0.522389i 0.878756 0.477272i \(-0.158374\pi\)
0.0260485 + 0.999661i \(0.491708\pi\)
\(524\) 11.4690 0.501026
\(525\) 0 0
\(526\) −8.37310 + 14.5026i −0.365085 + 0.632345i
\(527\) −27.3065 + 15.7654i −1.18949 + 0.686751i
\(528\) 28.5959 + 16.5099i 1.24448 + 0.718500i
\(529\) −11.0582 19.1533i −0.480790 0.832752i
\(530\) 0 0
\(531\) 17.8716 0.775562
\(532\) −4.33101 + 6.94067i −0.187773 + 0.300916i
\(533\) 10.0730i 0.436312i
\(534\) −10.7277 18.5809i −0.464234 0.804076i
\(535\) 0 0
\(536\) −1.03290 + 1.78904i −0.0446147 + 0.0772749i
\(537\) −14.2830 + 8.24629i −0.616356 + 0.355854i
\(538\) 8.23448 + 4.75418i 0.355013 + 0.204967i
\(539\) −6.15492 −0.265111
\(540\) 0 0
\(541\) −21.2275 + 36.7671i −0.912641 + 1.58074i −0.102323 + 0.994751i \(0.532627\pi\)
−0.810319 + 0.585990i \(0.800706\pi\)
\(542\) 18.3237 + 10.5792i 0.787069 + 0.454415i
\(543\) 11.4614i 0.491858i
\(544\) 24.7907 1.06289
\(545\) 0 0
\(546\) −3.74921 6.49383i −0.160451 0.277910i
\(547\) 10.4189 + 6.01535i 0.445480 + 0.257198i 0.705919 0.708292i \(-0.250534\pi\)
−0.260439 + 0.965490i \(0.583867\pi\)
\(548\) 11.5806 6.68604i 0.494697 0.285614i
\(549\) 8.71231 + 15.0902i 0.371833 + 0.644033i
\(550\) 0 0
\(551\) 9.68259 + 6.04198i 0.412492 + 0.257397i
\(552\) 2.23082i 0.0949500i
\(553\) −16.0380 + 9.25956i −0.682006 + 0.393756i
\(554\) −14.6496 25.3739i −0.622403 1.07803i
\(555\) 0 0
\(556\) 2.58394 + 4.47551i 0.109583 + 0.189804i
\(557\) −7.58006 4.37635i −0.321178 0.185432i 0.330740 0.943722i \(-0.392702\pi\)
−0.651917 + 0.758290i \(0.726035\pi\)
\(558\) 14.5152i 0.614479i
\(559\) 7.24011 0.306224
\(560\) 0 0
\(561\) 19.9692 34.5876i 0.843099 1.46029i
\(562\) 34.1238i 1.43943i
\(563\) 35.9707i 1.51598i −0.652265 0.757991i \(-0.726181\pi\)
0.652265 0.757991i \(-0.273819\pi\)
\(564\) −4.00186 + 6.93143i −0.168509 + 0.291866i
\(565\) 0 0
\(566\) −9.86750 + 17.0910i −0.414762 + 0.718389i
\(567\) −2.73365 + 1.57827i −0.114802 + 0.0662812i
\(568\) 15.6542 9.03798i 0.656837 0.379225i
\(569\) 20.3125 0.851543 0.425772 0.904831i \(-0.360003\pi\)
0.425772 + 0.904831i \(0.360003\pi\)
\(570\) 0 0
\(571\) 10.1773 0.425906 0.212953 0.977062i \(-0.431692\pi\)
0.212953 + 0.977062i \(0.431692\pi\)
\(572\) −6.12650 + 3.53714i −0.256162 + 0.147895i
\(573\) 13.0511 7.53505i 0.545217 0.314781i
\(574\) −12.7999 + 22.1701i −0.534258 + 0.925362i
\(575\) 0 0
\(576\) 2.48161 4.29827i 0.103400 0.179095i
\(577\) 32.7441i 1.36316i 0.731745 + 0.681578i \(0.238706\pi\)
−0.731745 + 0.681578i \(0.761294\pi\)
\(578\) 31.3083i 1.30225i
\(579\) −8.41745 + 14.5794i −0.349817 + 0.605901i
\(580\) 0 0
\(581\) −7.58228 −0.314566
\(582\) 7.83337i 0.324703i
\(583\) −10.9463 6.31984i −0.453349 0.261741i
\(584\) −10.4868 18.1637i −0.433947 0.751618i
\(585\) 0 0
\(586\) −20.7913 36.0117i −0.858883 1.48763i
\(587\) −7.59786 + 4.38663i −0.313597 + 0.181056i −0.648535 0.761185i \(-0.724618\pi\)
0.334938 + 0.942240i \(0.391285\pi\)
\(588\) 0.955987i 0.0394243i
\(589\) 0.787274 22.9541i 0.0324390 0.945808i
\(590\) 0 0
\(591\) −14.4975 25.1105i −0.596349 1.03291i
\(592\) −12.3989 + 7.15852i −0.509592 + 0.294213i
\(593\) 27.9905 + 16.1603i 1.14943 + 0.663625i 0.948749 0.316031i \(-0.102350\pi\)
0.200684 + 0.979656i \(0.435684\pi\)
\(594\) 25.8569 + 44.7855i 1.06092 + 1.83757i
\(595\) 0 0
\(596\) 11.0927 0.454375
\(597\) 2.61570i 0.107053i
\(598\) 2.16141 + 1.24789i 0.0883868 + 0.0510301i
\(599\) −9.77520 + 16.9311i −0.399404 + 0.691787i −0.993652 0.112494i \(-0.964116\pi\)
0.594249 + 0.804281i \(0.297449\pi\)
\(600\) 0 0
\(601\) −0.401837 −0.0163913 −0.00819564 0.999966i \(-0.502609\pi\)
−0.00819564 + 0.999966i \(0.502609\pi\)
\(602\) 15.9350 + 9.20008i 0.649462 + 0.374967i
\(603\) −1.44697 + 0.835409i −0.0589252 + 0.0340205i
\(604\) 4.90243 8.49126i 0.199477 0.345505i
\(605\) 0 0
\(606\) 10.7431 + 18.6076i 0.436409 + 0.755882i
\(607\) 13.4453i 0.545727i −0.962053 0.272863i \(-0.912029\pi\)
0.962053 0.272863i \(-0.0879707\pi\)
\(608\) −9.55976 + 15.3200i −0.387700 + 0.621309i
\(609\) −7.39497 −0.299659
\(610\) 0 0
\(611\) 7.14115 + 12.3688i 0.288900 + 0.500390i
\(612\) 6.61008 + 3.81633i 0.267196 + 0.154266i
\(613\) −17.9313 + 10.3527i −0.724239 + 0.418140i −0.816311 0.577613i \(-0.803984\pi\)
0.0920716 + 0.995752i \(0.470651\pi\)
\(614\) −14.0820 + 24.3907i −0.568303 + 0.984330i
\(615\) 0 0
\(616\) 28.6762 1.15540
\(617\) −8.03560 4.63936i −0.323501 0.186773i 0.329451 0.944173i \(-0.393136\pi\)
−0.652952 + 0.757399i \(0.726470\pi\)
\(618\) −19.3583 11.1765i −0.778703 0.449585i
\(619\) 2.89129 0.116211 0.0581053 0.998310i \(-0.481494\pi\)
0.0581053 + 0.998310i \(0.481494\pi\)
\(620\) 0 0
\(621\) 2.53747 4.39503i 0.101825 0.176366i
\(622\) −21.9306 + 12.6616i −0.879338 + 0.507686i
\(623\) −23.4396 13.5329i −0.939088 0.542183i
\(624\) −4.57593 7.92574i −0.183184 0.317284i
\(625\) 0 0
\(626\) −41.4926 −1.65838
\(627\) 13.6738 + 25.6781i 0.546078 + 1.02548i
\(628\) 2.60138i 0.103806i
\(629\) 8.65844 + 14.9969i 0.345234 + 0.597964i
\(630\) 0 0
\(631\) −15.2270 + 26.3740i −0.606178 + 1.04993i 0.385686 + 0.922630i \(0.373965\pi\)
−0.991864 + 0.127301i \(0.959369\pi\)
\(632\) −13.4759 + 7.78029i −0.536041 + 0.309483i
\(633\) 22.3134 + 12.8826i 0.886877 + 0.512039i
\(634\) −41.9972 −1.66792
\(635\) 0 0
\(636\) −0.981604 + 1.70019i −0.0389231 + 0.0674168i
\(637\) 1.47737 + 0.852959i 0.0585355 + 0.0337955i
\(638\) 25.0812i 0.992975i
\(639\) 14.6198 0.578349
\(640\) 0 0
\(641\) 10.0369 + 17.3845i 0.396434 + 0.686645i 0.993283 0.115709i \(-0.0369141\pi\)
−0.596849 + 0.802354i \(0.703581\pi\)
\(642\) 29.9554 + 17.2948i 1.18225 + 0.682571i
\(643\) −1.80924 + 1.04457i −0.0713496 + 0.0411937i −0.535250 0.844693i \(-0.679783\pi\)
0.463901 + 0.885887i \(0.346449\pi\)
\(644\) 0.882172 + 1.52797i 0.0347625 + 0.0602103i
\(645\) 0 0
\(646\) 36.8347 + 22.9850i 1.44924 + 0.904334i
\(647\) 2.10623i 0.0828043i 0.999143 + 0.0414021i \(0.0131825\pi\)
−0.999143 + 0.0414021i \(0.986818\pi\)
\(648\) −2.29693 + 1.32613i −0.0902319 + 0.0520954i
\(649\) 31.0722 + 53.8187i 1.21969 + 2.11257i
\(650\) 0 0
\(651\) 7.44081 + 12.8879i 0.291628 + 0.505115i
\(652\) 0.205549 + 0.118674i 0.00804994 + 0.00464763i
\(653\) 1.83067i 0.0716395i 0.999358 + 0.0358197i \(0.0114042\pi\)
−0.999358 + 0.0358197i \(0.988596\pi\)
\(654\) −10.8583 −0.424593
\(655\) 0 0
\(656\) −15.6223 + 27.0587i −0.609950 + 1.05646i
\(657\) 16.9634i 0.661804i
\(658\) 36.2973i 1.41502i
\(659\) 12.0268 20.8310i 0.468497 0.811460i −0.530855 0.847463i \(-0.678129\pi\)
0.999352 + 0.0360024i \(0.0114624\pi\)
\(660\) 0 0
\(661\) 8.72110 15.1054i 0.339211 0.587531i −0.645073 0.764121i \(-0.723173\pi\)
0.984285 + 0.176589i \(0.0565065\pi\)
\(662\) −29.1282 + 16.8172i −1.13210 + 0.653617i
\(663\) −9.58642 + 5.53472i −0.372306 + 0.214951i
\(664\) −6.37097 −0.247241
\(665\) 0 0
\(666\) −7.97184 −0.308902
\(667\) 2.13159 1.23068i 0.0825356 0.0476519i
\(668\) 9.52077 5.49682i 0.368370 0.212678i
\(669\) −5.92402 + 10.2607i −0.229036 + 0.396702i
\(670\) 0 0
\(671\) −30.2951 + 52.4726i −1.16953 + 2.02568i
\(672\) 11.7005i 0.451357i
\(673\) 47.5187i 1.83171i 0.401506 + 0.915856i \(0.368487\pi\)
−0.401506 + 0.915856i \(0.631513\pi\)
\(674\) 26.4868 45.8765i 1.02023 1.76709i
\(675\) 0 0
\(676\) −8.05850 −0.309942
\(677\) 14.5531i 0.559321i −0.960099 0.279661i \(-0.909778\pi\)
0.960099 0.279661i \(-0.0902219\pi\)
\(678\) 26.2124 + 15.1338i 1.00668 + 0.581208i
\(679\) −4.94084 8.55778i −0.189612 0.328418i
\(680\) 0 0
\(681\) 2.40754 + 4.16998i 0.0922570 + 0.159794i
\(682\) 43.7112 25.2367i 1.67379 0.966363i
\(683\) 3.33714i 0.127692i 0.997960 + 0.0638460i \(0.0203367\pi\)
−0.997960 + 0.0638460i \(0.979663\pi\)
\(684\) −4.90736 + 2.61321i −0.187638 + 0.0999185i
\(685\) 0 0
\(686\) 16.3553 + 28.3282i 0.624448 + 1.08158i
\(687\) 6.56146 3.78826i 0.250335 0.144531i
\(688\) 19.4487 + 11.2287i 0.741476 + 0.428092i
\(689\) 1.75163 + 3.03391i 0.0667318 + 0.115583i
\(690\) 0 0
\(691\) −19.3318 −0.735415 −0.367708 0.929941i \(-0.619857\pi\)
−0.367708 + 0.929941i \(0.619857\pi\)
\(692\) 10.2868i 0.391044i
\(693\) 20.0859 + 11.5966i 0.763001 + 0.440519i
\(694\) 2.74862 4.76075i 0.104336 0.180716i
\(695\) 0 0
\(696\) −6.21358 −0.235525
\(697\) 32.7283 + 18.8957i 1.23967 + 0.715725i
\(698\) −25.7295 + 14.8549i −0.973876 + 0.562268i
\(699\) −2.98533 + 5.17074i −0.112916 + 0.195575i
\(700\) 0 0
\(701\) −4.96892 8.60643i −0.187674 0.325060i 0.756801 0.653646i \(-0.226761\pi\)
−0.944474 + 0.328586i \(0.893428\pi\)
\(702\) 14.3332i 0.540971i
\(703\) −12.6065 0.432375i −0.475464 0.0163073i
\(704\) 17.2584 0.650452
\(705\) 0 0
\(706\) −6.90389 11.9579i −0.259831 0.450041i
\(707\) 23.4732 + 13.5523i 0.882801 + 0.509686i
\(708\) 8.35916 4.82616i 0.314157 0.181378i
\(709\) 18.6059 32.2264i 0.698760 1.21029i −0.270136 0.962822i \(-0.587069\pi\)
0.968897 0.247466i \(-0.0795979\pi\)
\(710\) 0 0
\(711\) −12.5853 −0.471987
\(712\) −19.6950 11.3709i −0.738101 0.426143i
\(713\) −4.28961 2.47661i −0.160647 0.0927497i
\(714\) −28.1321 −1.05282
\(715\) 0 0
\(716\) 5.48003 9.49169i 0.204798 0.354721i
\(717\) 14.0575 8.11608i 0.524985 0.303100i
\(718\) 12.0372 + 6.94966i 0.449223 + 0.259359i
\(719\) −1.32109 2.28819i −0.0492683 0.0853351i 0.840340 0.542060i \(-0.182356\pi\)
−0.889608 + 0.456725i \(0.849022\pi\)
\(720\) 0 0
\(721\) −28.1980 −1.05015
\(722\) −28.4083 + 13.8995i −1.05725 + 0.517284i
\(723\) 17.6581i 0.656711i
\(724\) 3.80832 + 6.59621i 0.141535 + 0.245146i
\(725\) 0 0
\(726\) −21.3484 + 36.9765i −0.792313 + 1.37233i
\(727\) 8.81013 5.08653i 0.326750 0.188649i −0.327647 0.944800i \(-0.606256\pi\)
0.654397 + 0.756151i \(0.272923\pi\)
\(728\) −6.88317 3.97400i −0.255107 0.147286i
\(729\) −20.9284 −0.775126
\(730\) 0 0
\(731\) 13.5815 23.5238i 0.502329 0.870060i
\(732\) 8.15009 + 4.70546i 0.301236 + 0.173919i
\(733\) 14.8222i 0.547472i 0.961805 + 0.273736i \(0.0882594\pi\)
−0.961805 + 0.273736i \(0.911741\pi\)
\(734\) 24.0023 0.885942
\(735\) 0 0
\(736\) 1.94720 + 3.37266i 0.0717749 + 0.124318i
\(737\) −5.03151 2.90494i −0.185338 0.107005i
\(738\) −15.0665 + 8.69865i −0.554605 + 0.320202i
\(739\) 17.7433 + 30.7323i 0.652697 + 1.13050i 0.982466 + 0.186443i \(0.0596959\pi\)
−0.329769 + 0.944062i \(0.606971\pi\)
\(740\) 0 0
\(741\) 0.276386 8.05845i 0.0101533 0.296035i
\(742\) 8.90325i 0.326849i
\(743\) −7.56804 + 4.36941i −0.277645 + 0.160298i −0.632357 0.774677i \(-0.717912\pi\)
0.354712 + 0.934976i \(0.384579\pi\)
\(744\) 6.25210 + 10.8289i 0.229213 + 0.397009i
\(745\) 0 0
\(746\) −20.0708 34.7637i −0.734846 1.27279i
\(747\) −4.46247 2.57641i −0.163273 0.0942658i
\(748\) 26.5408i 0.970428i
\(749\) 43.6342 1.59436
\(750\) 0 0
\(751\) −6.54957 + 11.3442i −0.238997 + 0.413955i −0.960427 0.278533i \(-0.910152\pi\)
0.721430 + 0.692488i \(0.243485\pi\)
\(752\) 44.3011i 1.61549i
\(753\) 7.08911i 0.258342i
\(754\) 3.47580 6.02026i 0.126581 0.219245i
\(755\) 0 0
\(756\) 5.06627 8.77504i 0.184258 0.319145i
\(757\) 14.2357 8.21901i 0.517407 0.298725i −0.218466 0.975845i \(-0.570105\pi\)
0.735873 + 0.677119i \(0.236772\pi\)
\(758\) −24.0386 + 13.8787i −0.873121 + 0.504097i
\(759\) 6.27397 0.227731
\(760\) 0 0
\(761\) 16.3918 0.594203 0.297101 0.954846i \(-0.403980\pi\)
0.297101 + 0.954846i \(0.403980\pi\)
\(762\) −10.2315 + 5.90714i −0.370647 + 0.213993i
\(763\) −11.8625 + 6.84879i −0.429450 + 0.247943i
\(764\) −5.00738 + 8.67304i −0.181161 + 0.313780i
\(765\) 0 0
\(766\) −9.05337 + 15.6809i −0.327112 + 0.566574i
\(767\) 17.2242i 0.621929i
\(768\) 18.6756i 0.673899i
\(769\) −25.0210 + 43.3377i −0.902282 + 1.56280i −0.0777564 + 0.996972i \(0.524776\pi\)
−0.824525 + 0.565825i \(0.808558\pi\)
\(770\) 0 0
\(771\) −0.142282 −0.00512416
\(772\) 11.1875i 0.402649i
\(773\) −42.1644 24.3436i −1.51655 0.875580i −0.999811 0.0194356i \(-0.993813\pi\)
−0.516737 0.856144i \(-0.672854\pi\)
\(774\) 6.25225 + 10.8292i 0.224732 + 0.389248i
\(775\) 0 0
\(776\) −4.15151 7.19063i −0.149031 0.258129i
\(777\) 7.07808 4.08653i 0.253925 0.146603i
\(778\) 60.6799i 2.17548i
\(779\) −24.2977 + 12.9387i −0.870555 + 0.463577i
\(780\) 0 0
\(781\) 25.4185 + 44.0261i 0.909544 + 1.57538i
\(782\) 8.10905 4.68176i 0.289979 0.167419i
\(783\) −12.2416 7.06771i −0.437480 0.252579i
\(784\) 2.64572 + 4.58252i 0.0944900 + 0.163662i
\(785\) 0 0
\(786\) −28.7275 −1.02467
\(787\) 6.51678i 0.232298i −0.993232 0.116149i \(-0.962945\pi\)
0.993232 0.116149i \(-0.0370550\pi\)
\(788\) 16.6870 + 9.63426i 0.594451 + 0.343206i
\(789\) 5.83388 10.1046i 0.207692 0.359732i
\(790\) 0 0
\(791\) 38.1820 1.35760
\(792\) 16.8771 + 9.74399i 0.599701 + 0.346238i
\(793\) 14.5435 8.39668i 0.516454 0.298175i
\(794\) −7.14407 + 12.3739i −0.253534 + 0.439133i
\(795\) 0 0
\(796\) 0.869124 + 1.50537i 0.0308053 + 0.0533563i
\(797\) 38.3796i 1.35947i −0.733456 0.679737i \(-0.762094\pi\)
0.733456 0.679737i \(-0.237906\pi\)
\(798\) 10.8483 17.3849i 0.384024 0.615419i
\(799\) 53.5834 1.89565
\(800\) 0 0
\(801\) −9.19675 15.9292i −0.324951 0.562832i
\(802\) 24.5864 + 14.1950i 0.868177 + 0.501242i
\(803\) 51.0836 29.4931i 1.80270 1.04079i
\(804\) −0.451198 + 0.781498i −0.0159125 + 0.0275613i
\(805\) 0 0
\(806\) −13.9894 −0.492755
\(807\) −5.73729 3.31243i −0.201962 0.116603i
\(808\) 19.7232 + 11.3872i 0.693861 + 0.400601i
\(809\) −25.1409 −0.883906 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(810\) 0 0
\(811\) 23.5053 40.7124i 0.825383 1.42961i −0.0762426 0.997089i \(-0.524292\pi\)
0.901626 0.432517i \(-0.142374\pi\)
\(812\) 4.25590 2.45714i 0.149353 0.0862289i
\(813\) −12.7668 7.37094i −0.447753 0.258510i
\(814\) −13.8601 24.0064i −0.485797 0.841425i
\(815\) 0 0
\(816\) −34.3354 −1.20198
\(817\) 9.29984 + 17.4642i 0.325360 + 0.610996i
\(818\) 19.6317i 0.686406i
\(819\) −3.21416 5.56708i −0.112312 0.194530i
\(820\) 0 0
\(821\) 9.91021 17.1650i 0.345869 0.599062i −0.639642 0.768673i \(-0.720918\pi\)
0.985511 + 0.169610i \(0.0542509\pi\)
\(822\) −29.0069 + 16.7471i −1.01173 + 0.584123i
\(823\) 33.9627 + 19.6084i 1.18387 + 0.683505i 0.956906 0.290399i \(-0.0937881\pi\)
0.226960 + 0.973904i \(0.427121\pi\)
\(824\) −23.6932 −0.825391
\(825\) 0 0
\(826\) 21.8869 37.9092i 0.761543 1.31903i
\(827\) −10.2568 5.92176i −0.356663 0.205920i 0.310953 0.950425i \(-0.399352\pi\)
−0.667616 + 0.744506i \(0.732685\pi\)
\(828\) 1.19903i 0.0416690i
\(829\) −46.9321 −1.63002 −0.815010 0.579447i \(-0.803269\pi\)
−0.815010 + 0.579447i \(0.803269\pi\)
\(830\) 0 0
\(831\) 10.2070 + 17.6790i 0.354076 + 0.613278i
\(832\) −4.14255 2.39170i −0.143617 0.0829174i
\(833\) 5.54270 3.20008i 0.192043 0.110876i
\(834\) −6.47222 11.2102i −0.224115 0.388178i
\(835\) 0 0
\(836\) −16.4015 10.2346i −0.567259 0.353972i
\(837\) 28.4461i 0.983240i
\(838\) −1.64738 + 0.951117i −0.0569079 + 0.0328558i
\(839\) −26.5669 46.0153i −0.917192 1.58862i −0.803660 0.595089i \(-0.797117\pi\)
−0.113532 0.993534i \(-0.536217\pi\)
\(840\) 0 0
\(841\) 11.0722 + 19.1775i 0.381799 + 0.661294i
\(842\) −28.1372 16.2450i −0.969673 0.559841i
\(843\) 23.7755i 0.818870i
\(844\) −17.1222 −0.589370
\(845\) 0 0
\(846\) −12.3336 + 21.3624i −0.424038 + 0.734455i
\(847\) 53.8613i 1.85070i
\(848\) 10.8665i 0.373156i
\(849\) 6.87509 11.9080i 0.235952 0.408682i
\(850\) 0 0
\(851\) −1.36017 + 2.35588i −0.0466259 + 0.0807584i
\(852\) 6.83816 3.94802i 0.234272 0.135257i
\(853\) 36.6327 21.1499i 1.25428 0.724159i 0.282324 0.959319i \(-0.408895\pi\)
0.971957 + 0.235160i \(0.0755615\pi\)
\(854\) 42.6790 1.46045
\(855\) 0 0
\(856\) 36.6634 1.25313
\(857\) −20.3849 + 11.7692i −0.696333 + 0.402028i −0.805980 0.591942i \(-0.798361\pi\)
0.109647 + 0.993971i \(0.465028\pi\)
\(858\) 15.3456 8.85979i 0.523890 0.302468i
\(859\) 4.74062 8.21099i 0.161748 0.280156i −0.773748 0.633494i \(-0.781620\pi\)
0.935496 + 0.353338i \(0.114954\pi\)
\(860\) 0 0
\(861\) 8.91821 15.4468i 0.303932 0.526425i
\(862\) 61.3859i 2.09081i
\(863\) 22.8204i 0.776816i 0.921487 + 0.388408i \(0.126975\pi\)
−0.921487 + 0.388408i \(0.873025\pi\)
\(864\) 11.1827 19.3690i 0.380443 0.658947i
\(865\) 0 0
\(866\) −0.614106 −0.0208682
\(867\) 21.8138i 0.740834i
\(868\) −8.56456 4.94475i −0.290700 0.167836i
\(869\) −21.8813 37.8996i −0.742273 1.28565i
\(870\) 0 0
\(871\) 0.805144 + 1.39455i 0.0272813 + 0.0472525i
\(872\) −9.96736 + 5.75466i −0.337537 + 0.194877i
\(873\) 6.71546i 0.227284i
\(874\) −0.233792 + 6.81656i −0.00790814 + 0.230574i
\(875\) 0 0
\(876\) −4.58089 7.93434i −0.154774 0.268077i
\(877\) 21.9054 12.6471i 0.739693 0.427062i −0.0822647 0.996611i \(-0.526215\pi\)
0.821958 + 0.569549i \(0.192882\pi\)
\(878\) −3.26421 1.88459i −0.110162 0.0636018i
\(879\) 14.4862 + 25.0908i 0.488606 + 0.846291i
\(880\) 0 0
\(881\) −33.2871 −1.12147 −0.560736 0.827995i \(-0.689482\pi\)
−0.560736 + 0.827995i \(0.689482\pi\)
\(882\) 2.94632i 0.0992077i
\(883\) 13.2596 + 7.65544i 0.446222 + 0.257626i 0.706233 0.707979i \(-0.250393\pi\)
−0.260011 + 0.965606i \(0.583726\pi\)
\(884\) 3.67807 6.37061i 0.123707 0.214267i
\(885\) 0 0
\(886\) 27.4030 0.920621
\(887\) 37.4171 + 21.6027i 1.25634 + 0.725349i 0.972361 0.233481i \(-0.0750116\pi\)
0.283980 + 0.958830i \(0.408345\pi\)
\(888\) 5.94731 3.43368i 0.199579 0.115227i
\(889\) −7.45177 + 12.9068i −0.249924 + 0.432882i
\(890\) 0 0
\(891\) −3.72962 6.45990i −0.124947 0.216415i
\(892\) 7.87356i 0.263626i
\(893\) −20.6628 + 33.1132i −0.691453 + 1.10809i
\(894\) −27.7849 −0.929265
\(895\) 0 0
\(896\) −16.1671 28.0022i −0.540104 0.935488i
\(897\) −1.50594 0.869457i −0.0502820 0.0290303i
\(898\) −20.4141 + 11.7861i −0.681228 + 0.393307i
\(899\) −6.89818 + 11.9480i −0.230067 + 0.398488i
\(900\) 0 0
\(901\) 13.1433 0.437867
\(902\) −52.3903 30.2475i −1.74441 1.00713i
\(903\) −11.1026 6.41007i −0.369470 0.213314i
\(904\) 32.0822 1.06704
\(905\) 0 0
\(906\) −12.2796 + 21.2688i −0.407961 + 0.706609i
\(907\) −12.4083 + 7.16392i −0.412010 + 0.237874i −0.691653 0.722230i \(-0.743117\pi\)
0.279643 + 0.960104i \(0.409784\pi\)
\(908\) −2.77114 1.59992i −0.0919634 0.0530951i
\(909\) 9.20994 + 15.9521i 0.305475 + 0.529097i
\(910\) 0 0
\(911\) −4.61162 −0.152790 −0.0763949 0.997078i \(-0.524341\pi\)
−0.0763949 + 0.997078i \(0.524341\pi\)
\(912\) 13.2404 21.2184i 0.438432 0.702610i
\(913\) 17.9177i 0.592990i
\(914\) −1.01598 1.75973i −0.0336056 0.0582066i
\(915\) 0 0
\(916\) −2.51747 + 4.36038i −0.0831795 + 0.144071i
\(917\) −31.3841 + 18.1196i −1.03640 + 0.598363i
\(918\) −46.5699 26.8871i −1.53703 0.887407i
\(919\) −26.4921 −0.873892 −0.436946 0.899488i \(-0.643940\pi\)
−0.436946 + 0.899488i \(0.643940\pi\)
\(920\) 0 0
\(921\) 9.81149 16.9940i 0.323300 0.559972i
\(922\) 12.5293 + 7.23378i 0.412630 + 0.238232i
\(923\) 14.0901i 0.463782i
\(924\) 12.5265 0.412091
\(925\) 0 0
\(926\) −16.4082 28.4198i −0.539206 0.933932i
\(927\) −16.5956 9.58148i −0.545072 0.314697i
\(928\) 9.39398 5.42362i 0.308372 0.178039i
\(929\) −2.37863 4.11990i −0.0780402 0.135170i 0.824364 0.566060i \(-0.191533\pi\)
−0.902404 + 0.430890i \(0.858200\pi\)
\(930\) 0 0
\(931\) −0.159802 + 4.65925i −0.00523729 + 0.152701i
\(932\) 3.96777i 0.129969i
\(933\) 15.2799 8.82188i 0.500243 0.288815i
\(934\) 9.55406 + 16.5481i 0.312619 + 0.541471i
\(935\) 0 0
\(936\) −2.70068 4.67771i −0.0882744 0.152896i
\(937\) −10.3375 5.96833i −0.337710 0.194977i 0.321549 0.946893i \(-0.395797\pi\)
−0.659259 + 0.751916i \(0.729130\pi\)
\(938\) 4.09242i 0.133622i
\(939\) 28.9096 0.943429
\(940\) 0 0
\(941\) 8.99715 15.5835i 0.293299 0.508008i −0.681289 0.732015i \(-0.738580\pi\)
0.974588 + 0.224006i \(0.0719136\pi\)
\(942\) 6.51590i 0.212299i
\(943\) 5.93670i 0.193326i
\(944\) 26.7131 46.2684i 0.869437 1.50591i
\(945\) 0 0
\(946\) −21.7408 + 37.6561i −0.706853 + 1.22431i
\(947\) 21.8404 12.6096i 0.709717 0.409755i −0.101239 0.994862i \(-0.532281\pi\)
0.810956 + 0.585107i \(0.198947\pi\)
\(948\) −5.88659 + 3.39862i −0.191188 + 0.110382i
\(949\) −16.3488 −0.530705
\(950\) 0 0
\(951\) 29.2611 0.948858
\(952\) −25.8238 + 14.9094i −0.836955 + 0.483216i
\(953\) 36.6484 21.1589i 1.18716 0.685405i 0.229498 0.973309i \(-0.426292\pi\)
0.957659 + 0.287904i \(0.0929583\pi\)
\(954\) −3.02527 + 5.23991i −0.0979466 + 0.169648i
\(955\) 0 0
\(956\) −5.39350 + 9.34181i −0.174438 + 0.302136i
\(957\) 17.4751i 0.564890i
\(958\) 65.3552i 2.11153i
\(959\) −21.1263 + 36.5918i −0.682203 + 1.18161i
\(960\) 0 0
\(961\) −3.23623 −0.104395
\(962\) 7.68304i 0.247711i
\(963\) 25.6805 + 14.8266i 0.827542 + 0.477781i
\(964\) 5.86730 + 10.1625i 0.188973 + 0.327311i
\(965\) 0 0
\(966\) −2.20966 3.82724i −0.0710945 0.123139i
\(967\) 11.8614 6.84820i 0.381438 0.220223i −0.297006 0.954876i \(-0.595988\pi\)
0.678444 + 0.734652i \(0.262655\pi\)
\(968\) 45.2567i 1.45460i
\(969\) −25.6642 16.0146i −0.824454 0.514463i
\(970\) 0 0
\(971\) 19.2906 + 33.4123i 0.619065 + 1.07225i 0.989657 + 0.143457i \(0.0458217\pi\)
−0.370591 + 0.928796i \(0.620845\pi\)
\(972\) 9.80665 5.66187i 0.314548 0.181605i
\(973\) −14.1415 8.16461i −0.453356 0.261745i
\(974\) −26.2951 45.5445i −0.842549 1.45934i
\(975\) 0 0
\(976\) 52.0899 1.66736
\(977\) 17.4592i 0.558568i 0.960209 + 0.279284i \(0.0900971\pi\)
−0.960209 + 0.279284i \(0.909903\pi\)
\(978\) −0.514858 0.297253i −0.0164633 0.00950512i
\(979\) 31.9796 55.3903i 1.02207 1.77028i
\(980\) 0 0
\(981\) −9.30869 −0.297204
\(982\) 15.9488 + 9.20805i 0.508947 + 0.293841i
\(983\) 38.0325 21.9581i 1.21305 0.700353i 0.249625 0.968342i \(-0.419692\pi\)
0.963422 + 0.267989i \(0.0863592\pi\)
\(984\) 7.49348 12.9791i 0.238883 0.413758i
\(985\) 0 0
\(986\) −13.0403 22.5864i −0.415287 0.719298i
\(987\) 25.2898i 0.804984i
\(988\) 2.51854 + 4.72958i 0.0801254 + 0.150468i
\(989\) 4.26707 0.135685
\(990\) 0 0
\(991\) −23.1731 40.1370i −0.736118 1.27499i −0.954231 0.299071i \(-0.903323\pi\)
0.218112 0.975924i \(-0.430010\pi\)
\(992\) −18.9044 10.9145i −0.600216 0.346535i
\(993\) 20.2948 11.7172i 0.644035 0.371834i
\(994\) 17.9045 31.0114i 0.567895 0.983623i
\(995\) 0 0
\(996\) −2.78300 −0.0881827
\(997\) 10.1647 + 5.86857i 0.321918 + 0.185859i 0.652247 0.758006i \(-0.273826\pi\)
−0.330329 + 0.943866i \(0.607160\pi\)
\(998\) −29.3692 16.9563i −0.929667 0.536744i
\(999\) 15.6227 0.494281
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.j.c.349.7 16
5.2 odd 4 95.2.e.c.26.4 yes 8
5.3 odd 4 475.2.e.e.26.1 8
5.4 even 2 inner 475.2.j.c.349.2 16
15.2 even 4 855.2.k.h.406.1 8
19.11 even 3 inner 475.2.j.c.49.2 16
20.7 even 4 1520.2.q.o.881.1 8
95.7 odd 12 1805.2.a.o.1.1 4
95.12 even 12 1805.2.a.i.1.4 4
95.49 even 6 inner 475.2.j.c.49.7 16
95.68 odd 12 475.2.e.e.201.1 8
95.83 odd 12 9025.2.a.bg.1.4 4
95.87 odd 12 95.2.e.c.11.4 8
95.88 even 12 9025.2.a.bp.1.1 4
285.182 even 12 855.2.k.h.676.1 8
380.87 even 12 1520.2.q.o.961.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.4 8 95.87 odd 12
95.2.e.c.26.4 yes 8 5.2 odd 4
475.2.e.e.26.1 8 5.3 odd 4
475.2.e.e.201.1 8 95.68 odd 12
475.2.j.c.49.2 16 19.11 even 3 inner
475.2.j.c.49.7 16 95.49 even 6 inner
475.2.j.c.349.2 16 5.4 even 2 inner
475.2.j.c.349.7 16 1.1 even 1 trivial
855.2.k.h.406.1 8 15.2 even 4
855.2.k.h.676.1 8 285.182 even 12
1520.2.q.o.881.1 8 20.7 even 4
1520.2.q.o.961.1 8 380.87 even 12
1805.2.a.i.1.4 4 95.12 even 12
1805.2.a.o.1.1 4 95.7 odd 12
9025.2.a.bg.1.4 4 95.83 odd 12
9025.2.a.bp.1.1 4 95.88 even 12