Properties

Label 1805.2.b.m.1084.9
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1084,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1084");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.9
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.m.1084.32

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.74138i q^{2} -0.766290i q^{3} -1.03240 q^{4} +(2.19703 - 0.415991i) q^{5} -1.33440 q^{6} +2.32579i q^{7} -1.68496i q^{8} +2.41280 q^{9} +(-0.724398 - 3.82586i) q^{10} -4.04273 q^{11} +0.791116i q^{12} -3.88017i q^{13} +4.05007 q^{14} +(-0.318770 - 1.68356i) q^{15} -4.99895 q^{16} +4.16444i q^{17} -4.20160i q^{18} +(-2.26821 + 0.429468i) q^{20} +1.78223 q^{21} +7.03992i q^{22} -7.90748i q^{23} -1.29117 q^{24} +(4.65390 - 1.82789i) q^{25} -6.75684 q^{26} -4.14777i q^{27} -2.40113i q^{28} -7.12927 q^{29} +(-2.93172 + 0.555099i) q^{30} +2.72162 q^{31} +5.33514i q^{32} +3.09790i q^{33} +7.25187 q^{34} +(0.967506 + 5.10983i) q^{35} -2.49097 q^{36} -3.70141i q^{37} -2.97334 q^{39} +(-0.700929 - 3.70192i) q^{40} +3.50888 q^{41} -3.10353i q^{42} -9.37966i q^{43} +4.17370 q^{44} +(5.30100 - 1.00370i) q^{45} -13.7699 q^{46} -0.333679i q^{47} +3.83065i q^{48} +1.59072 q^{49} +(-3.18305 - 8.10420i) q^{50} +3.19117 q^{51} +4.00588i q^{52} -6.90990i q^{53} -7.22284 q^{54} +(-8.88201 + 1.68174i) q^{55} +3.91886 q^{56} +12.4148i q^{58} +7.15190 q^{59} +(0.329097 + 1.73811i) q^{60} -1.35027 q^{61} -4.73938i q^{62} +5.61165i q^{63} -0.707410 q^{64} +(-1.61412 - 8.52486i) q^{65} +5.39462 q^{66} -7.79425i q^{67} -4.29936i q^{68} -6.05942 q^{69} +(8.89814 - 1.68479i) q^{70} +0.0586372 q^{71} -4.06548i q^{72} -9.15027i q^{73} -6.44556 q^{74} +(-1.40070 - 3.56624i) q^{75} -9.40252i q^{77} +5.17770i q^{78} -11.6317 q^{79} +(-10.9829 + 2.07952i) q^{80} +4.06000 q^{81} -6.11029i q^{82} +11.5689i q^{83} -1.83997 q^{84} +(1.73237 + 9.14942i) q^{85} -16.3335 q^{86} +5.46309i q^{87} +6.81185i q^{88} +17.4767 q^{89} +(-1.74783 - 9.23104i) q^{90} +9.02444 q^{91} +8.16366i q^{92} -2.08555i q^{93} -0.581061 q^{94} +4.08826 q^{96} -3.84357i q^{97} -2.77005i q^{98} -9.75430 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 48 q^{4} + 6 q^{5} + 20 q^{6} - 52 q^{9} + 20 q^{11} + 40 q^{16} - 18 q^{20} - 92 q^{24} - 26 q^{25} + 76 q^{26} + 40 q^{30} + 4 q^{35} + 156 q^{36} - 80 q^{39} - 48 q^{44} - 22 q^{45} - 72 q^{49}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74138i 1.23134i −0.788004 0.615670i \(-0.788885\pi\)
0.788004 0.615670i \(-0.211115\pi\)
\(3\) 0.766290i 0.442418i −0.975226 0.221209i \(-0.929000\pi\)
0.975226 0.221209i \(-0.0710003\pi\)
\(4\) −1.03240 −0.516199
\(5\) 2.19703 0.415991i 0.982543 0.186037i
\(6\) −1.33440 −0.544767
\(7\) 2.32579i 0.879064i 0.898227 + 0.439532i \(0.144856\pi\)
−0.898227 + 0.439532i \(0.855144\pi\)
\(8\) 1.68496i 0.595724i
\(9\) 2.41280 0.804266
\(10\) −0.724398 3.82586i −0.229075 1.20984i
\(11\) −4.04273 −1.21893 −0.609464 0.792813i \(-0.708615\pi\)
−0.609464 + 0.792813i \(0.708615\pi\)
\(12\) 0.791116i 0.228375i
\(13\) 3.88017i 1.07617i −0.842892 0.538083i \(-0.819149\pi\)
0.842892 0.538083i \(-0.180851\pi\)
\(14\) 4.05007 1.08243
\(15\) −0.318770 1.68356i −0.0823060 0.434694i
\(16\) −4.99895 −1.24974
\(17\) 4.16444i 1.01003i 0.863112 + 0.505013i \(0.168512\pi\)
−0.863112 + 0.505013i \(0.831488\pi\)
\(18\) 4.20160i 0.990326i
\(19\) 0 0
\(20\) −2.26821 + 0.429468i −0.507187 + 0.0960320i
\(21\) 1.78223 0.388914
\(22\) 7.03992i 1.50092i
\(23\) 7.90748i 1.64882i −0.565991 0.824412i \(-0.691506\pi\)
0.565991 0.824412i \(-0.308494\pi\)
\(24\) −1.29117 −0.263559
\(25\) 4.65390 1.82789i 0.930781 0.365578i
\(26\) −6.75684 −1.32513
\(27\) 4.14777i 0.798240i
\(28\) 2.40113i 0.453772i
\(29\) −7.12927 −1.32387 −0.661936 0.749560i \(-0.730265\pi\)
−0.661936 + 0.749560i \(0.730265\pi\)
\(30\) −2.93172 + 0.555099i −0.535257 + 0.101347i
\(31\) 2.72162 0.488818 0.244409 0.969672i \(-0.421406\pi\)
0.244409 + 0.969672i \(0.421406\pi\)
\(32\) 5.33514i 0.943128i
\(33\) 3.09790i 0.539276i
\(34\) 7.25187 1.24369
\(35\) 0.967506 + 5.10983i 0.163538 + 0.863718i
\(36\) −2.49097 −0.415161
\(37\) 3.70141i 0.608509i −0.952591 0.304254i \(-0.901593\pi\)
0.952591 0.304254i \(-0.0984073\pi\)
\(38\) 0 0
\(39\) −2.97334 −0.476115
\(40\) −0.700929 3.70192i −0.110827 0.585324i
\(41\) 3.50888 0.547995 0.273998 0.961730i \(-0.411654\pi\)
0.273998 + 0.961730i \(0.411654\pi\)
\(42\) 3.10353i 0.478885i
\(43\) 9.37966i 1.43038i −0.698928 0.715192i \(-0.746339\pi\)
0.698928 0.715192i \(-0.253661\pi\)
\(44\) 4.17370 0.629209
\(45\) 5.30100 1.00370i 0.790226 0.149623i
\(46\) −13.7699 −2.03026
\(47\) 0.333679i 0.0486721i −0.999704 0.0243360i \(-0.992253\pi\)
0.999704 0.0243360i \(-0.00774717\pi\)
\(48\) 3.83065i 0.552906i
\(49\) 1.59072 0.227246
\(50\) −3.18305 8.10420i −0.450151 1.14611i
\(51\) 3.19117 0.446853
\(52\) 4.00588i 0.555515i
\(53\) 6.90990i 0.949147i −0.880216 0.474574i \(-0.842602\pi\)
0.880216 0.474574i \(-0.157398\pi\)
\(54\) −7.22284 −0.982905
\(55\) −8.88201 + 1.68174i −1.19765 + 0.226766i
\(56\) 3.91886 0.523680
\(57\) 0 0
\(58\) 12.4148i 1.63014i
\(59\) 7.15190 0.931098 0.465549 0.885022i \(-0.345857\pi\)
0.465549 + 0.885022i \(0.345857\pi\)
\(60\) 0.329097 + 1.73811i 0.0424863 + 0.224389i
\(61\) −1.35027 −0.172885 −0.0864424 0.996257i \(-0.527550\pi\)
−0.0864424 + 0.996257i \(0.527550\pi\)
\(62\) 4.73938i 0.601901i
\(63\) 5.61165i 0.707002i
\(64\) −0.707410 −0.0884263
\(65\) −1.61412 8.52486i −0.200206 1.05738i
\(66\) 5.39462 0.664032
\(67\) 7.79425i 0.952220i −0.879386 0.476110i \(-0.842046\pi\)
0.879386 0.476110i \(-0.157954\pi\)
\(68\) 4.29936i 0.521374i
\(69\) −6.05942 −0.729469
\(70\) 8.89814 1.68479i 1.06353 0.201371i
\(71\) 0.0586372 0.00695895 0.00347947 0.999994i \(-0.498892\pi\)
0.00347947 + 0.999994i \(0.498892\pi\)
\(72\) 4.06548i 0.479121i
\(73\) 9.15027i 1.07096i −0.844548 0.535479i \(-0.820131\pi\)
0.844548 0.535479i \(-0.179869\pi\)
\(74\) −6.44556 −0.749281
\(75\) −1.40070 3.56624i −0.161738 0.411794i
\(76\) 0 0
\(77\) 9.40252i 1.07152i
\(78\) 5.17770i 0.586259i
\(79\) −11.6317 −1.30867 −0.654337 0.756203i \(-0.727052\pi\)
−0.654337 + 0.756203i \(0.727052\pi\)
\(80\) −10.9829 + 2.07952i −1.22792 + 0.232497i
\(81\) 4.06000 0.451111
\(82\) 6.11029i 0.674768i
\(83\) 11.5689i 1.26985i 0.772573 + 0.634927i \(0.218970\pi\)
−0.772573 + 0.634927i \(0.781030\pi\)
\(84\) −1.83997 −0.200757
\(85\) 1.73237 + 9.14942i 0.187902 + 0.992393i
\(86\) −16.3335 −1.76129
\(87\) 5.46309i 0.585705i
\(88\) 6.81185i 0.726145i
\(89\) 17.4767 1.85253 0.926264 0.376874i \(-0.123001\pi\)
0.926264 + 0.376874i \(0.123001\pi\)
\(90\) −1.74783 9.23104i −0.184237 0.973037i
\(91\) 9.02444 0.946019
\(92\) 8.16366i 0.851120i
\(93\) 2.08555i 0.216262i
\(94\) −0.581061 −0.0599319
\(95\) 0 0
\(96\) 4.08826 0.417257
\(97\) 3.84357i 0.390256i −0.980778 0.195128i \(-0.937488\pi\)
0.980778 0.195128i \(-0.0625122\pi\)
\(98\) 2.77005i 0.279817i
\(99\) −9.75430 −0.980344
\(100\) −4.80468 + 1.88711i −0.480468 + 0.188711i
\(101\) 9.32583 0.927955 0.463977 0.885847i \(-0.346422\pi\)
0.463977 + 0.885847i \(0.346422\pi\)
\(102\) 5.55704i 0.550228i
\(103\) 2.54848i 0.251109i 0.992087 + 0.125555i \(0.0400710\pi\)
−0.992087 + 0.125555i \(0.959929\pi\)
\(104\) −6.53794 −0.641098
\(105\) 3.91561 0.741390i 0.382124 0.0723523i
\(106\) −12.0327 −1.16872
\(107\) 4.38721i 0.424128i 0.977256 + 0.212064i \(0.0680185\pi\)
−0.977256 + 0.212064i \(0.931982\pi\)
\(108\) 4.28215i 0.412050i
\(109\) 4.92361 0.471596 0.235798 0.971802i \(-0.424230\pi\)
0.235798 + 0.971802i \(0.424230\pi\)
\(110\) 2.92854 + 15.4669i 0.279226 + 1.47471i
\(111\) −2.83636 −0.269215
\(112\) 11.6265i 1.09860i
\(113\) 17.6256i 1.65808i 0.559189 + 0.829040i \(0.311113\pi\)
−0.559189 + 0.829040i \(0.688887\pi\)
\(114\) 0 0
\(115\) −3.28944 17.3730i −0.306742 1.62004i
\(116\) 7.36024 0.683381
\(117\) 9.36207i 0.865524i
\(118\) 12.4542i 1.14650i
\(119\) −9.68560 −0.887877
\(120\) −2.83674 + 0.537115i −0.258958 + 0.0490317i
\(121\) 5.34366 0.485788
\(122\) 2.35134i 0.212880i
\(123\) 2.68882i 0.242443i
\(124\) −2.80980 −0.252327
\(125\) 9.46439 5.95192i 0.846521 0.532356i
\(126\) 9.77201 0.870560
\(127\) 0.634620i 0.0563134i 0.999604 + 0.0281567i \(0.00896374\pi\)
−0.999604 + 0.0281567i \(0.991036\pi\)
\(128\) 11.9021i 1.05201i
\(129\) −7.18754 −0.632828
\(130\) −14.8450 + 2.81079i −1.30199 + 0.246522i
\(131\) 2.08649 0.182297 0.0911487 0.995837i \(-0.470946\pi\)
0.0911487 + 0.995837i \(0.470946\pi\)
\(132\) 3.19827i 0.278373i
\(133\) 0 0
\(134\) −13.5727 −1.17251
\(135\) −1.72544 9.11280i −0.148502 0.784305i
\(136\) 7.01693 0.601697
\(137\) 21.6457i 1.84931i 0.380802 + 0.924657i \(0.375648\pi\)
−0.380802 + 0.924657i \(0.624352\pi\)
\(138\) 10.5517i 0.898224i
\(139\) 4.11480 0.349013 0.174506 0.984656i \(-0.444167\pi\)
0.174506 + 0.984656i \(0.444167\pi\)
\(140\) −0.998851 5.27537i −0.0844183 0.445850i
\(141\) −0.255695 −0.0215334
\(142\) 0.102109i 0.00856883i
\(143\) 15.6865i 1.31177i
\(144\) −12.0615 −1.00512
\(145\) −15.6632 + 2.96571i −1.30076 + 0.246289i
\(146\) −15.9341 −1.31871
\(147\) 1.21895i 0.100538i
\(148\) 3.82133i 0.314111i
\(149\) 3.80062 0.311359 0.155679 0.987808i \(-0.450243\pi\)
0.155679 + 0.987808i \(0.450243\pi\)
\(150\) −6.21017 + 2.43914i −0.507058 + 0.199155i
\(151\) −22.5773 −1.83731 −0.918656 0.395058i \(-0.870725\pi\)
−0.918656 + 0.395058i \(0.870725\pi\)
\(152\) 0 0
\(153\) 10.0480i 0.812330i
\(154\) −16.3733 −1.31940
\(155\) 5.97950 1.13217i 0.480285 0.0909382i
\(156\) 3.06966 0.245770
\(157\) 20.7361i 1.65492i 0.561523 + 0.827461i \(0.310216\pi\)
−0.561523 + 0.827461i \(0.689784\pi\)
\(158\) 20.2553i 1.61142i
\(159\) −5.29499 −0.419920
\(160\) 2.21937 + 11.7215i 0.175457 + 0.926664i
\(161\) 18.3911 1.44942
\(162\) 7.06999i 0.555471i
\(163\) 6.63865i 0.519979i 0.965611 + 0.259990i \(0.0837191\pi\)
−0.965611 + 0.259990i \(0.916281\pi\)
\(164\) −3.62256 −0.282874
\(165\) 1.28870 + 6.80620i 0.100325 + 0.529862i
\(166\) 20.1458 1.56362
\(167\) 16.1480i 1.24957i 0.780798 + 0.624784i \(0.214813\pi\)
−0.780798 + 0.624784i \(0.785187\pi\)
\(168\) 3.00298i 0.231685i
\(169\) −2.05571 −0.158132
\(170\) 15.9326 3.01671i 1.22197 0.231371i
\(171\) 0 0
\(172\) 9.68353i 0.738362i
\(173\) 26.1105i 1.98514i 0.121666 + 0.992571i \(0.461176\pi\)
−0.121666 + 0.992571i \(0.538824\pi\)
\(174\) 9.51330 0.721202
\(175\) 4.25128 + 10.8240i 0.321367 + 0.818216i
\(176\) 20.2094 1.52334
\(177\) 5.48043i 0.411934i
\(178\) 30.4336i 2.28109i
\(179\) −12.4803 −0.932824 −0.466412 0.884568i \(-0.654453\pi\)
−0.466412 + 0.884568i \(0.654453\pi\)
\(180\) −5.47274 + 1.03622i −0.407914 + 0.0772353i
\(181\) 2.22650 0.165495 0.0827473 0.996571i \(-0.473631\pi\)
0.0827473 + 0.996571i \(0.473631\pi\)
\(182\) 15.7150i 1.16487i
\(183\) 1.03470i 0.0764873i
\(184\) −13.3238 −0.982244
\(185\) −1.53976 8.13213i −0.113205 0.597886i
\(186\) −3.63174 −0.266292
\(187\) 16.8357i 1.23115i
\(188\) 0.344489i 0.0251245i
\(189\) 9.64683 0.701704
\(190\) 0 0
\(191\) 11.0417 0.798946 0.399473 0.916745i \(-0.369193\pi\)
0.399473 + 0.916745i \(0.369193\pi\)
\(192\) 0.542082i 0.0391214i
\(193\) 5.53517i 0.398430i −0.979956 0.199215i \(-0.936161\pi\)
0.979956 0.199215i \(-0.0638392\pi\)
\(194\) −6.69312 −0.480538
\(195\) −6.53251 + 1.23688i −0.467803 + 0.0885749i
\(196\) −1.64226 −0.117304
\(197\) 13.5611i 0.966188i 0.875569 + 0.483094i \(0.160487\pi\)
−0.875569 + 0.483094i \(0.839513\pi\)
\(198\) 16.9859i 1.20714i
\(199\) −12.0521 −0.854348 −0.427174 0.904169i \(-0.640491\pi\)
−0.427174 + 0.904169i \(0.640491\pi\)
\(200\) −3.07993 7.84165i −0.217784 0.554488i
\(201\) −5.97266 −0.421279
\(202\) 16.2398i 1.14263i
\(203\) 16.5811i 1.16377i
\(204\) −3.29456 −0.230665
\(205\) 7.70912 1.45966i 0.538429 0.101947i
\(206\) 4.43787 0.309201
\(207\) 19.0792i 1.32609i
\(208\) 19.3968i 1.34492i
\(209\) 0 0
\(210\) −1.29104 6.81856i −0.0890903 0.470525i
\(211\) 19.5049 1.34277 0.671386 0.741108i \(-0.265699\pi\)
0.671386 + 0.741108i \(0.265699\pi\)
\(212\) 7.13376i 0.489948i
\(213\) 0.0449331i 0.00307876i
\(214\) 7.63979 0.522245
\(215\) −3.90185 20.6074i −0.266104 1.40541i
\(216\) −6.98884 −0.475531
\(217\) 6.32991i 0.429703i
\(218\) 8.57386i 0.580695i
\(219\) −7.01176 −0.473811
\(220\) 9.16976 1.73622i 0.618225 0.117056i
\(221\) 16.1587 1.08695
\(222\) 4.93917i 0.331495i
\(223\) 0.0751415i 0.00503184i 0.999997 + 0.00251592i \(0.000800844\pi\)
−0.999997 + 0.00251592i \(0.999199\pi\)
\(224\) −12.4084 −0.829070
\(225\) 11.2289 4.41034i 0.748596 0.294022i
\(226\) 30.6929 2.04166
\(227\) 22.4805i 1.49208i 0.665900 + 0.746041i \(0.268048\pi\)
−0.665900 + 0.746041i \(0.731952\pi\)
\(228\) 0 0
\(229\) 4.66105 0.308011 0.154006 0.988070i \(-0.450783\pi\)
0.154006 + 0.988070i \(0.450783\pi\)
\(230\) −30.2529 + 5.72816i −1.99482 + 0.377704i
\(231\) −7.20506 −0.474058
\(232\) 12.0125i 0.788663i
\(233\) 3.67529i 0.240776i −0.992727 0.120388i \(-0.961586\pi\)
0.992727 0.120388i \(-0.0384139\pi\)
\(234\) −16.3029 −1.06575
\(235\) −0.138808 0.733104i −0.00905480 0.0478224i
\(236\) −7.38360 −0.480631
\(237\) 8.91329i 0.578981i
\(238\) 16.8663i 1.09328i
\(239\) 8.22852 0.532259 0.266129 0.963937i \(-0.414255\pi\)
0.266129 + 0.963937i \(0.414255\pi\)
\(240\) 1.59351 + 8.41605i 0.102861 + 0.543254i
\(241\) −2.83862 −0.182852 −0.0914259 0.995812i \(-0.529142\pi\)
−0.0914259 + 0.995812i \(0.529142\pi\)
\(242\) 9.30534i 0.598170i
\(243\) 15.5545i 0.997819i
\(244\) 1.39402 0.0892429
\(245\) 3.49487 0.661726i 0.223279 0.0422761i
\(246\) −4.68225 −0.298530
\(247\) 0 0
\(248\) 4.58583i 0.291201i
\(249\) 8.86514 0.561806
\(250\) −10.3645 16.4811i −0.655511 1.04235i
\(251\) 27.4254 1.73108 0.865539 0.500842i \(-0.166976\pi\)
0.865539 + 0.500842i \(0.166976\pi\)
\(252\) 5.79346i 0.364953i
\(253\) 31.9678i 2.00980i
\(254\) 1.10511 0.0693410
\(255\) 7.01111 1.32750i 0.439053 0.0831312i
\(256\) 19.3113 1.20696
\(257\) 11.1290i 0.694210i 0.937826 + 0.347105i \(0.112835\pi\)
−0.937826 + 0.347105i \(0.887165\pi\)
\(258\) 12.5162i 0.779226i
\(259\) 8.60869 0.534918
\(260\) 1.66641 + 8.80104i 0.103346 + 0.545817i
\(261\) −17.2015 −1.06475
\(262\) 3.63337i 0.224470i
\(263\) 20.3716i 1.25617i −0.778146 0.628084i \(-0.783839\pi\)
0.778146 0.628084i \(-0.216161\pi\)
\(264\) 5.21985 0.321260
\(265\) −2.87446 15.1813i −0.176576 0.932578i
\(266\) 0 0
\(267\) 13.3922i 0.819592i
\(268\) 8.04677i 0.491534i
\(269\) 4.31804 0.263275 0.131638 0.991298i \(-0.457976\pi\)
0.131638 + 0.991298i \(0.457976\pi\)
\(270\) −15.8688 + 3.00464i −0.965746 + 0.182857i
\(271\) −28.0845 −1.70601 −0.853007 0.521899i \(-0.825224\pi\)
−0.853007 + 0.521899i \(0.825224\pi\)
\(272\) 20.8178i 1.26227i
\(273\) 6.91534i 0.418535i
\(274\) 37.6933 2.27713
\(275\) −18.8145 + 7.38967i −1.13456 + 0.445614i
\(276\) 6.25573 0.376551
\(277\) 0.807334i 0.0485080i −0.999706 0.0242540i \(-0.992279\pi\)
0.999706 0.0242540i \(-0.00772104\pi\)
\(278\) 7.16542i 0.429753i
\(279\) 6.56673 0.393140
\(280\) 8.60986 1.63021i 0.514538 0.0974238i
\(281\) −23.8805 −1.42459 −0.712296 0.701879i \(-0.752345\pi\)
−0.712296 + 0.701879i \(0.752345\pi\)
\(282\) 0.445262i 0.0265149i
\(283\) 1.68201i 0.0999850i 0.998750 + 0.0499925i \(0.0159197\pi\)
−0.998750 + 0.0499925i \(0.984080\pi\)
\(284\) −0.0605368 −0.00359220
\(285\) 0 0
\(286\) 27.3161 1.61523
\(287\) 8.16090i 0.481723i
\(288\) 12.8726i 0.758526i
\(289\) −0.342582 −0.0201519
\(290\) 5.16443 + 27.2756i 0.303266 + 1.60168i
\(291\) −2.94529 −0.172656
\(292\) 9.44671i 0.552827i
\(293\) 19.3023i 1.12765i −0.825894 0.563825i \(-0.809329\pi\)
0.825894 0.563825i \(-0.190671\pi\)
\(294\) −2.12266 −0.123796
\(295\) 15.7129 2.97513i 0.914843 0.173219i
\(296\) −6.23674 −0.362503
\(297\) 16.7683i 0.972997i
\(298\) 6.61831i 0.383388i
\(299\) −30.6824 −1.77441
\(300\) 1.44607 + 3.68178i 0.0834891 + 0.212567i
\(301\) 21.8151 1.25740
\(302\) 39.3156i 2.26236i
\(303\) 7.14629i 0.410544i
\(304\) 0 0
\(305\) −2.96659 + 0.561702i −0.169867 + 0.0321630i
\(306\) 17.4973 1.00025
\(307\) 12.3938i 0.707354i −0.935368 0.353677i \(-0.884931\pi\)
0.935368 0.353677i \(-0.115069\pi\)
\(308\) 9.70714i 0.553115i
\(309\) 1.95288 0.111095
\(310\) −1.97154 10.4126i −0.111976 0.591394i
\(311\) −0.571645 −0.0324150 −0.0162075 0.999869i \(-0.505159\pi\)
−0.0162075 + 0.999869i \(0.505159\pi\)
\(312\) 5.00996i 0.283633i
\(313\) 12.9902i 0.734252i −0.930171 0.367126i \(-0.880342\pi\)
0.930171 0.367126i \(-0.119658\pi\)
\(314\) 36.1094 2.03777
\(315\) 2.33440 + 12.3290i 0.131528 + 0.694660i
\(316\) 12.0086 0.675536
\(317\) 0.179990i 0.0101092i −0.999987 0.00505462i \(-0.998391\pi\)
0.999987 0.00505462i \(-0.00160894\pi\)
\(318\) 9.22057i 0.517064i
\(319\) 28.8217 1.61371
\(320\) −1.55420 + 0.294276i −0.0868826 + 0.0164506i
\(321\) 3.36188 0.187642
\(322\) 32.0259i 1.78473i
\(323\) 0 0
\(324\) −4.19153 −0.232863
\(325\) −7.09253 18.0579i −0.393423 1.00167i
\(326\) 11.5604 0.640271
\(327\) 3.77291i 0.208643i
\(328\) 5.91233i 0.326454i
\(329\) 0.776066 0.0427859
\(330\) 11.8522 2.24411i 0.652440 0.123534i
\(331\) −20.7379 −1.13986 −0.569928 0.821695i \(-0.693029\pi\)
−0.569928 + 0.821695i \(0.693029\pi\)
\(332\) 11.9437i 0.655496i
\(333\) 8.93077i 0.489403i
\(334\) 28.1197 1.53864
\(335\) −3.24234 17.1242i −0.177148 0.935597i
\(336\) −8.90926 −0.486040
\(337\) 24.5019i 1.33470i −0.744743 0.667352i \(-0.767428\pi\)
0.744743 0.667352i \(-0.232572\pi\)
\(338\) 3.57978i 0.194714i
\(339\) 13.5064 0.733564
\(340\) −1.78850 9.44583i −0.0969948 0.512272i
\(341\) −11.0028 −0.595835
\(342\) 0 0
\(343\) 19.9802i 1.07883i
\(344\) −15.8044 −0.852115
\(345\) −13.3128 + 2.52067i −0.716734 + 0.135708i
\(346\) 45.4682 2.44439
\(347\) 8.41377i 0.451675i −0.974165 0.225837i \(-0.927488\pi\)
0.974165 0.225837i \(-0.0725118\pi\)
\(348\) 5.64008i 0.302340i
\(349\) 27.3303 1.46296 0.731479 0.681864i \(-0.238830\pi\)
0.731479 + 0.681864i \(0.238830\pi\)
\(350\) 18.8486 7.40309i 1.00750 0.395712i
\(351\) −16.0941 −0.859038
\(352\) 21.5685i 1.14961i
\(353\) 9.68021i 0.515226i 0.966248 + 0.257613i \(0.0829359\pi\)
−0.966248 + 0.257613i \(0.917064\pi\)
\(354\) −9.54350 −0.507231
\(355\) 0.128828 0.0243925i 0.00683747 0.00129462i
\(356\) −18.0429 −0.956273
\(357\) 7.42198i 0.392813i
\(358\) 21.7330i 1.14862i
\(359\) −26.8328 −1.41618 −0.708092 0.706121i \(-0.750444\pi\)
−0.708092 + 0.706121i \(0.750444\pi\)
\(360\) −1.69120 8.93198i −0.0891342 0.470757i
\(361\) 0 0
\(362\) 3.87718i 0.203780i
\(363\) 4.09480i 0.214921i
\(364\) −9.31681 −0.488333
\(365\) −3.80643 20.1034i −0.199238 1.05226i
\(366\) 1.80181 0.0941819
\(367\) 20.5444i 1.07241i 0.844089 + 0.536204i \(0.180142\pi\)
−0.844089 + 0.536204i \(0.819858\pi\)
\(368\) 39.5291i 2.06060i
\(369\) 8.46622 0.440734
\(370\) −14.1611 + 2.68130i −0.736201 + 0.139394i
\(371\) 16.0709 0.834361
\(372\) 2.15312i 0.111634i
\(373\) 0.337866i 0.0174940i 0.999962 + 0.00874702i \(0.00278430\pi\)
−0.999962 + 0.00874702i \(0.997216\pi\)
\(374\) −29.3173 −1.51596
\(375\) −4.56090 7.25247i −0.235524 0.374516i
\(376\) −0.562237 −0.0289951
\(377\) 27.6628i 1.42471i
\(378\) 16.7988i 0.864036i
\(379\) 6.76387 0.347437 0.173718 0.984795i \(-0.444422\pi\)
0.173718 + 0.984795i \(0.444422\pi\)
\(380\) 0 0
\(381\) 0.486303 0.0249141
\(382\) 19.2277i 0.983774i
\(383\) 19.0257i 0.972166i 0.873913 + 0.486083i \(0.161575\pi\)
−0.873913 + 0.486083i \(0.838425\pi\)
\(384\) 9.12050 0.465428
\(385\) −3.91137 20.6576i −0.199342 1.05281i
\(386\) −9.63882 −0.490603
\(387\) 22.6312i 1.15041i
\(388\) 3.96810i 0.201450i
\(389\) 9.47260 0.480280 0.240140 0.970738i \(-0.422807\pi\)
0.240140 + 0.970738i \(0.422807\pi\)
\(390\) 2.15388 + 11.3756i 0.109066 + 0.576025i
\(391\) 32.9302 1.66535
\(392\) 2.68031i 0.135376i
\(393\) 1.59886i 0.0806517i
\(394\) 23.6150 1.18971
\(395\) −25.5553 + 4.83870i −1.28583 + 0.243462i
\(396\) 10.0703 0.506052
\(397\) 3.16382i 0.158787i 0.996843 + 0.0793937i \(0.0252984\pi\)
−0.996843 + 0.0793937i \(0.974702\pi\)
\(398\) 20.9872i 1.05199i
\(399\) 0 0
\(400\) −23.2646 + 9.13754i −1.16323 + 0.456877i
\(401\) 28.1675 1.40662 0.703309 0.710884i \(-0.251705\pi\)
0.703309 + 0.710884i \(0.251705\pi\)
\(402\) 10.4007i 0.518738i
\(403\) 10.5604i 0.526049i
\(404\) −9.62796 −0.479009
\(405\) 8.91995 1.68892i 0.443236 0.0839233i
\(406\) −28.8740 −1.43299
\(407\) 14.9638i 0.741729i
\(408\) 5.37700i 0.266201i
\(409\) 13.7523 0.680006 0.340003 0.940424i \(-0.389572\pi\)
0.340003 + 0.940424i \(0.389572\pi\)
\(410\) −2.54183 13.4245i −0.125532 0.662989i
\(411\) 16.5869 0.818169
\(412\) 2.63105i 0.129622i
\(413\) 16.6338i 0.818495i
\(414\) −33.2240 −1.63287
\(415\) 4.81256 + 25.4173i 0.236240 + 1.24768i
\(416\) 20.7012 1.01496
\(417\) 3.15313i 0.154409i
\(418\) 0 0
\(419\) 0.643795 0.0314514 0.0157257 0.999876i \(-0.494994\pi\)
0.0157257 + 0.999876i \(0.494994\pi\)
\(420\) −4.04246 + 0.765409i −0.197252 + 0.0373482i
\(421\) −17.8741 −0.871130 −0.435565 0.900157i \(-0.643451\pi\)
−0.435565 + 0.900157i \(0.643451\pi\)
\(422\) 33.9654i 1.65341i
\(423\) 0.805101i 0.0391453i
\(424\) −11.6429 −0.565430
\(425\) 7.61215 + 19.3809i 0.369244 + 0.940112i
\(426\) −0.0782455 −0.00379100
\(427\) 3.14045i 0.151977i
\(428\) 4.52934i 0.218934i
\(429\) 12.0204 0.580350
\(430\) −35.8853 + 6.79460i −1.73054 + 0.327665i
\(431\) 0.386981 0.0186402 0.00932011 0.999957i \(-0.497033\pi\)
0.00932011 + 0.999957i \(0.497033\pi\)
\(432\) 20.7345i 0.997590i
\(433\) 28.7457i 1.38143i −0.723128 0.690714i \(-0.757296\pi\)
0.723128 0.690714i \(-0.242704\pi\)
\(434\) 11.0228 0.529110
\(435\) 2.27260 + 12.0026i 0.108963 + 0.575480i
\(436\) −5.08312 −0.243437
\(437\) 0 0
\(438\) 12.2101i 0.583423i
\(439\) −27.3604 −1.30584 −0.652921 0.757426i \(-0.726456\pi\)
−0.652921 + 0.757426i \(0.726456\pi\)
\(440\) 2.83367 + 14.9658i 0.135090 + 0.713469i
\(441\) 3.83809 0.182766
\(442\) 28.1385i 1.33841i
\(443\) 24.5657i 1.16715i −0.812059 0.583576i \(-0.801653\pi\)
0.812059 0.583576i \(-0.198347\pi\)
\(444\) 2.92825 0.138968
\(445\) 38.3969 7.27016i 1.82019 0.344639i
\(446\) 0.130850 0.00619591
\(447\) 2.91237i 0.137751i
\(448\) 1.64528i 0.0777324i
\(449\) −21.2925 −1.00486 −0.502428 0.864619i \(-0.667560\pi\)
−0.502428 + 0.864619i \(0.667560\pi\)
\(450\) −7.68006 19.5538i −0.362042 0.921776i
\(451\) −14.1855 −0.667967
\(452\) 18.1967i 0.855899i
\(453\) 17.3007i 0.812860i
\(454\) 39.1470 1.83726
\(455\) 19.8270 3.75409i 0.929504 0.175994i
\(456\) 0 0
\(457\) 2.77590i 0.129851i 0.997890 + 0.0649257i \(0.0206810\pi\)
−0.997890 + 0.0649257i \(0.979319\pi\)
\(458\) 8.11665i 0.379266i
\(459\) 17.2732 0.806243
\(460\) 3.39601 + 17.9358i 0.158340 + 0.836262i
\(461\) 28.4961 1.32720 0.663599 0.748089i \(-0.269028\pi\)
0.663599 + 0.748089i \(0.269028\pi\)
\(462\) 12.5467i 0.583727i
\(463\) 5.14894i 0.239291i 0.992817 + 0.119646i \(0.0381759\pi\)
−0.992817 + 0.119646i \(0.961824\pi\)
\(464\) 35.6389 1.65449
\(465\) −0.867572 4.58203i −0.0402327 0.212487i
\(466\) −6.40006 −0.296477
\(467\) 2.47435i 0.114499i −0.998360 0.0572496i \(-0.981767\pi\)
0.998360 0.0572496i \(-0.0182331\pi\)
\(468\) 9.66537i 0.446782i
\(469\) 18.1278 0.837062
\(470\) −1.27661 + 0.241716i −0.0588857 + 0.0111495i
\(471\) 15.8899 0.732167
\(472\) 12.0507i 0.554677i
\(473\) 37.9194i 1.74354i
\(474\) 15.5214 0.712922
\(475\) 0 0
\(476\) 9.99939 0.458321
\(477\) 16.6722i 0.763367i
\(478\) 14.3290i 0.655392i
\(479\) 3.35535 0.153310 0.0766550 0.997058i \(-0.475576\pi\)
0.0766550 + 0.997058i \(0.475576\pi\)
\(480\) 8.98205 1.70068i 0.409972 0.0776251i
\(481\) −14.3621 −0.654856
\(482\) 4.94312i 0.225153i
\(483\) 14.0929i 0.641250i
\(484\) −5.51678 −0.250763
\(485\) −1.59889 8.44446i −0.0726020 0.383443i
\(486\) −27.0862 −1.22865
\(487\) 2.94178i 0.133305i −0.997776 0.0666524i \(-0.978768\pi\)
0.997776 0.0666524i \(-0.0212319\pi\)
\(488\) 2.27516i 0.102992i
\(489\) 5.08713 0.230048
\(490\) −1.15232 6.08589i −0.0520563 0.274932i
\(491\) 23.1381 1.04421 0.522105 0.852881i \(-0.325147\pi\)
0.522105 + 0.852881i \(0.325147\pi\)
\(492\) 2.77593i 0.125149i
\(493\) 29.6894i 1.33714i
\(494\) 0 0
\(495\) −21.4305 + 4.05770i −0.963230 + 0.182380i
\(496\) −13.6053 −0.610894
\(497\) 0.136377i 0.00611736i
\(498\) 15.4376i 0.691774i
\(499\) 7.90214 0.353748 0.176874 0.984233i \(-0.443401\pi\)
0.176874 + 0.984233i \(0.443401\pi\)
\(500\) −9.77101 + 6.14475i −0.436973 + 0.274801i
\(501\) 12.3740 0.552831
\(502\) 47.7580i 2.13155i
\(503\) 0.354301i 0.0157975i 0.999969 + 0.00789875i \(0.00251427\pi\)
−0.999969 + 0.00789875i \(0.997486\pi\)
\(504\) 9.45543 0.421178
\(505\) 20.4892 3.87946i 0.911755 0.172634i
\(506\) 55.6680 2.47475
\(507\) 1.57527i 0.0699604i
\(508\) 0.655180i 0.0290689i
\(509\) 1.56126 0.0692016 0.0346008 0.999401i \(-0.488984\pi\)
0.0346008 + 0.999401i \(0.488984\pi\)
\(510\) −2.31168 12.2090i −0.102363 0.540623i
\(511\) 21.2816 0.941441
\(512\) 9.82400i 0.434164i
\(513\) 0 0
\(514\) 19.3799 0.854809
\(515\) 1.06015 + 5.59910i 0.0467156 + 0.246726i
\(516\) 7.42040 0.326665
\(517\) 1.34897i 0.0593278i
\(518\) 14.9910i 0.658666i
\(519\) 20.0082 0.878262
\(520\) −14.3641 + 2.71972i −0.629906 + 0.119268i
\(521\) 20.6501 0.904695 0.452348 0.891842i \(-0.350587\pi\)
0.452348 + 0.891842i \(0.350587\pi\)
\(522\) 29.9543i 1.31106i
\(523\) 3.02628i 0.132330i 0.997809 + 0.0661650i \(0.0210764\pi\)
−0.997809 + 0.0661650i \(0.978924\pi\)
\(524\) −2.15409 −0.0941017
\(525\) 8.29431 3.25772i 0.361993 0.142178i
\(526\) −35.4747 −1.54677
\(527\) 11.3340i 0.493719i
\(528\) 15.4863i 0.673953i
\(529\) −39.5282 −1.71862
\(530\) −26.4363 + 5.00551i −1.14832 + 0.217426i
\(531\) 17.2561 0.748851
\(532\) 0 0
\(533\) 13.6151i 0.589733i
\(534\) −23.3210 −1.00920
\(535\) 1.82504 + 9.63884i 0.0789034 + 0.416724i
\(536\) −13.1330 −0.567260
\(537\) 9.56355i 0.412698i
\(538\) 7.51934i 0.324182i
\(539\) −6.43086 −0.276997
\(540\) 1.78134 + 9.40802i 0.0766565 + 0.404857i
\(541\) 5.76862 0.248013 0.124006 0.992281i \(-0.460426\pi\)
0.124006 + 0.992281i \(0.460426\pi\)
\(542\) 48.9058i 2.10068i
\(543\) 1.70615i 0.0732178i
\(544\) −22.2179 −0.952583
\(545\) 10.8173 2.04818i 0.463363 0.0877343i
\(546\) −12.0422 −0.515360
\(547\) 8.33319i 0.356301i −0.984003 0.178151i \(-0.942989\pi\)
0.984003 0.178151i \(-0.0570114\pi\)
\(548\) 22.3469i 0.954613i
\(549\) −3.25794 −0.139045
\(550\) 12.8682 + 32.7631i 0.548703 + 1.39702i
\(551\) 0 0
\(552\) 10.2099i 0.434562i
\(553\) 27.0530i 1.15041i
\(554\) −1.40587 −0.0597298
\(555\) −6.23157 + 1.17990i −0.264515 + 0.0500839i
\(556\) −4.24810 −0.180160
\(557\) 20.2069i 0.856195i −0.903733 0.428097i \(-0.859184\pi\)
0.903733 0.428097i \(-0.140816\pi\)
\(558\) 11.4352i 0.484089i
\(559\) −36.3947 −1.53933
\(560\) −4.83652 25.5438i −0.204380 1.07942i
\(561\) −12.9010 −0.544682
\(562\) 41.5850i 1.75416i
\(563\) 7.27888i 0.306768i 0.988167 + 0.153384i \(0.0490172\pi\)
−0.988167 + 0.153384i \(0.950983\pi\)
\(564\) 0.263979 0.0111155
\(565\) 7.33211 + 38.7241i 0.308464 + 1.62913i
\(566\) 2.92901 0.123116
\(567\) 9.44269i 0.396556i
\(568\) 0.0988014i 0.00414561i
\(569\) −40.7572 −1.70863 −0.854315 0.519756i \(-0.826023\pi\)
−0.854315 + 0.519756i \(0.826023\pi\)
\(570\) 0 0
\(571\) 40.5222 1.69580 0.847900 0.530156i \(-0.177867\pi\)
0.847900 + 0.530156i \(0.177867\pi\)
\(572\) 16.1947i 0.677133i
\(573\) 8.46111i 0.353468i
\(574\) 14.2112 0.593165
\(575\) −14.4540 36.8006i −0.602774 1.53469i
\(576\) −1.70684 −0.0711183
\(577\) 11.0408i 0.459634i −0.973234 0.229817i \(-0.926187\pi\)
0.973234 0.229817i \(-0.0738127\pi\)
\(578\) 0.596564i 0.0248138i
\(579\) −4.24154 −0.176273
\(580\) 16.1707 3.06179i 0.671451 0.127134i
\(581\) −26.9068 −1.11628
\(582\) 5.12887i 0.212598i
\(583\) 27.9348i 1.15694i
\(584\) −15.4179 −0.637996
\(585\) −3.89454 20.5688i −0.161019 0.850414i
\(586\) −33.6125 −1.38852
\(587\) 29.6241i 1.22272i −0.791353 0.611360i \(-0.790623\pi\)
0.791353 0.611360i \(-0.209377\pi\)
\(588\) 1.25845i 0.0518974i
\(589\) 0 0
\(590\) −5.18082 27.3622i −0.213291 1.12648i
\(591\) 10.3917 0.427459
\(592\) 18.5032i 0.760476i
\(593\) 19.3436i 0.794347i −0.917744 0.397173i \(-0.869991\pi\)
0.917744 0.397173i \(-0.130009\pi\)
\(594\) 29.2000 1.19809
\(595\) −21.2796 + 4.02912i −0.872378 + 0.165178i
\(596\) −3.92374 −0.160723
\(597\) 9.23537i 0.377979i
\(598\) 53.4296i 2.18490i
\(599\) 14.4175 0.589082 0.294541 0.955639i \(-0.404833\pi\)
0.294541 + 0.955639i \(0.404833\pi\)
\(600\) −6.00898 + 2.36012i −0.245316 + 0.0963515i
\(601\) 3.21193 0.131017 0.0655087 0.997852i \(-0.479133\pi\)
0.0655087 + 0.997852i \(0.479133\pi\)
\(602\) 37.9883i 1.54829i
\(603\) 18.8060i 0.765838i
\(604\) 23.3087 0.948418
\(605\) 11.7402 2.22292i 0.477307 0.0903744i
\(606\) −12.4444 −0.505519
\(607\) 0.236307i 0.00959142i −0.999989 0.00479571i \(-0.998473\pi\)
0.999989 0.00479571i \(-0.00152653\pi\)
\(608\) 0 0
\(609\) −12.7060 −0.514872
\(610\) 0.978135 + 5.16596i 0.0396035 + 0.209164i
\(611\) −1.29473 −0.0523792
\(612\) 10.3735i 0.419323i
\(613\) 10.3793i 0.419215i −0.977786 0.209608i \(-0.932781\pi\)
0.977786 0.209608i \(-0.0672187\pi\)
\(614\) −21.5824 −0.870993
\(615\) −1.11853 5.90743i −0.0451033 0.238210i
\(616\) −15.8429 −0.638328
\(617\) 3.39868i 0.136826i 0.997657 + 0.0684128i \(0.0217935\pi\)
−0.997657 + 0.0684128i \(0.978206\pi\)
\(618\) 3.40070i 0.136796i
\(619\) −8.50122 −0.341693 −0.170847 0.985298i \(-0.554650\pi\)
−0.170847 + 0.985298i \(0.554650\pi\)
\(620\) −6.17322 + 1.16885i −0.247922 + 0.0469422i
\(621\) −32.7984 −1.31616
\(622\) 0.995451i 0.0399139i
\(623\) 40.6471i 1.62849i
\(624\) 14.8636 0.595018
\(625\) 18.3176 17.0137i 0.732705 0.680547i
\(626\) −22.6209 −0.904114
\(627\) 0 0
\(628\) 21.4079i 0.854269i
\(629\) 15.4143 0.614609
\(630\) 21.4694 4.06507i 0.855362 0.161956i
\(631\) 26.5738 1.05789 0.528943 0.848658i \(-0.322589\pi\)
0.528943 + 0.848658i \(0.322589\pi\)
\(632\) 19.5991i 0.779609i
\(633\) 14.9464i 0.594066i
\(634\) −0.313430 −0.0124479
\(635\) 0.263996 + 1.39428i 0.0104764 + 0.0553303i
\(636\) 5.46653 0.216762
\(637\) 6.17227i 0.244554i
\(638\) 50.1895i 1.98702i
\(639\) 0.141480 0.00559685
\(640\) 4.95119 + 26.1494i 0.195713 + 1.03365i
\(641\) 31.0995 1.22836 0.614178 0.789167i \(-0.289488\pi\)
0.614178 + 0.789167i \(0.289488\pi\)
\(642\) 5.85430i 0.231051i
\(643\) 25.1196i 0.990621i 0.868716 + 0.495310i \(0.164946\pi\)
−0.868716 + 0.495310i \(0.835054\pi\)
\(644\) −18.9869 −0.748189
\(645\) −15.7913 + 2.98995i −0.621780 + 0.117729i
\(646\) 0 0
\(647\) 18.9775i 0.746082i 0.927815 + 0.373041i \(0.121685\pi\)
−0.927815 + 0.373041i \(0.878315\pi\)
\(648\) 6.84095i 0.268738i
\(649\) −28.9132 −1.13494
\(650\) −31.4457 + 12.3508i −1.23340 + 0.484437i
\(651\) 4.85055 0.190108
\(652\) 6.85372i 0.268413i
\(653\) 11.5113i 0.450473i −0.974304 0.225237i \(-0.927684\pi\)
0.974304 0.225237i \(-0.0723155\pi\)
\(654\) −6.57007 −0.256910
\(655\) 4.58409 0.867961i 0.179115 0.0339141i
\(656\) −17.5407 −0.684850
\(657\) 22.0778i 0.861336i
\(658\) 1.35142i 0.0526840i
\(659\) 2.91294 0.113472 0.0567360 0.998389i \(-0.481931\pi\)
0.0567360 + 0.998389i \(0.481931\pi\)
\(660\) −1.33045 7.02670i −0.0517877 0.273514i
\(661\) −10.8013 −0.420122 −0.210061 0.977688i \(-0.567366\pi\)
−0.210061 + 0.977688i \(0.567366\pi\)
\(662\) 36.1124i 1.40355i
\(663\) 12.3823i 0.480888i
\(664\) 19.4932 0.756482
\(665\) 0 0
\(666\) −15.5518 −0.602622
\(667\) 56.3746i 2.18283i
\(668\) 16.6711i 0.645025i
\(669\) 0.0575802 0.00222618
\(670\) −29.8198 + 5.64614i −1.15204 + 0.218129i
\(671\) 5.45879 0.210734
\(672\) 9.50842i 0.366795i
\(673\) 42.4780i 1.63741i 0.574217 + 0.818703i \(0.305307\pi\)
−0.574217 + 0.818703i \(0.694693\pi\)
\(674\) −42.6671 −1.64347
\(675\) −7.58168 19.3033i −0.291819 0.742986i
\(676\) 2.12231 0.0816275
\(677\) 28.3053i 1.08786i −0.839130 0.543931i \(-0.816935\pi\)
0.839130 0.543931i \(-0.183065\pi\)
\(678\) 23.5197i 0.903267i
\(679\) 8.93933 0.343060
\(680\) 15.4164 2.91898i 0.591193 0.111938i
\(681\) 17.2266 0.660124
\(682\) 19.1600i 0.733675i
\(683\) 34.0091i 1.30132i −0.759369 0.650660i \(-0.774492\pi\)
0.759369 0.650660i \(-0.225508\pi\)
\(684\) 0 0
\(685\) 9.00440 + 47.5562i 0.344040 + 1.81703i
\(686\) 34.7930 1.32840
\(687\) 3.57172i 0.136270i
\(688\) 46.8884i 1.78761i
\(689\) −26.8116 −1.02144
\(690\) 4.38943 + 23.1825i 0.167103 + 0.882544i
\(691\) −16.7147 −0.635859 −0.317929 0.948114i \(-0.602988\pi\)
−0.317929 + 0.948114i \(0.602988\pi\)
\(692\) 26.9564i 1.02473i
\(693\) 22.6864i 0.861785i
\(694\) −14.6515 −0.556165
\(695\) 9.04034 1.71172i 0.342920 0.0649292i
\(696\) 9.20510 0.348918
\(697\) 14.6125i 0.553489i
\(698\) 47.5924i 1.80140i
\(699\) −2.81634 −0.106524
\(700\) −4.38901 11.1746i −0.165889 0.422362i
\(701\) 15.7626 0.595346 0.297673 0.954668i \(-0.403789\pi\)
0.297673 + 0.954668i \(0.403789\pi\)
\(702\) 28.0259i 1.05777i
\(703\) 0 0
\(704\) 2.85987 0.107785
\(705\) −0.561770 + 0.106367i −0.0211575 + 0.00400601i
\(706\) 16.8569 0.634418
\(707\) 21.6899i 0.815732i
\(708\) 5.65798i 0.212640i
\(709\) 37.2598 1.39932 0.699660 0.714476i \(-0.253335\pi\)
0.699660 + 0.714476i \(0.253335\pi\)
\(710\) −0.0424766 0.224338i −0.00159412 0.00841925i
\(711\) −28.0651 −1.05252
\(712\) 29.4476i 1.10360i
\(713\) 21.5212i 0.805975i
\(714\) 12.9245 0.483686
\(715\) 6.52544 + 34.4637i 0.244037 + 1.28887i
\(716\) 12.8847 0.481522
\(717\) 6.30544i 0.235481i
\(718\) 46.7261i 1.74380i
\(719\) −27.0703 −1.00955 −0.504777 0.863250i \(-0.668425\pi\)
−0.504777 + 0.863250i \(0.668425\pi\)
\(720\) −26.4994 + 5.01746i −0.987575 + 0.186990i
\(721\) −5.92722 −0.220741
\(722\) 0 0
\(723\) 2.17521i 0.0808969i
\(724\) −2.29864 −0.0854281
\(725\) −33.1789 + 13.0315i −1.23223 + 0.483979i
\(726\) −7.13059 −0.264641
\(727\) 45.9733i 1.70506i 0.522682 + 0.852528i \(0.324932\pi\)
−0.522682 + 0.852528i \(0.675068\pi\)
\(728\) 15.2058i 0.563566i
\(729\) 0.260767 0.00965803
\(730\) −35.0077 + 6.62844i −1.29569 + 0.245329i
\(731\) 39.0610 1.44473
\(732\) 1.06822i 0.0394826i
\(733\) 4.85724i 0.179406i −0.995969 0.0897031i \(-0.971408\pi\)
0.995969 0.0897031i \(-0.0285918\pi\)
\(734\) 35.7755 1.32050
\(735\) −0.507074 2.67808i −0.0187037 0.0987826i
\(736\) 42.1875 1.55505
\(737\) 31.5101i 1.16069i
\(738\) 14.7429i 0.542694i
\(739\) −16.1356 −0.593557 −0.296778 0.954946i \(-0.595912\pi\)
−0.296778 + 0.954946i \(0.595912\pi\)
\(740\) 1.58964 + 8.39558i 0.0584363 + 0.308628i
\(741\) 0 0
\(742\) 27.9856i 1.02738i
\(743\) 2.05600i 0.0754273i −0.999289 0.0377136i \(-0.987993\pi\)
0.999289 0.0377136i \(-0.0120075\pi\)
\(744\) −3.51408 −0.128832
\(745\) 8.35008 1.58102i 0.305923 0.0579242i
\(746\) 0.588353 0.0215411
\(747\) 27.9135i 1.02130i
\(748\) 17.3811i 0.635518i
\(749\) −10.2037 −0.372835
\(750\) −12.6293 + 7.94225i −0.461156 + 0.290010i
\(751\) −13.1607 −0.480242 −0.240121 0.970743i \(-0.577187\pi\)
−0.240121 + 0.970743i \(0.577187\pi\)
\(752\) 1.66805i 0.0608273i
\(753\) 21.0158i 0.765860i
\(754\) 48.1713 1.75430
\(755\) −49.6030 + 9.39195i −1.80524 + 0.341808i
\(756\) −9.95936 −0.362219
\(757\) 51.8621i 1.88496i −0.334263 0.942480i \(-0.608487\pi\)
0.334263 0.942480i \(-0.391513\pi\)
\(758\) 11.7784i 0.427813i
\(759\) 24.4966 0.889171
\(760\) 0 0
\(761\) −32.4340 −1.17573 −0.587866 0.808958i \(-0.700032\pi\)
−0.587866 + 0.808958i \(0.700032\pi\)
\(762\) 0.846837i 0.0306777i
\(763\) 11.4513i 0.414563i
\(764\) −11.3994 −0.412415
\(765\) 4.17986 + 22.0757i 0.151123 + 0.798149i
\(766\) 33.1309 1.19707
\(767\) 27.7506i 1.00202i
\(768\) 14.7981i 0.533979i
\(769\) 52.7350 1.90167 0.950837 0.309693i \(-0.100226\pi\)
0.950837 + 0.309693i \(0.100226\pi\)
\(770\) −35.9728 + 6.81117i −1.29637 + 0.245457i
\(771\) 8.52807 0.307131
\(772\) 5.71449i 0.205669i
\(773\) 37.1753i 1.33710i 0.743666 + 0.668552i \(0.233085\pi\)
−0.743666 + 0.668552i \(0.766915\pi\)
\(774\) −39.4095 −1.41655
\(775\) 12.6662 4.97484i 0.454982 0.178701i
\(776\) −6.47628 −0.232485
\(777\) 6.59676i 0.236657i
\(778\) 16.4954i 0.591388i
\(779\) 0 0
\(780\) 6.74415 1.27695i 0.241479 0.0457222i
\(781\) −0.237054 −0.00848246
\(782\) 57.3440i 2.05062i
\(783\) 29.5706i 1.05677i
\(784\) −7.95194 −0.283998
\(785\) 8.62604 + 45.5579i 0.307877 + 1.62603i
\(786\) −2.78421 −0.0993096
\(787\) 35.6252i 1.26990i 0.772553 + 0.634950i \(0.218979\pi\)
−0.772553 + 0.634950i \(0.781021\pi\)
\(788\) 14.0004i 0.498745i
\(789\) −15.6106 −0.555751
\(790\) 8.42601 + 44.5015i 0.299784 + 1.58329i
\(791\) −40.9934 −1.45756
\(792\) 16.4356i 0.584014i
\(793\) 5.23929i 0.186053i
\(794\) 5.50940 0.195521
\(795\) −11.6333 + 2.20267i −0.412589 + 0.0781206i
\(796\) 12.4425 0.441013
\(797\) 38.2899i 1.35630i 0.734924 + 0.678150i \(0.237218\pi\)
−0.734924 + 0.678150i \(0.762782\pi\)
\(798\) 0 0
\(799\) 1.38959 0.0491601
\(800\) 9.75206 + 24.8292i 0.344787 + 0.877845i
\(801\) 42.1678 1.48993
\(802\) 49.0503i 1.73203i
\(803\) 36.9921i 1.30542i
\(804\) 6.16616 0.217464
\(805\) 40.4058 7.65054i 1.42412 0.269646i
\(806\) −18.3896 −0.647745
\(807\) 3.30887i 0.116478i
\(808\) 15.7137i 0.552805i
\(809\) −44.4492 −1.56275 −0.781375 0.624061i \(-0.785482\pi\)
−0.781375 + 0.624061i \(0.785482\pi\)
\(810\) −2.94105 15.5330i −0.103338 0.545774i
\(811\) 35.0033 1.22913 0.614566 0.788865i \(-0.289331\pi\)
0.614566 + 0.788865i \(0.289331\pi\)
\(812\) 17.1183i 0.600736i
\(813\) 21.5209i 0.754771i
\(814\) 26.0577 0.913321
\(815\) 2.76162 + 14.5853i 0.0967353 + 0.510902i
\(816\) −15.9525 −0.558449
\(817\) 0 0
\(818\) 23.9479i 0.837318i
\(819\) 21.7742 0.760851
\(820\) −7.95888 + 1.50695i −0.277936 + 0.0526250i
\(821\) −14.3150 −0.499596 −0.249798 0.968298i \(-0.580364\pi\)
−0.249798 + 0.968298i \(0.580364\pi\)
\(822\) 28.8840i 1.00744i
\(823\) 17.4214i 0.607270i −0.952788 0.303635i \(-0.901800\pi\)
0.952788 0.303635i \(-0.0982004\pi\)
\(824\) 4.29410 0.149592
\(825\) 5.66263 + 14.4173i 0.197148 + 0.501947i
\(826\) 28.9657 1.00785
\(827\) 24.7778i 0.861607i 0.902446 + 0.430803i \(0.141770\pi\)
−0.902446 + 0.430803i \(0.858230\pi\)
\(828\) 19.6973i 0.684528i
\(829\) −26.4870 −0.919931 −0.459966 0.887937i \(-0.652138\pi\)
−0.459966 + 0.887937i \(0.652138\pi\)
\(830\) 44.2611 8.38049i 1.53632 0.290891i
\(831\) −0.618652 −0.0214608
\(832\) 2.74487i 0.0951613i
\(833\) 6.62447i 0.229524i
\(834\) −5.49079 −0.190130
\(835\) 6.71741 + 35.4776i 0.232466 + 1.22775i
\(836\) 0 0
\(837\) 11.2887i 0.390194i
\(838\) 1.12109i 0.0387274i
\(839\) 31.9369 1.10259 0.551293 0.834312i \(-0.314135\pi\)
0.551293 + 0.834312i \(0.314135\pi\)
\(840\) −1.24921 6.59765i −0.0431020 0.227641i
\(841\) 21.8265 0.752637
\(842\) 31.1256i 1.07266i
\(843\) 18.2994i 0.630265i
\(844\) −20.1368 −0.693137
\(845\) −4.51647 + 0.855159i −0.155371 + 0.0294184i
\(846\) −1.40198 −0.0482012
\(847\) 12.4282i 0.427039i
\(848\) 34.5422i 1.18619i
\(849\) 1.28891 0.0442351
\(850\) 33.7495 13.2556i 1.15760 0.454664i
\(851\) −29.2689 −1.00332
\(852\) 0.0463888i 0.00158925i
\(853\) 40.4950i 1.38652i −0.720686 0.693262i \(-0.756173\pi\)
0.720686 0.693262i \(-0.243827\pi\)
\(854\) −5.46870 −0.187135
\(855\) 0 0
\(856\) 7.39228 0.252663
\(857\) 47.7479i 1.63104i 0.578732 + 0.815518i \(0.303548\pi\)
−0.578732 + 0.815518i \(0.696452\pi\)
\(858\) 20.9320i 0.714608i
\(859\) −51.3803 −1.75307 −0.876537 0.481334i \(-0.840153\pi\)
−0.876537 + 0.481334i \(0.840153\pi\)
\(860\) 4.02826 + 21.2750i 0.137363 + 0.725473i
\(861\) 6.25362 0.213123
\(862\) 0.673881i 0.0229525i
\(863\) 4.82884i 0.164376i 0.996617 + 0.0821878i \(0.0261907\pi\)
−0.996617 + 0.0821878i \(0.973809\pi\)
\(864\) 22.1289 0.752842
\(865\) 10.8617 + 57.3655i 0.369310 + 1.95049i
\(866\) −50.0570 −1.70101
\(867\) 0.262517i 0.00891555i
\(868\) 6.53499i 0.221812i
\(869\) 47.0240 1.59518
\(870\) 20.9010 3.95745i 0.708611 0.134170i
\(871\) −30.2430 −1.02475
\(872\) 8.29610i 0.280941i
\(873\) 9.27377i 0.313870i
\(874\) 0 0
\(875\) 13.8429 + 22.0121i 0.467975 + 0.744146i
\(876\) 7.23892 0.244581
\(877\) 11.8051i 0.398631i −0.979935 0.199315i \(-0.936128\pi\)
0.979935 0.199315i \(-0.0638718\pi\)
\(878\) 47.6448i 1.60793i
\(879\) −14.7911 −0.498892
\(880\) 44.4007 8.40693i 1.49675 0.283398i
\(881\) 2.35229 0.0792508 0.0396254 0.999215i \(-0.487384\pi\)
0.0396254 + 0.999215i \(0.487384\pi\)
\(882\) 6.68357i 0.225048i
\(883\) 27.9076i 0.939166i 0.882888 + 0.469583i \(0.155596\pi\)
−0.882888 + 0.469583i \(0.844404\pi\)
\(884\) −16.6822 −0.561084
\(885\) −2.27981 12.0407i −0.0766350 0.404743i
\(886\) −42.7782 −1.43716
\(887\) 7.08061i 0.237744i −0.992910 0.118872i \(-0.962072\pi\)
0.992910 0.118872i \(-0.0379277\pi\)
\(888\) 4.77915i 0.160378i
\(889\) −1.47599 −0.0495031
\(890\) −12.6601 66.8636i −0.424367 2.24127i
\(891\) −16.4135 −0.549872
\(892\) 0.0775758i 0.00259743i
\(893\) 0 0
\(894\) −5.07154 −0.169618
\(895\) −27.4197 + 5.19171i −0.916539 + 0.173540i
\(896\) −27.6818 −0.924785
\(897\) 23.5116i 0.785029i
\(898\) 37.0783i 1.23732i
\(899\) −19.4032 −0.647133
\(900\) −11.5927 + 4.55322i −0.386424 + 0.151774i
\(901\) 28.7759 0.958663
\(902\) 24.7022i 0.822495i
\(903\) 16.7167i 0.556296i
\(904\) 29.6985 0.987759
\(905\) 4.89170 0.926206i 0.162606 0.0307881i
\(906\) 30.1271 1.00091
\(907\) 21.3883i 0.710187i −0.934831 0.355094i \(-0.884449\pi\)
0.934831 0.355094i \(-0.115551\pi\)
\(908\) 23.2088i 0.770211i
\(909\) 22.5014 0.746323
\(910\) −6.53729 34.5263i −0.216709 1.14454i
\(911\) −0.0308998 −0.00102375 −0.000511877 1.00000i \(-0.500163\pi\)
−0.000511877 1.00000i \(0.500163\pi\)
\(912\) 0 0
\(913\) 46.7700i 1.54786i
\(914\) 4.83390 0.159891
\(915\) 0.430427 + 2.27327i 0.0142295 + 0.0751521i
\(916\) −4.81206 −0.158995
\(917\) 4.85273i 0.160251i
\(918\) 30.0791i 0.992759i
\(919\) 10.9750 0.362033 0.181016 0.983480i \(-0.442061\pi\)
0.181016 + 0.983480i \(0.442061\pi\)
\(920\) −29.2728 + 5.54259i −0.965097 + 0.182734i
\(921\) −9.49727 −0.312946
\(922\) 49.6225i 1.63423i
\(923\) 0.227522i 0.00748898i
\(924\) 7.43848 0.244708
\(925\) −6.76579 17.2260i −0.222458 0.566388i
\(926\) 8.96625 0.294649
\(927\) 6.14898i 0.201959i
\(928\) 38.0356i 1.24858i
\(929\) −44.0615 −1.44561 −0.722806 0.691051i \(-0.757148\pi\)
−0.722806 + 0.691051i \(0.757148\pi\)
\(930\) −7.97905 + 1.51077i −0.261643 + 0.0495401i
\(931\) 0 0
\(932\) 3.79436i 0.124288i
\(933\) 0.438046i 0.0143410i
\(934\) −4.30878 −0.140988
\(935\) −7.00351 36.9886i −0.229039 1.20966i
\(936\) −15.7747 −0.515613
\(937\) 21.2417i 0.693935i 0.937877 + 0.346968i \(0.112789\pi\)
−0.937877 + 0.346968i \(0.887211\pi\)
\(938\) 31.5673i 1.03071i
\(939\) −9.95429 −0.324846
\(940\) 0.143304 + 0.756854i 0.00467408 + 0.0246859i
\(941\) −16.7371 −0.545613 −0.272807 0.962069i \(-0.587952\pi\)
−0.272807 + 0.962069i \(0.587952\pi\)
\(942\) 27.6703i 0.901547i
\(943\) 27.7464i 0.903547i
\(944\) −35.7520 −1.16363
\(945\) 21.1944 4.01300i 0.689454 0.130543i
\(946\) 66.0320 2.14689
\(947\) 28.6132i 0.929805i −0.885362 0.464903i \(-0.846089\pi\)
0.885362 0.464903i \(-0.153911\pi\)
\(948\) 9.20206i 0.298869i
\(949\) −35.5046 −1.15253
\(950\) 0 0
\(951\) −0.137925 −0.00447251
\(952\) 16.3199i 0.528930i
\(953\) 29.4375i 0.953575i 0.879019 + 0.476788i \(0.158199\pi\)
−0.879019 + 0.476788i \(0.841801\pi\)
\(954\) −29.0326 −0.939965
\(955\) 24.2589 4.59323i 0.784999 0.148633i
\(956\) −8.49510 −0.274751
\(957\) 22.0858i 0.713932i
\(958\) 5.84294i 0.188777i
\(959\) −50.3431 −1.62567
\(960\) 0.225501 + 1.19097i 0.00727802 + 0.0384384i
\(961\) −23.5928 −0.761057
\(962\) 25.0099i 0.806351i
\(963\) 10.5855i 0.341112i
\(964\) 2.93059 0.0943878
\(965\) −2.30258 12.1609i −0.0741227 0.391475i
\(966\) −24.5411 −0.789597
\(967\) 54.7395i 1.76030i 0.474691 + 0.880152i \(0.342560\pi\)
−0.474691 + 0.880152i \(0.657440\pi\)
\(968\) 9.00387i 0.289395i
\(969\) 0 0
\(970\) −14.7050 + 2.78428i −0.472149 + 0.0893977i
\(971\) −40.9402 −1.31383 −0.656916 0.753964i \(-0.728139\pi\)
−0.656916 + 0.753964i \(0.728139\pi\)
\(972\) 16.0584i 0.515073i
\(973\) 9.57014i 0.306804i
\(974\) −5.12275 −0.164144
\(975\) −13.8376 + 5.43494i −0.443158 + 0.174057i
\(976\) 6.74995 0.216061
\(977\) 30.8153i 0.985868i 0.870067 + 0.492934i \(0.164076\pi\)
−0.870067 + 0.492934i \(0.835924\pi\)
\(978\) 8.85862i 0.283267i
\(979\) −70.6537 −2.25810
\(980\) −3.60809 + 0.683164i −0.115256 + 0.0218229i
\(981\) 11.8797 0.379289
\(982\) 40.2923i 1.28578i
\(983\) 35.6988i 1.13862i −0.822125 0.569308i \(-0.807211\pi\)
0.822125 0.569308i \(-0.192789\pi\)
\(984\) −4.53056 −0.144429
\(985\) 5.64129 + 29.7942i 0.179747 + 0.949321i
\(986\) −51.7005 −1.64648
\(987\) 0.594692i 0.0189292i
\(988\) 0 0
\(989\) −74.1695 −2.35845
\(990\) 7.06599 + 37.3186i 0.224572 + 1.18606i
\(991\) −35.1472 −1.11649 −0.558245 0.829676i \(-0.688525\pi\)
−0.558245 + 0.829676i \(0.688525\pi\)
\(992\) 14.5202i 0.461018i
\(993\) 15.8912i 0.504292i
\(994\) 0.237485 0.00753256
\(995\) −26.4788 + 5.01355i −0.839433 + 0.158940i
\(996\) −9.15235 −0.290003
\(997\) 31.3541i 0.992995i −0.868038 0.496498i \(-0.834619\pi\)
0.868038 0.496498i \(-0.165381\pi\)
\(998\) 13.7606i 0.435585i
\(999\) −15.3526 −0.485736
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.m.1084.9 40
5.2 odd 4 9025.2.a.cv.1.31 40
5.3 odd 4 9025.2.a.cv.1.10 40
5.4 even 2 inner 1805.2.b.m.1084.32 yes 40
19.18 odd 2 inner 1805.2.b.m.1084.31 yes 40
95.18 even 4 9025.2.a.cv.1.32 40
95.37 even 4 9025.2.a.cv.1.9 40
95.94 odd 2 inner 1805.2.b.m.1084.10 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.m.1084.9 40 1.1 even 1 trivial
1805.2.b.m.1084.10 yes 40 95.94 odd 2 inner
1805.2.b.m.1084.31 yes 40 19.18 odd 2 inner
1805.2.b.m.1084.32 yes 40 5.4 even 2 inner
9025.2.a.cv.1.9 40 95.37 even 4
9025.2.a.cv.1.10 40 5.3 odd 4
9025.2.a.cv.1.31 40 5.2 odd 4
9025.2.a.cv.1.32 40 95.18 even 4