Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1805,2,Mod(1084,1805)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1805.1084");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1805 = 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1805.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.4129975648\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1084.1 | − | 2.66900i | 1.76244i | −5.12357 | −0.705325 | − | 2.12191i | 4.70394 | − | 2.20993i | 8.33681i | −0.106178 | −5.66339 | + | 1.88251i | ||||||||||||
1084.2 | − | 2.66900i | 1.76244i | −5.12357 | −0.705325 | + | 2.12191i | 4.70394 | 2.20993i | 8.33681i | −0.106178 | 5.66339 | + | 1.88251i | |||||||||||||
1084.3 | − | 2.55697i | 3.05876i | −4.53809 | 1.22552 | − | 1.87032i | 7.82114 | 1.35232i | 6.48981i | −6.35598 | −4.78235 | − | 3.13361i | |||||||||||||
1084.4 | − | 2.55697i | 3.05876i | −4.53809 | 1.22552 | + | 1.87032i | 7.82114 | − | 1.35232i | 6.48981i | −6.35598 | 4.78235 | − | 3.13361i | ||||||||||||
1084.5 | − | 2.42726i | − | 1.05699i | −3.89157 | 0.123305 | − | 2.23267i | −2.56557 | 4.52506i | 4.59133i | 1.88278 | −5.41925 | − | 0.299292i | ||||||||||||
1084.6 | − | 2.42726i | − | 1.05699i | −3.89157 | 0.123305 | + | 2.23267i | −2.56557 | − | 4.52506i | 4.59133i | 1.88278 | 5.41925 | − | 0.299292i | |||||||||||
1084.7 | − | 1.96724i | − | 3.10308i | −1.87002 | −2.04586 | − | 0.902473i | −6.10450 | 2.84392i | − | 0.255698i | −6.62912 | −1.77538 | + | 4.02469i | |||||||||||
1084.8 | − | 1.96724i | − | 3.10308i | −1.87002 | −2.04586 | + | 0.902473i | −6.10450 | − | 2.84392i | − | 0.255698i | −6.62912 | 1.77538 | + | 4.02469i | ||||||||||
1084.9 | − | 1.74138i | − | 0.766290i | −1.03240 | 2.19703 | − | 0.415991i | −1.33440 | 2.32579i | − | 1.68496i | 2.41280 | −0.724398 | − | 3.82586i | |||||||||||
1084.10 | − | 1.74138i | − | 0.766290i | −1.03240 | 2.19703 | + | 0.415991i | −1.33440 | − | 2.32579i | − | 1.68496i | 2.41280 | 0.724398 | − | 3.82586i | ||||||||||
1084.11 | − | 1.47577i | − | 2.52656i | −0.177886 | 2.11161 | − | 0.735611i | −3.72861 | 4.13170i | − | 2.68901i | −3.38349 | −1.08559 | − | 3.11624i | |||||||||||
1084.12 | − | 1.47577i | − | 2.52656i | −0.177886 | 2.11161 | + | 0.735611i | −3.72861 | − | 4.13170i | − | 2.68901i | −3.38349 | 1.08559 | − | 3.11624i | ||||||||||
1084.13 | − | 1.40041i | 2.85260i | 0.0388655 | 0.846513 | − | 2.06964i | 3.99479 | − | 4.34514i | − | 2.85524i | −5.13731 | −2.89834 | − | 1.18546i | |||||||||||
1084.14 | − | 1.40041i | 2.85260i | 0.0388655 | 0.846513 | + | 2.06964i | 3.99479 | 4.34514i | − | 2.85524i | −5.13731 | 2.89834 | − | 1.18546i | ||||||||||||
1084.15 | − | 0.937092i | 1.03012i | 1.12186 | −1.84457 | − | 1.26394i | 0.965321 | − | 1.65832i | − | 2.92547i | 1.93884 | −1.18443 | + | 1.72854i | |||||||||||
1084.16 | − | 0.937092i | 1.03012i | 1.12186 | −1.84457 | + | 1.26394i | 0.965321 | 1.65832i | − | 2.92547i | 1.93884 | 1.18443 | + | 1.72854i | ||||||||||||
1084.17 | − | 0.717155i | 1.56975i | 1.48569 | 0.811198 | − | 2.08374i | 1.12576 | − | 2.51917i | − | 2.49978i | 0.535883 | −1.49436 | − | 0.581755i | |||||||||||
1084.18 | − | 0.717155i | 1.56975i | 1.48569 | 0.811198 | + | 2.08374i | 1.12576 | 2.51917i | − | 2.49978i | 0.535883 | 1.49436 | − | 0.581755i | ||||||||||||
1084.19 | − | 0.113485i | 1.07621i | 1.98712 | −1.21941 | − | 1.87431i | 0.122133 | 1.50555i | − | 0.452479i | 1.84178 | −0.212706 | + | 0.138385i | ||||||||||||
1084.20 | − | 0.113485i | 1.07621i | 1.98712 | −1.21941 | + | 1.87431i | 0.122133 | − | 1.50555i | − | 0.452479i | 1.84178 | 0.212706 | + | 0.138385i | |||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1805.2.b.m | ✓ | 40 |
5.b | even | 2 | 1 | inner | 1805.2.b.m | ✓ | 40 |
5.c | odd | 4 | 2 | 9025.2.a.cv | 40 | ||
19.b | odd | 2 | 1 | inner | 1805.2.b.m | ✓ | 40 |
95.d | odd | 2 | 1 | inner | 1805.2.b.m | ✓ | 40 |
95.g | even | 4 | 2 | 9025.2.a.cv | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1805.2.b.m | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
1805.2.b.m | ✓ | 40 | 5.b | even | 2 | 1 | inner |
1805.2.b.m | ✓ | 40 | 19.b | odd | 2 | 1 | inner |
1805.2.b.m | ✓ | 40 | 95.d | odd | 2 | 1 | inner |
9025.2.a.cv | 40 | 5.c | odd | 4 | 2 | ||
9025.2.a.cv | 40 | 95.g | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1805, [\chi])\):
\( T_{2}^{20} + 32 T_{2}^{18} + 431 T_{2}^{16} + 3186 T_{2}^{14} + 14144 T_{2}^{12} + 38798 T_{2}^{10} + \cdots + 80 \) |
\( T_{29}^{20} - 300 T_{29}^{18} + 37770 T_{29}^{16} - 2590500 T_{29}^{14} + 105058275 T_{29}^{12} + \cdots + 299880050000 \) |