Properties

Label 1805.4.a.h.1.1
Level $1805$
Weight $4$
Character 1805.1
Self dual yes
Analytic conductor $106.498$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,4,Mod(1,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(106.498447560\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1805.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -2.00000 q^{3} +8.00000 q^{4} -5.00000 q^{5} -8.00000 q^{6} +6.00000 q^{7} -23.0000 q^{9} -20.0000 q^{10} +32.0000 q^{11} -16.0000 q^{12} +38.0000 q^{13} +24.0000 q^{14} +10.0000 q^{15} -64.0000 q^{16} +26.0000 q^{17} -92.0000 q^{18} -40.0000 q^{20} -12.0000 q^{21} +128.000 q^{22} -78.0000 q^{23} +25.0000 q^{25} +152.000 q^{26} +100.000 q^{27} +48.0000 q^{28} +50.0000 q^{29} +40.0000 q^{30} +108.000 q^{31} -256.000 q^{32} -64.0000 q^{33} +104.000 q^{34} -30.0000 q^{35} -184.000 q^{36} -266.000 q^{37} -76.0000 q^{39} -22.0000 q^{41} -48.0000 q^{42} +442.000 q^{43} +256.000 q^{44} +115.000 q^{45} -312.000 q^{46} -514.000 q^{47} +128.000 q^{48} -307.000 q^{49} +100.000 q^{50} -52.0000 q^{51} +304.000 q^{52} -2.00000 q^{53} +400.000 q^{54} -160.000 q^{55} +200.000 q^{58} -500.000 q^{59} +80.0000 q^{60} -518.000 q^{61} +432.000 q^{62} -138.000 q^{63} -512.000 q^{64} -190.000 q^{65} -256.000 q^{66} -126.000 q^{67} +208.000 q^{68} +156.000 q^{69} -120.000 q^{70} -412.000 q^{71} -878.000 q^{73} -1064.00 q^{74} -50.0000 q^{75} +192.000 q^{77} -304.000 q^{78} -600.000 q^{79} +320.000 q^{80} +421.000 q^{81} -88.0000 q^{82} +282.000 q^{83} -96.0000 q^{84} -130.000 q^{85} +1768.00 q^{86} -100.000 q^{87} +150.000 q^{89} +460.000 q^{90} +228.000 q^{91} -624.000 q^{92} -216.000 q^{93} -2056.00 q^{94} +512.000 q^{96} -386.000 q^{97} -1228.00 q^{98} -736.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −2.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 8.00000 1.00000
\(5\) −5.00000 −0.447214
\(6\) −8.00000 −0.544331
\(7\) 6.00000 0.323970 0.161985 0.986793i \(-0.448210\pi\)
0.161985 + 0.986793i \(0.448210\pi\)
\(8\) 0 0
\(9\) −23.0000 −0.851852
\(10\) −20.0000 −0.632456
\(11\) 32.0000 0.877124 0.438562 0.898701i \(-0.355488\pi\)
0.438562 + 0.898701i \(0.355488\pi\)
\(12\) −16.0000 −0.384900
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) 24.0000 0.458162
\(15\) 10.0000 0.172133
\(16\) −64.0000 −1.00000
\(17\) 26.0000 0.370937 0.185468 0.982650i \(-0.440620\pi\)
0.185468 + 0.982650i \(0.440620\pi\)
\(18\) −92.0000 −1.20470
\(19\) 0 0
\(20\) −40.0000 −0.447214
\(21\) −12.0000 −0.124696
\(22\) 128.000 1.24044
\(23\) −78.0000 −0.707136 −0.353568 0.935409i \(-0.615032\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 152.000 1.14653
\(27\) 100.000 0.712778
\(28\) 48.0000 0.323970
\(29\) 50.0000 0.320164 0.160082 0.987104i \(-0.448824\pi\)
0.160082 + 0.987104i \(0.448824\pi\)
\(30\) 40.0000 0.243432
\(31\) 108.000 0.625722 0.312861 0.949799i \(-0.398713\pi\)
0.312861 + 0.949799i \(0.398713\pi\)
\(32\) −256.000 −1.41421
\(33\) −64.0000 −0.337605
\(34\) 104.000 0.524584
\(35\) −30.0000 −0.144884
\(36\) −184.000 −0.851852
\(37\) −266.000 −1.18190 −0.590948 0.806710i \(-0.701246\pi\)
−0.590948 + 0.806710i \(0.701246\pi\)
\(38\) 0 0
\(39\) −76.0000 −0.312045
\(40\) 0 0
\(41\) −22.0000 −0.0838006 −0.0419003 0.999122i \(-0.513341\pi\)
−0.0419003 + 0.999122i \(0.513341\pi\)
\(42\) −48.0000 −0.176347
\(43\) 442.000 1.56754 0.783772 0.621049i \(-0.213293\pi\)
0.783772 + 0.621049i \(0.213293\pi\)
\(44\) 256.000 0.877124
\(45\) 115.000 0.380960
\(46\) −312.000 −1.00004
\(47\) −514.000 −1.59520 −0.797602 0.603184i \(-0.793899\pi\)
−0.797602 + 0.603184i \(0.793899\pi\)
\(48\) 128.000 0.384900
\(49\) −307.000 −0.895044
\(50\) 100.000 0.282843
\(51\) −52.0000 −0.142774
\(52\) 304.000 0.810716
\(53\) −2.00000 −0.00518342 −0.00259171 0.999997i \(-0.500825\pi\)
−0.00259171 + 0.999997i \(0.500825\pi\)
\(54\) 400.000 1.00802
\(55\) −160.000 −0.392262
\(56\) 0 0
\(57\) 0 0
\(58\) 200.000 0.452781
\(59\) −500.000 −1.10330 −0.551648 0.834077i \(-0.686001\pi\)
−0.551648 + 0.834077i \(0.686001\pi\)
\(60\) 80.0000 0.172133
\(61\) −518.000 −1.08726 −0.543632 0.839324i \(-0.682951\pi\)
−0.543632 + 0.839324i \(0.682951\pi\)
\(62\) 432.000 0.884904
\(63\) −138.000 −0.275974
\(64\) −512.000 −1.00000
\(65\) −190.000 −0.362563
\(66\) −256.000 −0.477446
\(67\) −126.000 −0.229751 −0.114876 0.993380i \(-0.536647\pi\)
−0.114876 + 0.993380i \(0.536647\pi\)
\(68\) 208.000 0.370937
\(69\) 156.000 0.272177
\(70\) −120.000 −0.204896
\(71\) −412.000 −0.688668 −0.344334 0.938847i \(-0.611895\pi\)
−0.344334 + 0.938847i \(0.611895\pi\)
\(72\) 0 0
\(73\) −878.000 −1.40770 −0.703850 0.710348i \(-0.748537\pi\)
−0.703850 + 0.710348i \(0.748537\pi\)
\(74\) −1064.00 −1.67145
\(75\) −50.0000 −0.0769800
\(76\) 0 0
\(77\) 192.000 0.284161
\(78\) −304.000 −0.441298
\(79\) −600.000 −0.854497 −0.427249 0.904134i \(-0.640517\pi\)
−0.427249 + 0.904134i \(0.640517\pi\)
\(80\) 320.000 0.447214
\(81\) 421.000 0.577503
\(82\) −88.0000 −0.118512
\(83\) 282.000 0.372934 0.186467 0.982461i \(-0.440296\pi\)
0.186467 + 0.982461i \(0.440296\pi\)
\(84\) −96.0000 −0.124696
\(85\) −130.000 −0.165888
\(86\) 1768.00 2.21684
\(87\) −100.000 −0.123231
\(88\) 0 0
\(89\) 150.000 0.178651 0.0893257 0.996002i \(-0.471529\pi\)
0.0893257 + 0.996002i \(0.471529\pi\)
\(90\) 460.000 0.538758
\(91\) 228.000 0.262647
\(92\) −624.000 −0.707136
\(93\) −216.000 −0.240840
\(94\) −2056.00 −2.25596
\(95\) 0 0
\(96\) 512.000 0.544331
\(97\) −386.000 −0.404045 −0.202022 0.979381i \(-0.564751\pi\)
−0.202022 + 0.979381i \(0.564751\pi\)
\(98\) −1228.00 −1.26578
\(99\) −736.000 −0.747180
\(100\) 200.000 0.200000
\(101\) 702.000 0.691600 0.345800 0.938308i \(-0.387608\pi\)
0.345800 + 0.938308i \(0.387608\pi\)
\(102\) −208.000 −0.201912
\(103\) 598.000 0.572065 0.286032 0.958220i \(-0.407663\pi\)
0.286032 + 0.958220i \(0.407663\pi\)
\(104\) 0 0
\(105\) 60.0000 0.0557657
\(106\) −8.00000 −0.00733046
\(107\) 1194.00 1.07877 0.539385 0.842059i \(-0.318657\pi\)
0.539385 + 0.842059i \(0.318657\pi\)
\(108\) 800.000 0.712778
\(109\) 550.000 0.483307 0.241653 0.970363i \(-0.422310\pi\)
0.241653 + 0.970363i \(0.422310\pi\)
\(110\) −640.000 −0.554742
\(111\) 532.000 0.454912
\(112\) −384.000 −0.323970
\(113\) −1562.00 −1.30036 −0.650180 0.759781i \(-0.725306\pi\)
−0.650180 + 0.759781i \(0.725306\pi\)
\(114\) 0 0
\(115\) 390.000 0.316241
\(116\) 400.000 0.320164
\(117\) −874.000 −0.690610
\(118\) −2000.00 −1.56030
\(119\) 156.000 0.120172
\(120\) 0 0
\(121\) −307.000 −0.230654
\(122\) −2072.00 −1.53762
\(123\) 44.0000 0.0322548
\(124\) 864.000 0.625722
\(125\) −125.000 −0.0894427
\(126\) −552.000 −0.390286
\(127\) −1846.00 −1.28981 −0.644906 0.764262i \(-0.723103\pi\)
−0.644906 + 0.764262i \(0.723103\pi\)
\(128\) 0 0
\(129\) −884.000 −0.603348
\(130\) −760.000 −0.512742
\(131\) −2208.00 −1.47262 −0.736312 0.676642i \(-0.763435\pi\)
−0.736312 + 0.676642i \(0.763435\pi\)
\(132\) −512.000 −0.337605
\(133\) 0 0
\(134\) −504.000 −0.324918
\(135\) −500.000 −0.318764
\(136\) 0 0
\(137\) −2334.00 −1.45553 −0.727763 0.685829i \(-0.759440\pi\)
−0.727763 + 0.685829i \(0.759440\pi\)
\(138\) 624.000 0.384916
\(139\) −700.000 −0.427146 −0.213573 0.976927i \(-0.568510\pi\)
−0.213573 + 0.976927i \(0.568510\pi\)
\(140\) −240.000 −0.144884
\(141\) 1028.00 0.613994
\(142\) −1648.00 −0.973923
\(143\) 1216.00 0.711098
\(144\) 1472.00 0.851852
\(145\) −250.000 −0.143182
\(146\) −3512.00 −1.99079
\(147\) 614.000 0.344502
\(148\) −2128.00 −1.18190
\(149\) 2050.00 1.12713 0.563566 0.826071i \(-0.309429\pi\)
0.563566 + 0.826071i \(0.309429\pi\)
\(150\) −200.000 −0.108866
\(151\) −1852.00 −0.998103 −0.499052 0.866572i \(-0.666318\pi\)
−0.499052 + 0.866572i \(0.666318\pi\)
\(152\) 0 0
\(153\) −598.000 −0.315983
\(154\) 768.000 0.401865
\(155\) −540.000 −0.279831
\(156\) −608.000 −0.312045
\(157\) −2494.00 −1.26779 −0.633894 0.773420i \(-0.718545\pi\)
−0.633894 + 0.773420i \(0.718545\pi\)
\(158\) −2400.00 −1.20844
\(159\) 4.00000 0.00199510
\(160\) 1280.00 0.632456
\(161\) −468.000 −0.229090
\(162\) 1684.00 0.816713
\(163\) 2762.00 1.32722 0.663609 0.748080i \(-0.269024\pi\)
0.663609 + 0.748080i \(0.269024\pi\)
\(164\) −176.000 −0.0838006
\(165\) 320.000 0.150982
\(166\) 1128.00 0.527408
\(167\) −3126.00 −1.44849 −0.724243 0.689545i \(-0.757811\pi\)
−0.724243 + 0.689545i \(0.757811\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) −520.000 −0.234601
\(171\) 0 0
\(172\) 3536.00 1.56754
\(173\) 78.0000 0.0342788 0.0171394 0.999853i \(-0.494544\pi\)
0.0171394 + 0.999853i \(0.494544\pi\)
\(174\) −400.000 −0.174275
\(175\) 150.000 0.0647939
\(176\) −2048.00 −0.877124
\(177\) 1000.00 0.424659
\(178\) 600.000 0.252651
\(179\) 1300.00 0.542830 0.271415 0.962462i \(-0.412508\pi\)
0.271415 + 0.962462i \(0.412508\pi\)
\(180\) 920.000 0.380960
\(181\) −1742.00 −0.715369 −0.357685 0.933842i \(-0.616434\pi\)
−0.357685 + 0.933842i \(0.616434\pi\)
\(182\) 912.000 0.371439
\(183\) 1036.00 0.418488
\(184\) 0 0
\(185\) 1330.00 0.528560
\(186\) −864.000 −0.340600
\(187\) 832.000 0.325358
\(188\) −4112.00 −1.59520
\(189\) 600.000 0.230918
\(190\) 0 0
\(191\) 3772.00 1.42897 0.714483 0.699653i \(-0.246662\pi\)
0.714483 + 0.699653i \(0.246662\pi\)
\(192\) 1024.00 0.384900
\(193\) 358.000 0.133520 0.0667601 0.997769i \(-0.478734\pi\)
0.0667601 + 0.997769i \(0.478734\pi\)
\(194\) −1544.00 −0.571406
\(195\) 380.000 0.139551
\(196\) −2456.00 −0.895044
\(197\) −2214.00 −0.800716 −0.400358 0.916359i \(-0.631114\pi\)
−0.400358 + 0.916359i \(0.631114\pi\)
\(198\) −2944.00 −1.05667
\(199\) −2600.00 −0.926176 −0.463088 0.886312i \(-0.653259\pi\)
−0.463088 + 0.886312i \(0.653259\pi\)
\(200\) 0 0
\(201\) 252.000 0.0884314
\(202\) 2808.00 0.978070
\(203\) 300.000 0.103724
\(204\) −416.000 −0.142774
\(205\) 110.000 0.0374767
\(206\) 2392.00 0.809022
\(207\) 1794.00 0.602375
\(208\) −2432.00 −0.810716
\(209\) 0 0
\(210\) 240.000 0.0788646
\(211\) 1168.00 0.381083 0.190541 0.981679i \(-0.438976\pi\)
0.190541 + 0.981679i \(0.438976\pi\)
\(212\) −16.0000 −0.00518342
\(213\) 824.000 0.265068
\(214\) 4776.00 1.52561
\(215\) −2210.00 −0.701027
\(216\) 0 0
\(217\) 648.000 0.202715
\(218\) 2200.00 0.683499
\(219\) 1756.00 0.541824
\(220\) −1280.00 −0.392262
\(221\) 988.000 0.300724
\(222\) 2128.00 0.643342
\(223\) 6478.00 1.94529 0.972643 0.232303i \(-0.0746262\pi\)
0.972643 + 0.232303i \(0.0746262\pi\)
\(224\) −1536.00 −0.458162
\(225\) −575.000 −0.170370
\(226\) −6248.00 −1.83899
\(227\) −646.000 −0.188883 −0.0944417 0.995530i \(-0.530107\pi\)
−0.0944417 + 0.995530i \(0.530107\pi\)
\(228\) 0 0
\(229\) 3750.00 1.08213 0.541063 0.840982i \(-0.318022\pi\)
0.541063 + 0.840982i \(0.318022\pi\)
\(230\) 1560.00 0.447232
\(231\) −384.000 −0.109374
\(232\) 0 0
\(233\) 1482.00 0.416691 0.208346 0.978055i \(-0.433192\pi\)
0.208346 + 0.978055i \(0.433192\pi\)
\(234\) −3496.00 −0.976670
\(235\) 2570.00 0.713397
\(236\) −4000.00 −1.10330
\(237\) 1200.00 0.328896
\(238\) 624.000 0.169949
\(239\) 1400.00 0.378906 0.189453 0.981890i \(-0.439329\pi\)
0.189453 + 0.981890i \(0.439329\pi\)
\(240\) −640.000 −0.172133
\(241\) −3022.00 −0.807735 −0.403867 0.914817i \(-0.632334\pi\)
−0.403867 + 0.914817i \(0.632334\pi\)
\(242\) −1228.00 −0.326194
\(243\) −3542.00 −0.935059
\(244\) −4144.00 −1.08726
\(245\) 1535.00 0.400276
\(246\) 176.000 0.0456152
\(247\) 0 0
\(248\) 0 0
\(249\) −564.000 −0.143542
\(250\) −500.000 −0.126491
\(251\) −1248.00 −0.313837 −0.156918 0.987612i \(-0.550156\pi\)
−0.156918 + 0.987612i \(0.550156\pi\)
\(252\) −1104.00 −0.275974
\(253\) −2496.00 −0.620246
\(254\) −7384.00 −1.82407
\(255\) 260.000 0.0638503
\(256\) 4096.00 1.00000
\(257\) −2106.00 −0.511162 −0.255581 0.966788i \(-0.582267\pi\)
−0.255581 + 0.966788i \(0.582267\pi\)
\(258\) −3536.00 −0.853263
\(259\) −1596.00 −0.382898
\(260\) −1520.00 −0.362563
\(261\) −1150.00 −0.272733
\(262\) −8832.00 −2.08261
\(263\) −3638.00 −0.852961 −0.426480 0.904497i \(-0.640247\pi\)
−0.426480 + 0.904497i \(0.640247\pi\)
\(264\) 0 0
\(265\) 10.0000 0.00231809
\(266\) 0 0
\(267\) −300.000 −0.0687629
\(268\) −1008.00 −0.229751
\(269\) 6550.00 1.48461 0.742306 0.670061i \(-0.233732\pi\)
0.742306 + 0.670061i \(0.233732\pi\)
\(270\) −2000.00 −0.450800
\(271\) −4388.00 −0.983587 −0.491793 0.870712i \(-0.663658\pi\)
−0.491793 + 0.870712i \(0.663658\pi\)
\(272\) −1664.00 −0.370937
\(273\) −456.000 −0.101093
\(274\) −9336.00 −2.05842
\(275\) 800.000 0.175425
\(276\) 1248.00 0.272177
\(277\) 546.000 0.118433 0.0592165 0.998245i \(-0.481140\pi\)
0.0592165 + 0.998245i \(0.481140\pi\)
\(278\) −2800.00 −0.604075
\(279\) −2484.00 −0.533022
\(280\) 0 0
\(281\) 6858.00 1.45592 0.727961 0.685619i \(-0.240468\pi\)
0.727961 + 0.685619i \(0.240468\pi\)
\(282\) 4112.00 0.868319
\(283\) 9282.00 1.94967 0.974837 0.222920i \(-0.0715588\pi\)
0.974837 + 0.222920i \(0.0715588\pi\)
\(284\) −3296.00 −0.688668
\(285\) 0 0
\(286\) 4864.00 1.00564
\(287\) −132.000 −0.0271488
\(288\) 5888.00 1.20470
\(289\) −4237.00 −0.862406
\(290\) −1000.00 −0.202490
\(291\) 772.000 0.155517
\(292\) −7024.00 −1.40770
\(293\) −4842.00 −0.965436 −0.482718 0.875776i \(-0.660350\pi\)
−0.482718 + 0.875776i \(0.660350\pi\)
\(294\) 2456.00 0.487200
\(295\) 2500.00 0.493409
\(296\) 0 0
\(297\) 3200.00 0.625195
\(298\) 8200.00 1.59400
\(299\) −2964.00 −0.573286
\(300\) −400.000 −0.0769800
\(301\) 2652.00 0.507836
\(302\) −7408.00 −1.41153
\(303\) −1404.00 −0.266197
\(304\) 0 0
\(305\) 2590.00 0.486239
\(306\) −2392.00 −0.446868
\(307\) 2594.00 0.482239 0.241120 0.970495i \(-0.422485\pi\)
0.241120 + 0.970495i \(0.422485\pi\)
\(308\) 1536.00 0.284161
\(309\) −1196.00 −0.220188
\(310\) −2160.00 −0.395741
\(311\) 7332.00 1.33685 0.668424 0.743781i \(-0.266969\pi\)
0.668424 + 0.743781i \(0.266969\pi\)
\(312\) 0 0
\(313\) 1562.00 0.282075 0.141037 0.990004i \(-0.454956\pi\)
0.141037 + 0.990004i \(0.454956\pi\)
\(314\) −9976.00 −1.79292
\(315\) 690.000 0.123419
\(316\) −4800.00 −0.854497
\(317\) −1426.00 −0.252657 −0.126328 0.991988i \(-0.540319\pi\)
−0.126328 + 0.991988i \(0.540319\pi\)
\(318\) 16.0000 0.00282150
\(319\) 1600.00 0.280824
\(320\) 2560.00 0.447214
\(321\) −2388.00 −0.415219
\(322\) −1872.00 −0.323983
\(323\) 0 0
\(324\) 3368.00 0.577503
\(325\) 950.000 0.162143
\(326\) 11048.0 1.87697
\(327\) −1100.00 −0.186025
\(328\) 0 0
\(329\) −3084.00 −0.516798
\(330\) 1280.00 0.213520
\(331\) 4008.00 0.665558 0.332779 0.943005i \(-0.392014\pi\)
0.332779 + 0.943005i \(0.392014\pi\)
\(332\) 2256.00 0.372934
\(333\) 6118.00 1.00680
\(334\) −12504.0 −2.04847
\(335\) 630.000 0.102748
\(336\) 768.000 0.124696
\(337\) −8866.00 −1.43312 −0.716561 0.697525i \(-0.754285\pi\)
−0.716561 + 0.697525i \(0.754285\pi\)
\(338\) −3012.00 −0.484708
\(339\) 3124.00 0.500509
\(340\) −1040.00 −0.165888
\(341\) 3456.00 0.548835
\(342\) 0 0
\(343\) −3900.00 −0.613936
\(344\) 0 0
\(345\) −780.000 −0.121721
\(346\) 312.000 0.0484775
\(347\) −1714.00 −0.265165 −0.132583 0.991172i \(-0.542327\pi\)
−0.132583 + 0.991172i \(0.542327\pi\)
\(348\) −800.000 −0.123231
\(349\) 1150.00 0.176384 0.0881921 0.996103i \(-0.471891\pi\)
0.0881921 + 0.996103i \(0.471891\pi\)
\(350\) 600.000 0.0916324
\(351\) 3800.00 0.577860
\(352\) −8192.00 −1.24044
\(353\) −4398.00 −0.663122 −0.331561 0.943434i \(-0.607575\pi\)
−0.331561 + 0.943434i \(0.607575\pi\)
\(354\) 4000.00 0.600558
\(355\) 2060.00 0.307982
\(356\) 1200.00 0.178651
\(357\) −312.000 −0.0462543
\(358\) 5200.00 0.767677
\(359\) 1800.00 0.264625 0.132312 0.991208i \(-0.457760\pi\)
0.132312 + 0.991208i \(0.457760\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −6968.00 −1.01168
\(363\) 614.000 0.0887786
\(364\) 1824.00 0.262647
\(365\) 4390.00 0.629543
\(366\) 4144.00 0.591832
\(367\) −5874.00 −0.835478 −0.417739 0.908567i \(-0.637177\pi\)
−0.417739 + 0.908567i \(0.637177\pi\)
\(368\) 4992.00 0.707136
\(369\) 506.000 0.0713857
\(370\) 5320.00 0.747496
\(371\) −12.0000 −0.00167927
\(372\) −1728.00 −0.240840
\(373\) 2078.00 0.288458 0.144229 0.989544i \(-0.453930\pi\)
0.144229 + 0.989544i \(0.453930\pi\)
\(374\) 3328.00 0.460125
\(375\) 250.000 0.0344265
\(376\) 0 0
\(377\) 1900.00 0.259562
\(378\) 2400.00 0.326568
\(379\) −7900.00 −1.07070 −0.535351 0.844630i \(-0.679821\pi\)
−0.535351 + 0.844630i \(0.679821\pi\)
\(380\) 0 0
\(381\) 3692.00 0.496449
\(382\) 15088.0 2.02086
\(383\) 7518.00 1.00301 0.501504 0.865155i \(-0.332780\pi\)
0.501504 + 0.865155i \(0.332780\pi\)
\(384\) 0 0
\(385\) −960.000 −0.127081
\(386\) 1432.00 0.188826
\(387\) −10166.0 −1.33531
\(388\) −3088.00 −0.404045
\(389\) −1950.00 −0.254162 −0.127081 0.991892i \(-0.540561\pi\)
−0.127081 + 0.991892i \(0.540561\pi\)
\(390\) 1520.00 0.197354
\(391\) −2028.00 −0.262303
\(392\) 0 0
\(393\) 4416.00 0.566814
\(394\) −8856.00 −1.13238
\(395\) 3000.00 0.382143
\(396\) −5888.00 −0.747180
\(397\) 13786.0 1.74282 0.871410 0.490555i \(-0.163206\pi\)
0.871410 + 0.490555i \(0.163206\pi\)
\(398\) −10400.0 −1.30981
\(399\) 0 0
\(400\) −1600.00 −0.200000
\(401\) −6402.00 −0.797258 −0.398629 0.917112i \(-0.630514\pi\)
−0.398629 + 0.917112i \(0.630514\pi\)
\(402\) 1008.00 0.125061
\(403\) 4104.00 0.507282
\(404\) 5616.00 0.691600
\(405\) −2105.00 −0.258267
\(406\) 1200.00 0.146687
\(407\) −8512.00 −1.03667
\(408\) 0 0
\(409\) −11150.0 −1.34800 −0.674000 0.738731i \(-0.735425\pi\)
−0.674000 + 0.738731i \(0.735425\pi\)
\(410\) 440.000 0.0530001
\(411\) 4668.00 0.560232
\(412\) 4784.00 0.572065
\(413\) −3000.00 −0.357434
\(414\) 7176.00 0.851887
\(415\) −1410.00 −0.166781
\(416\) −9728.00 −1.14653
\(417\) 1400.00 0.164408
\(418\) 0 0
\(419\) −13700.0 −1.59735 −0.798674 0.601764i \(-0.794465\pi\)
−0.798674 + 0.601764i \(0.794465\pi\)
\(420\) 480.000 0.0557657
\(421\) 5438.00 0.629529 0.314765 0.949170i \(-0.398074\pi\)
0.314765 + 0.949170i \(0.398074\pi\)
\(422\) 4672.00 0.538932
\(423\) 11822.0 1.35888
\(424\) 0 0
\(425\) 650.000 0.0741874
\(426\) 3296.00 0.374863
\(427\) −3108.00 −0.352240
\(428\) 9552.00 1.07877
\(429\) −2432.00 −0.273702
\(430\) −8840.00 −0.991402
\(431\) −7692.00 −0.859653 −0.429827 0.902911i \(-0.641425\pi\)
−0.429827 + 0.902911i \(0.641425\pi\)
\(432\) −6400.00 −0.712778
\(433\) 1118.00 0.124082 0.0620412 0.998074i \(-0.480239\pi\)
0.0620412 + 0.998074i \(0.480239\pi\)
\(434\) 2592.00 0.286682
\(435\) 500.000 0.0551107
\(436\) 4400.00 0.483307
\(437\) 0 0
\(438\) 7024.00 0.766255
\(439\) 2600.00 0.282668 0.141334 0.989962i \(-0.454861\pi\)
0.141334 + 0.989962i \(0.454861\pi\)
\(440\) 0 0
\(441\) 7061.00 0.762445
\(442\) 3952.00 0.425288
\(443\) −11958.0 −1.28249 −0.641243 0.767337i \(-0.721581\pi\)
−0.641243 + 0.767337i \(0.721581\pi\)
\(444\) 4256.00 0.454912
\(445\) −750.000 −0.0798953
\(446\) 25912.0 2.75105
\(447\) −4100.00 −0.433833
\(448\) −3072.00 −0.323970
\(449\) 17050.0 1.79207 0.896035 0.443984i \(-0.146435\pi\)
0.896035 + 0.443984i \(0.146435\pi\)
\(450\) −2300.00 −0.240940
\(451\) −704.000 −0.0735035
\(452\) −12496.0 −1.30036
\(453\) 3704.00 0.384170
\(454\) −2584.00 −0.267121
\(455\) −1140.00 −0.117459
\(456\) 0 0
\(457\) −9494.00 −0.971796 −0.485898 0.874016i \(-0.661507\pi\)
−0.485898 + 0.874016i \(0.661507\pi\)
\(458\) 15000.0 1.53036
\(459\) 2600.00 0.264396
\(460\) 3120.00 0.316241
\(461\) −11418.0 −1.15356 −0.576778 0.816901i \(-0.695690\pi\)
−0.576778 + 0.816901i \(0.695690\pi\)
\(462\) −1536.00 −0.154678
\(463\) 7962.00 0.799191 0.399596 0.916692i \(-0.369151\pi\)
0.399596 + 0.916692i \(0.369151\pi\)
\(464\) −3200.00 −0.320164
\(465\) 1080.00 0.107707
\(466\) 5928.00 0.589290
\(467\) 6526.00 0.646654 0.323327 0.946287i \(-0.395199\pi\)
0.323327 + 0.946287i \(0.395199\pi\)
\(468\) −6992.00 −0.690610
\(469\) −756.000 −0.0744325
\(470\) 10280.0 1.00890
\(471\) 4988.00 0.487972
\(472\) 0 0
\(473\) 14144.0 1.37493
\(474\) 4800.00 0.465129
\(475\) 0 0
\(476\) 1248.00 0.120172
\(477\) 46.0000 0.00441550
\(478\) 5600.00 0.535854
\(479\) 17400.0 1.65976 0.829881 0.557940i \(-0.188408\pi\)
0.829881 + 0.557940i \(0.188408\pi\)
\(480\) −2560.00 −0.243432
\(481\) −10108.0 −0.958181
\(482\) −12088.0 −1.14231
\(483\) 936.000 0.0881770
\(484\) −2456.00 −0.230654
\(485\) 1930.00 0.180694
\(486\) −14168.0 −1.32237
\(487\) −1166.00 −0.108494 −0.0542469 0.998528i \(-0.517276\pi\)
−0.0542469 + 0.998528i \(0.517276\pi\)
\(488\) 0 0
\(489\) −5524.00 −0.510846
\(490\) 6140.00 0.566075
\(491\) 7072.00 0.650010 0.325005 0.945712i \(-0.394634\pi\)
0.325005 + 0.945712i \(0.394634\pi\)
\(492\) 352.000 0.0322548
\(493\) 1300.00 0.118761
\(494\) 0 0
\(495\) 3680.00 0.334149
\(496\) −6912.00 −0.625722
\(497\) −2472.00 −0.223107
\(498\) −2256.00 −0.203000
\(499\) 100.000 0.00897117 0.00448559 0.999990i \(-0.498572\pi\)
0.00448559 + 0.999990i \(0.498572\pi\)
\(500\) −1000.00 −0.0894427
\(501\) 6252.00 0.557522
\(502\) −4992.00 −0.443832
\(503\) 2602.00 0.230651 0.115325 0.993328i \(-0.463209\pi\)
0.115325 + 0.993328i \(0.463209\pi\)
\(504\) 0 0
\(505\) −3510.00 −0.309293
\(506\) −9984.00 −0.877160
\(507\) 1506.00 0.131921
\(508\) −14768.0 −1.28981
\(509\) −11150.0 −0.970953 −0.485476 0.874250i \(-0.661354\pi\)
−0.485476 + 0.874250i \(0.661354\pi\)
\(510\) 1040.00 0.0902980
\(511\) −5268.00 −0.456052
\(512\) 16384.0 1.41421
\(513\) 0 0
\(514\) −8424.00 −0.722892
\(515\) −2990.00 −0.255835
\(516\) −7072.00 −0.603348
\(517\) −16448.0 −1.39919
\(518\) −6384.00 −0.541500
\(519\) −156.000 −0.0131939
\(520\) 0 0
\(521\) 3638.00 0.305919 0.152959 0.988232i \(-0.451120\pi\)
0.152959 + 0.988232i \(0.451120\pi\)
\(522\) −4600.00 −0.385702
\(523\) 2078.00 0.173737 0.0868686 0.996220i \(-0.472314\pi\)
0.0868686 + 0.996220i \(0.472314\pi\)
\(524\) −17664.0 −1.47262
\(525\) −300.000 −0.0249392
\(526\) −14552.0 −1.20627
\(527\) 2808.00 0.232103
\(528\) 4096.00 0.337605
\(529\) −6083.00 −0.499959
\(530\) 40.0000 0.00327828
\(531\) 11500.0 0.939845
\(532\) 0 0
\(533\) −836.000 −0.0679384
\(534\) −1200.00 −0.0972455
\(535\) −5970.00 −0.482440
\(536\) 0 0
\(537\) −2600.00 −0.208935
\(538\) 26200.0 2.09956
\(539\) −9824.00 −0.785064
\(540\) −4000.00 −0.318764
\(541\) 5622.00 0.446781 0.223391 0.974729i \(-0.428287\pi\)
0.223391 + 0.974729i \(0.428287\pi\)
\(542\) −17552.0 −1.39100
\(543\) 3484.00 0.275346
\(544\) −6656.00 −0.524584
\(545\) −2750.00 −0.216141
\(546\) −1824.00 −0.142967
\(547\) −16486.0 −1.28865 −0.644324 0.764753i \(-0.722861\pi\)
−0.644324 + 0.764753i \(0.722861\pi\)
\(548\) −18672.0 −1.45553
\(549\) 11914.0 0.926188
\(550\) 3200.00 0.248088
\(551\) 0 0
\(552\) 0 0
\(553\) −3600.00 −0.276831
\(554\) 2184.00 0.167490
\(555\) −2660.00 −0.203443
\(556\) −5600.00 −0.427146
\(557\) 11706.0 0.890483 0.445242 0.895410i \(-0.353118\pi\)
0.445242 + 0.895410i \(0.353118\pi\)
\(558\) −9936.00 −0.753807
\(559\) 16796.0 1.27083
\(560\) 1920.00 0.144884
\(561\) −1664.00 −0.125230
\(562\) 27432.0 2.05898
\(563\) 25038.0 1.87429 0.937146 0.348939i \(-0.113458\pi\)
0.937146 + 0.348939i \(0.113458\pi\)
\(564\) 8224.00 0.613994
\(565\) 7810.00 0.581538
\(566\) 37128.0 2.75725
\(567\) 2526.00 0.187094
\(568\) 0 0
\(569\) −17550.0 −1.29303 −0.646515 0.762901i \(-0.723774\pi\)
−0.646515 + 0.762901i \(0.723774\pi\)
\(570\) 0 0
\(571\) 10712.0 0.785084 0.392542 0.919734i \(-0.371596\pi\)
0.392542 + 0.919734i \(0.371596\pi\)
\(572\) 9728.00 0.711098
\(573\) −7544.00 −0.550009
\(574\) −528.000 −0.0383942
\(575\) −1950.00 −0.141427
\(576\) 11776.0 0.851852
\(577\) −13654.0 −0.985136 −0.492568 0.870274i \(-0.663942\pi\)
−0.492568 + 0.870274i \(0.663942\pi\)
\(578\) −16948.0 −1.21963
\(579\) −716.000 −0.0513920
\(580\) −2000.00 −0.143182
\(581\) 1692.00 0.120819
\(582\) 3088.00 0.219934
\(583\) −64.0000 −0.00454650
\(584\) 0 0
\(585\) 4370.00 0.308850
\(586\) −19368.0 −1.36533
\(587\) 14166.0 0.996071 0.498035 0.867157i \(-0.334055\pi\)
0.498035 + 0.867157i \(0.334055\pi\)
\(588\) 4912.00 0.344502
\(589\) 0 0
\(590\) 10000.0 0.697786
\(591\) 4428.00 0.308196
\(592\) 17024.0 1.18190
\(593\) 17842.0 1.23555 0.617777 0.786354i \(-0.288034\pi\)
0.617777 + 0.786354i \(0.288034\pi\)
\(594\) 12800.0 0.884159
\(595\) −780.000 −0.0537427
\(596\) 16400.0 1.12713
\(597\) 5200.00 0.356485
\(598\) −11856.0 −0.810749
\(599\) 17600.0 1.20053 0.600264 0.799802i \(-0.295062\pi\)
0.600264 + 0.799802i \(0.295062\pi\)
\(600\) 0 0
\(601\) −27302.0 −1.85303 −0.926516 0.376256i \(-0.877211\pi\)
−0.926516 + 0.376256i \(0.877211\pi\)
\(602\) 10608.0 0.718189
\(603\) 2898.00 0.195714
\(604\) −14816.0 −0.998103
\(605\) 1535.00 0.103151
\(606\) −5616.00 −0.376459
\(607\) 3794.00 0.253696 0.126848 0.991922i \(-0.459514\pi\)
0.126848 + 0.991922i \(0.459514\pi\)
\(608\) 0 0
\(609\) −600.000 −0.0399232
\(610\) 10360.0 0.687646
\(611\) −19532.0 −1.29326
\(612\) −4784.00 −0.315983
\(613\) −13238.0 −0.872231 −0.436116 0.899891i \(-0.643646\pi\)
−0.436116 + 0.899891i \(0.643646\pi\)
\(614\) 10376.0 0.681989
\(615\) −220.000 −0.0144248
\(616\) 0 0
\(617\) −11574.0 −0.755189 −0.377595 0.925971i \(-0.623249\pi\)
−0.377595 + 0.925971i \(0.623249\pi\)
\(618\) −4784.00 −0.311393
\(619\) 8300.00 0.538942 0.269471 0.963008i \(-0.413151\pi\)
0.269471 + 0.963008i \(0.413151\pi\)
\(620\) −4320.00 −0.279831
\(621\) −7800.00 −0.504031
\(622\) 29328.0 1.89059
\(623\) 900.000 0.0578776
\(624\) 4864.00 0.312045
\(625\) 625.000 0.0400000
\(626\) 6248.00 0.398914
\(627\) 0 0
\(628\) −19952.0 −1.26779
\(629\) −6916.00 −0.438409
\(630\) 2760.00 0.174541
\(631\) −7508.00 −0.473675 −0.236837 0.971549i \(-0.576111\pi\)
−0.236837 + 0.971549i \(0.576111\pi\)
\(632\) 0 0
\(633\) −2336.00 −0.146679
\(634\) −5704.00 −0.357310
\(635\) 9230.00 0.576821
\(636\) 32.0000 0.00199510
\(637\) −11666.0 −0.725626
\(638\) 6400.00 0.397145
\(639\) 9476.00 0.586643
\(640\) 0 0
\(641\) 27378.0 1.68700 0.843499 0.537130i \(-0.180492\pi\)
0.843499 + 0.537130i \(0.180492\pi\)
\(642\) −9552.00 −0.587208
\(643\) 1842.00 0.112973 0.0564863 0.998403i \(-0.482010\pi\)
0.0564863 + 0.998403i \(0.482010\pi\)
\(644\) −3744.00 −0.229090
\(645\) 4420.00 0.269825
\(646\) 0 0
\(647\) −10114.0 −0.614563 −0.307282 0.951619i \(-0.599419\pi\)
−0.307282 + 0.951619i \(0.599419\pi\)
\(648\) 0 0
\(649\) −16000.0 −0.967727
\(650\) 3800.00 0.229305
\(651\) −1296.00 −0.0780250
\(652\) 22096.0 1.32722
\(653\) 10402.0 0.623372 0.311686 0.950185i \(-0.399106\pi\)
0.311686 + 0.950185i \(0.399106\pi\)
\(654\) −4400.00 −0.263079
\(655\) 11040.0 0.658578
\(656\) 1408.00 0.0838006
\(657\) 20194.0 1.19915
\(658\) −12336.0 −0.730862
\(659\) −7100.00 −0.419692 −0.209846 0.977734i \(-0.567296\pi\)
−0.209846 + 0.977734i \(0.567296\pi\)
\(660\) 2560.00 0.150982
\(661\) 7118.00 0.418847 0.209424 0.977825i \(-0.432841\pi\)
0.209424 + 0.977825i \(0.432841\pi\)
\(662\) 16032.0 0.941241
\(663\) −1976.00 −0.115749
\(664\) 0 0
\(665\) 0 0
\(666\) 24472.0 1.42383
\(667\) −3900.00 −0.226400
\(668\) −25008.0 −1.44849
\(669\) −12956.0 −0.748741
\(670\) 2520.00 0.145308
\(671\) −16576.0 −0.953665
\(672\) 3072.00 0.176347
\(673\) 31278.0 1.79150 0.895749 0.444560i \(-0.146640\pi\)
0.895749 + 0.444560i \(0.146640\pi\)
\(674\) −35464.0 −2.02674
\(675\) 2500.00 0.142556
\(676\) −6024.00 −0.342740
\(677\) 30054.0 1.70616 0.853079 0.521782i \(-0.174732\pi\)
0.853079 + 0.521782i \(0.174732\pi\)
\(678\) 12496.0 0.707826
\(679\) −2316.00 −0.130898
\(680\) 0 0
\(681\) 1292.00 0.0727012
\(682\) 13824.0 0.776171
\(683\) 4518.00 0.253113 0.126557 0.991959i \(-0.459607\pi\)
0.126557 + 0.991959i \(0.459607\pi\)
\(684\) 0 0
\(685\) 11670.0 0.650931
\(686\) −15600.0 −0.868237
\(687\) −7500.00 −0.416511
\(688\) −28288.0 −1.56754
\(689\) −76.0000 −0.00420228
\(690\) −3120.00 −0.172140
\(691\) 29272.0 1.61152 0.805759 0.592243i \(-0.201758\pi\)
0.805759 + 0.592243i \(0.201758\pi\)
\(692\) 624.000 0.0342788
\(693\) −4416.00 −0.242063
\(694\) −6856.00 −0.375000
\(695\) 3500.00 0.191025
\(696\) 0 0
\(697\) −572.000 −0.0310847
\(698\) 4600.00 0.249445
\(699\) −2964.00 −0.160385
\(700\) 1200.00 0.0647939
\(701\) −5798.00 −0.312393 −0.156196 0.987726i \(-0.549923\pi\)
−0.156196 + 0.987726i \(0.549923\pi\)
\(702\) 15200.0 0.817218
\(703\) 0 0
\(704\) −16384.0 −0.877124
\(705\) −5140.00 −0.274587
\(706\) −17592.0 −0.937796
\(707\) 4212.00 0.224057
\(708\) 8000.00 0.424659
\(709\) 8950.00 0.474082 0.237041 0.971500i \(-0.423822\pi\)
0.237041 + 0.971500i \(0.423822\pi\)
\(710\) 8240.00 0.435552
\(711\) 13800.0 0.727905
\(712\) 0 0
\(713\) −8424.00 −0.442470
\(714\) −1248.00 −0.0654135
\(715\) −6080.00 −0.318013
\(716\) 10400.0 0.542830
\(717\) −2800.00 −0.145841
\(718\) 7200.00 0.374236
\(719\) 7800.00 0.404577 0.202289 0.979326i \(-0.435162\pi\)
0.202289 + 0.979326i \(0.435162\pi\)
\(720\) −7360.00 −0.380960
\(721\) 3588.00 0.185332
\(722\) 0 0
\(723\) 6044.00 0.310897
\(724\) −13936.0 −0.715369
\(725\) 1250.00 0.0640329
\(726\) 2456.00 0.125552
\(727\) −8554.00 −0.436383 −0.218191 0.975906i \(-0.570016\pi\)
−0.218191 + 0.975906i \(0.570016\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 17560.0 0.890308
\(731\) 11492.0 0.581460
\(732\) 8288.00 0.418488
\(733\) 2882.00 0.145224 0.0726119 0.997360i \(-0.476867\pi\)
0.0726119 + 0.997360i \(0.476867\pi\)
\(734\) −23496.0 −1.18154
\(735\) −3070.00 −0.154066
\(736\) 19968.0 1.00004
\(737\) −4032.00 −0.201521
\(738\) 2024.00 0.100955
\(739\) 18700.0 0.930840 0.465420 0.885090i \(-0.345903\pi\)
0.465420 + 0.885090i \(0.345903\pi\)
\(740\) 10640.0 0.528560
\(741\) 0 0
\(742\) −48.0000 −0.00237485
\(743\) −12242.0 −0.604462 −0.302231 0.953235i \(-0.597731\pi\)
−0.302231 + 0.953235i \(0.597731\pi\)
\(744\) 0 0
\(745\) −10250.0 −0.504068
\(746\) 8312.00 0.407941
\(747\) −6486.00 −0.317685
\(748\) 6656.00 0.325358
\(749\) 7164.00 0.349488
\(750\) 1000.00 0.0486864
\(751\) 31148.0 1.51346 0.756729 0.653729i \(-0.226796\pi\)
0.756729 + 0.653729i \(0.226796\pi\)
\(752\) 32896.0 1.59520
\(753\) 2496.00 0.120796
\(754\) 7600.00 0.367076
\(755\) 9260.00 0.446365
\(756\) 4800.00 0.230918
\(757\) −7694.00 −0.369410 −0.184705 0.982794i \(-0.559133\pi\)
−0.184705 + 0.982794i \(0.559133\pi\)
\(758\) −31600.0 −1.51420
\(759\) 4992.00 0.238733
\(760\) 0 0
\(761\) −4518.00 −0.215213 −0.107607 0.994194i \(-0.534319\pi\)
−0.107607 + 0.994194i \(0.534319\pi\)
\(762\) 14768.0 0.702084
\(763\) 3300.00 0.156577
\(764\) 30176.0 1.42897
\(765\) 2990.00 0.141312
\(766\) 30072.0 1.41847
\(767\) −19000.0 −0.894459
\(768\) −8192.00 −0.384900
\(769\) −39550.0 −1.85463 −0.927314 0.374283i \(-0.877889\pi\)
−0.927314 + 0.374283i \(0.877889\pi\)
\(770\) −3840.00 −0.179719
\(771\) 4212.00 0.196746
\(772\) 2864.00 0.133520
\(773\) −22122.0 −1.02933 −0.514666 0.857391i \(-0.672084\pi\)
−0.514666 + 0.857391i \(0.672084\pi\)
\(774\) −40664.0 −1.88842
\(775\) 2700.00 0.125144
\(776\) 0 0
\(777\) 3192.00 0.147378
\(778\) −7800.00 −0.359439
\(779\) 0 0
\(780\) 3040.00 0.139551
\(781\) −13184.0 −0.604047
\(782\) −8112.00 −0.370952
\(783\) 5000.00 0.228206
\(784\) 19648.0 0.895044
\(785\) 12470.0 0.566972
\(786\) 17664.0 0.801595
\(787\) 16634.0 0.753416 0.376708 0.926332i \(-0.377056\pi\)
0.376708 + 0.926332i \(0.377056\pi\)
\(788\) −17712.0 −0.800716
\(789\) 7276.00 0.328305
\(790\) 12000.0 0.540431
\(791\) −9372.00 −0.421277
\(792\) 0 0
\(793\) −19684.0 −0.881462
\(794\) 55144.0 2.46472
\(795\) −20.0000 −0.000892235 0
\(796\) −20800.0 −0.926176
\(797\) −27586.0 −1.22603 −0.613015 0.790071i \(-0.710044\pi\)
−0.613015 + 0.790071i \(0.710044\pi\)
\(798\) 0 0
\(799\) −13364.0 −0.591720
\(800\) −6400.00 −0.282843
\(801\) −3450.00 −0.152184
\(802\) −25608.0 −1.12749
\(803\) −28096.0 −1.23473
\(804\) 2016.00 0.0884314
\(805\) 2340.00 0.102452
\(806\) 16416.0 0.717406
\(807\) −13100.0 −0.571427
\(808\) 0 0
\(809\) 3850.00 0.167316 0.0836581 0.996495i \(-0.473340\pi\)
0.0836581 + 0.996495i \(0.473340\pi\)
\(810\) −8420.00 −0.365245
\(811\) −10032.0 −0.434366 −0.217183 0.976131i \(-0.569687\pi\)
−0.217183 + 0.976131i \(0.569687\pi\)
\(812\) 2400.00 0.103724
\(813\) 8776.00 0.378583
\(814\) −34048.0 −1.46607
\(815\) −13810.0 −0.593550
\(816\) 3328.00 0.142774
\(817\) 0 0
\(818\) −44600.0 −1.90636
\(819\) −5244.00 −0.223736
\(820\) 880.000 0.0374767
\(821\) 20562.0 0.874079 0.437039 0.899442i \(-0.356027\pi\)
0.437039 + 0.899442i \(0.356027\pi\)
\(822\) 18672.0 0.792288
\(823\) 10322.0 0.437184 0.218592 0.975816i \(-0.429854\pi\)
0.218592 + 0.975816i \(0.429854\pi\)
\(824\) 0 0
\(825\) −1600.00 −0.0675210
\(826\) −12000.0 −0.505488
\(827\) −8846.00 −0.371954 −0.185977 0.982554i \(-0.559545\pi\)
−0.185977 + 0.982554i \(0.559545\pi\)
\(828\) 14352.0 0.602375
\(829\) 25350.0 1.06205 0.531026 0.847355i \(-0.321806\pi\)
0.531026 + 0.847355i \(0.321806\pi\)
\(830\) −5640.00 −0.235864
\(831\) −1092.00 −0.0455849
\(832\) −19456.0 −0.810716
\(833\) −7982.00 −0.332005
\(834\) 5600.00 0.232509
\(835\) 15630.0 0.647783
\(836\) 0 0
\(837\) 10800.0 0.446001
\(838\) −54800.0 −2.25899
\(839\) −46000.0 −1.89284 −0.946422 0.322932i \(-0.895331\pi\)
−0.946422 + 0.322932i \(0.895331\pi\)
\(840\) 0 0
\(841\) −21889.0 −0.897495
\(842\) 21752.0 0.890289
\(843\) −13716.0 −0.560385
\(844\) 9344.00 0.381083
\(845\) 3765.00 0.153278
\(846\) 47288.0 1.92174
\(847\) −1842.00 −0.0747248
\(848\) 128.000 0.00518342
\(849\) −18564.0 −0.750430
\(850\) 2600.00 0.104917
\(851\) 20748.0 0.835761
\(852\) 6592.00 0.265068
\(853\) −16998.0 −0.682298 −0.341149 0.940009i \(-0.610816\pi\)
−0.341149 + 0.940009i \(0.610816\pi\)
\(854\) −12432.0 −0.498143
\(855\) 0 0
\(856\) 0 0
\(857\) 26494.0 1.05603 0.528015 0.849235i \(-0.322936\pi\)
0.528015 + 0.849235i \(0.322936\pi\)
\(858\) −9728.00 −0.387073
\(859\) −21500.0 −0.853982 −0.426991 0.904256i \(-0.640426\pi\)
−0.426991 + 0.904256i \(0.640426\pi\)
\(860\) −17680.0 −0.701027
\(861\) 264.000 0.0104496
\(862\) −30768.0 −1.21573
\(863\) −25762.0 −1.01616 −0.508082 0.861309i \(-0.669645\pi\)
−0.508082 + 0.861309i \(0.669645\pi\)
\(864\) −25600.0 −1.00802
\(865\) −390.000 −0.0153299
\(866\) 4472.00 0.175479
\(867\) 8474.00 0.331940
\(868\) 5184.00 0.202715
\(869\) −19200.0 −0.749500
\(870\) 2000.00 0.0779383
\(871\) −4788.00 −0.186263
\(872\) 0 0
\(873\) 8878.00 0.344186
\(874\) 0 0
\(875\) −750.000 −0.0289767
\(876\) 14048.0 0.541824
\(877\) −30546.0 −1.17613 −0.588064 0.808814i \(-0.700110\pi\)
−0.588064 + 0.808814i \(0.700110\pi\)
\(878\) 10400.0 0.399753
\(879\) 9684.00 0.371596
\(880\) 10240.0 0.392262
\(881\) 32942.0 1.25976 0.629878 0.776694i \(-0.283105\pi\)
0.629878 + 0.776694i \(0.283105\pi\)
\(882\) 28244.0 1.07826
\(883\) −27118.0 −1.03351 −0.516757 0.856132i \(-0.672861\pi\)
−0.516757 + 0.856132i \(0.672861\pi\)
\(884\) 7904.00 0.300724
\(885\) −5000.00 −0.189913
\(886\) −47832.0 −1.81371
\(887\) 38634.0 1.46246 0.731230 0.682131i \(-0.238946\pi\)
0.731230 + 0.682131i \(0.238946\pi\)
\(888\) 0 0
\(889\) −11076.0 −0.417860
\(890\) −3000.00 −0.112989
\(891\) 13472.0 0.506542
\(892\) 51824.0 1.94529
\(893\) 0 0
\(894\) −16400.0 −0.613532
\(895\) −6500.00 −0.242761
\(896\) 0 0
\(897\) 5928.00 0.220658
\(898\) 68200.0 2.53437
\(899\) 5400.00 0.200334
\(900\) −4600.00 −0.170370
\(901\) −52.0000 −0.00192272
\(902\) −2816.00 −0.103950
\(903\) −5304.00 −0.195466
\(904\) 0 0
\(905\) 8710.00 0.319923
\(906\) 14816.0 0.543299
\(907\) 1794.00 0.0656767 0.0328384 0.999461i \(-0.489545\pi\)
0.0328384 + 0.999461i \(0.489545\pi\)
\(908\) −5168.00 −0.188883
\(909\) −16146.0 −0.589141
\(910\) −4560.00 −0.166113
\(911\) −41732.0 −1.51772 −0.758860 0.651254i \(-0.774243\pi\)
−0.758860 + 0.651254i \(0.774243\pi\)
\(912\) 0 0
\(913\) 9024.00 0.327109
\(914\) −37976.0 −1.37433
\(915\) −5180.00 −0.187154
\(916\) 30000.0 1.08213
\(917\) −13248.0 −0.477086
\(918\) 10400.0 0.373912
\(919\) 29200.0 1.04812 0.524058 0.851682i \(-0.324417\pi\)
0.524058 + 0.851682i \(0.324417\pi\)
\(920\) 0 0
\(921\) −5188.00 −0.185614
\(922\) −45672.0 −1.63137
\(923\) −15656.0 −0.558314
\(924\) −3072.00 −0.109374
\(925\) −6650.00 −0.236379
\(926\) 31848.0 1.13023
\(927\) −13754.0 −0.487315
\(928\) −12800.0 −0.452781
\(929\) −48650.0 −1.71814 −0.859071 0.511856i \(-0.828958\pi\)
−0.859071 + 0.511856i \(0.828958\pi\)
\(930\) 4320.00 0.152321
\(931\) 0 0
\(932\) 11856.0 0.416691
\(933\) −14664.0 −0.514553
\(934\) 26104.0 0.914506
\(935\) −4160.00 −0.145504
\(936\) 0 0
\(937\) −11334.0 −0.395161 −0.197580 0.980287i \(-0.563308\pi\)
−0.197580 + 0.980287i \(0.563308\pi\)
\(938\) −3024.00 −0.105263
\(939\) −3124.00 −0.108571
\(940\) 20560.0 0.713397
\(941\) 31178.0 1.08010 0.540050 0.841633i \(-0.318405\pi\)
0.540050 + 0.841633i \(0.318405\pi\)
\(942\) 19952.0 0.690097
\(943\) 1716.00 0.0592584
\(944\) 32000.0 1.10330
\(945\) −3000.00 −0.103270
\(946\) 56576.0 1.94444
\(947\) 4686.00 0.160797 0.0803984 0.996763i \(-0.474381\pi\)
0.0803984 + 0.996763i \(0.474381\pi\)
\(948\) 9600.00 0.328896
\(949\) −33364.0 −1.14124
\(950\) 0 0
\(951\) 2852.00 0.0972476
\(952\) 0 0
\(953\) 598.000 0.0203265 0.0101632 0.999948i \(-0.496765\pi\)
0.0101632 + 0.999948i \(0.496765\pi\)
\(954\) 184.000 0.00624447
\(955\) −18860.0 −0.639053
\(956\) 11200.0 0.378906
\(957\) −3200.00 −0.108089
\(958\) 69600.0 2.34726
\(959\) −14004.0 −0.471546
\(960\) −5120.00 −0.172133
\(961\) −18127.0 −0.608472
\(962\) −40432.0 −1.35507
\(963\) −27462.0 −0.918952
\(964\) −24176.0 −0.807735
\(965\) −1790.00 −0.0597121
\(966\) 3744.00 0.124701
\(967\) 41726.0 1.38761 0.693804 0.720163i \(-0.255933\pi\)
0.693804 + 0.720163i \(0.255933\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 7720.00 0.255540
\(971\) −24312.0 −0.803511 −0.401756 0.915747i \(-0.631600\pi\)
−0.401756 + 0.915747i \(0.631600\pi\)
\(972\) −28336.0 −0.935059
\(973\) −4200.00 −0.138382
\(974\) −4664.00 −0.153433
\(975\) −1900.00 −0.0624089
\(976\) 33152.0 1.08726
\(977\) −40946.0 −1.34082 −0.670409 0.741992i \(-0.733881\pi\)
−0.670409 + 0.741992i \(0.733881\pi\)
\(978\) −22096.0 −0.722446
\(979\) 4800.00 0.156699
\(980\) 12280.0 0.400276
\(981\) −12650.0 −0.411706
\(982\) 28288.0 0.919253
\(983\) −42282.0 −1.37191 −0.685954 0.727645i \(-0.740615\pi\)
−0.685954 + 0.727645i \(0.740615\pi\)
\(984\) 0 0
\(985\) 11070.0 0.358091
\(986\) 5200.00 0.167953
\(987\) 6168.00 0.198916
\(988\) 0 0
\(989\) −34476.0 −1.10847
\(990\) 14720.0 0.472558
\(991\) −1172.00 −0.0375679 −0.0187840 0.999824i \(-0.505979\pi\)
−0.0187840 + 0.999824i \(0.505979\pi\)
\(992\) −27648.0 −0.884904
\(993\) −8016.00 −0.256173
\(994\) −9888.00 −0.315521
\(995\) 13000.0 0.414199
\(996\) −4512.00 −0.143542
\(997\) −31614.0 −1.00424 −0.502119 0.864798i \(-0.667446\pi\)
−0.502119 + 0.864798i \(0.667446\pi\)
\(998\) 400.000 0.0126872
\(999\) −26600.0 −0.842429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.4.a.h.1.1 1
19.18 odd 2 5.4.a.a.1.1 1
57.56 even 2 45.4.a.d.1.1 1
76.75 even 2 80.4.a.d.1.1 1
95.18 even 4 25.4.b.a.24.2 2
95.37 even 4 25.4.b.a.24.1 2
95.94 odd 2 25.4.a.c.1.1 1
133.18 odd 6 245.4.e.f.226.1 2
133.37 odd 6 245.4.e.f.116.1 2
133.75 even 6 245.4.e.g.116.1 2
133.94 even 6 245.4.e.g.226.1 2
133.132 even 2 245.4.a.a.1.1 1
152.37 odd 2 320.4.a.g.1.1 1
152.75 even 2 320.4.a.h.1.1 1
171.56 even 6 405.4.e.c.271.1 2
171.94 odd 6 405.4.e.l.136.1 2
171.113 even 6 405.4.e.c.136.1 2
171.151 odd 6 405.4.e.l.271.1 2
209.208 even 2 605.4.a.d.1.1 1
228.227 odd 2 720.4.a.u.1.1 1
247.246 odd 2 845.4.a.b.1.1 1
285.113 odd 4 225.4.b.c.199.1 2
285.227 odd 4 225.4.b.c.199.2 2
285.284 even 2 225.4.a.b.1.1 1
304.37 odd 4 1280.4.d.e.641.1 2
304.75 even 4 1280.4.d.l.641.2 2
304.189 odd 4 1280.4.d.e.641.2 2
304.227 even 4 1280.4.d.l.641.1 2
323.322 odd 2 1445.4.a.a.1.1 1
380.227 odd 4 400.4.c.k.49.2 2
380.303 odd 4 400.4.c.k.49.1 2
380.379 even 2 400.4.a.m.1.1 1
399.398 odd 2 2205.4.a.q.1.1 1
665.664 even 2 1225.4.a.k.1.1 1
760.189 odd 2 1600.4.a.bi.1.1 1
760.379 even 2 1600.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.4.a.a.1.1 1 19.18 odd 2
25.4.a.c.1.1 1 95.94 odd 2
25.4.b.a.24.1 2 95.37 even 4
25.4.b.a.24.2 2 95.18 even 4
45.4.a.d.1.1 1 57.56 even 2
80.4.a.d.1.1 1 76.75 even 2
225.4.a.b.1.1 1 285.284 even 2
225.4.b.c.199.1 2 285.113 odd 4
225.4.b.c.199.2 2 285.227 odd 4
245.4.a.a.1.1 1 133.132 even 2
245.4.e.f.116.1 2 133.37 odd 6
245.4.e.f.226.1 2 133.18 odd 6
245.4.e.g.116.1 2 133.75 even 6
245.4.e.g.226.1 2 133.94 even 6
320.4.a.g.1.1 1 152.37 odd 2
320.4.a.h.1.1 1 152.75 even 2
400.4.a.m.1.1 1 380.379 even 2
400.4.c.k.49.1 2 380.303 odd 4
400.4.c.k.49.2 2 380.227 odd 4
405.4.e.c.136.1 2 171.113 even 6
405.4.e.c.271.1 2 171.56 even 6
405.4.e.l.136.1 2 171.94 odd 6
405.4.e.l.271.1 2 171.151 odd 6
605.4.a.d.1.1 1 209.208 even 2
720.4.a.u.1.1 1 228.227 odd 2
845.4.a.b.1.1 1 247.246 odd 2
1225.4.a.k.1.1 1 665.664 even 2
1280.4.d.e.641.1 2 304.37 odd 4
1280.4.d.e.641.2 2 304.189 odd 4
1280.4.d.l.641.1 2 304.227 even 4
1280.4.d.l.641.2 2 304.75 even 4
1445.4.a.a.1.1 1 323.322 odd 2
1600.4.a.s.1.1 1 760.379 even 2
1600.4.a.bi.1.1 1 760.189 odd 2
1805.4.a.h.1.1 1 1.1 even 1 trivial
2205.4.a.q.1.1 1 399.398 odd 2