Properties

Label 605.4.a.d.1.1
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +2.00000 q^{3} +8.00000 q^{4} -5.00000 q^{5} +8.00000 q^{6} -6.00000 q^{7} -23.0000 q^{9} -20.0000 q^{10} +16.0000 q^{12} +38.0000 q^{13} -24.0000 q^{14} -10.0000 q^{15} -64.0000 q^{16} -26.0000 q^{17} -92.0000 q^{18} -100.000 q^{19} -40.0000 q^{20} -12.0000 q^{21} -78.0000 q^{23} +25.0000 q^{25} +152.000 q^{26} -100.000 q^{27} -48.0000 q^{28} +50.0000 q^{29} -40.0000 q^{30} -108.000 q^{31} -256.000 q^{32} -104.000 q^{34} +30.0000 q^{35} -184.000 q^{36} +266.000 q^{37} -400.000 q^{38} +76.0000 q^{39} -22.0000 q^{41} -48.0000 q^{42} -442.000 q^{43} +115.000 q^{45} -312.000 q^{46} -514.000 q^{47} -128.000 q^{48} -307.000 q^{49} +100.000 q^{50} -52.0000 q^{51} +304.000 q^{52} +2.00000 q^{53} -400.000 q^{54} -200.000 q^{57} +200.000 q^{58} +500.000 q^{59} -80.0000 q^{60} +518.000 q^{61} -432.000 q^{62} +138.000 q^{63} -512.000 q^{64} -190.000 q^{65} +126.000 q^{67} -208.000 q^{68} -156.000 q^{69} +120.000 q^{70} +412.000 q^{71} +878.000 q^{73} +1064.00 q^{74} +50.0000 q^{75} -800.000 q^{76} +304.000 q^{78} -600.000 q^{79} +320.000 q^{80} +421.000 q^{81} -88.0000 q^{82} -282.000 q^{83} -96.0000 q^{84} +130.000 q^{85} -1768.00 q^{86} +100.000 q^{87} -150.000 q^{89} +460.000 q^{90} -228.000 q^{91} -624.000 q^{92} -216.000 q^{93} -2056.00 q^{94} +500.000 q^{95} -512.000 q^{96} +386.000 q^{97} -1228.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 8.00000 1.00000
\(5\) −5.00000 −0.447214
\(6\) 8.00000 0.544331
\(7\) −6.00000 −0.323970 −0.161985 0.986793i \(-0.551790\pi\)
−0.161985 + 0.986793i \(0.551790\pi\)
\(8\) 0 0
\(9\) −23.0000 −0.851852
\(10\) −20.0000 −0.632456
\(11\) 0 0
\(12\) 16.0000 0.384900
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) −24.0000 −0.458162
\(15\) −10.0000 −0.172133
\(16\) −64.0000 −1.00000
\(17\) −26.0000 −0.370937 −0.185468 0.982650i \(-0.559380\pi\)
−0.185468 + 0.982650i \(0.559380\pi\)
\(18\) −92.0000 −1.20470
\(19\) −100.000 −1.20745 −0.603726 0.797192i \(-0.706318\pi\)
−0.603726 + 0.797192i \(0.706318\pi\)
\(20\) −40.0000 −0.447214
\(21\) −12.0000 −0.124696
\(22\) 0 0
\(23\) −78.0000 −0.707136 −0.353568 0.935409i \(-0.615032\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 152.000 1.14653
\(27\) −100.000 −0.712778
\(28\) −48.0000 −0.323970
\(29\) 50.0000 0.320164 0.160082 0.987104i \(-0.448824\pi\)
0.160082 + 0.987104i \(0.448824\pi\)
\(30\) −40.0000 −0.243432
\(31\) −108.000 −0.625722 −0.312861 0.949799i \(-0.601287\pi\)
−0.312861 + 0.949799i \(0.601287\pi\)
\(32\) −256.000 −1.41421
\(33\) 0 0
\(34\) −104.000 −0.524584
\(35\) 30.0000 0.144884
\(36\) −184.000 −0.851852
\(37\) 266.000 1.18190 0.590948 0.806710i \(-0.298754\pi\)
0.590948 + 0.806710i \(0.298754\pi\)
\(38\) −400.000 −1.70759
\(39\) 76.0000 0.312045
\(40\) 0 0
\(41\) −22.0000 −0.0838006 −0.0419003 0.999122i \(-0.513341\pi\)
−0.0419003 + 0.999122i \(0.513341\pi\)
\(42\) −48.0000 −0.176347
\(43\) −442.000 −1.56754 −0.783772 0.621049i \(-0.786707\pi\)
−0.783772 + 0.621049i \(0.786707\pi\)
\(44\) 0 0
\(45\) 115.000 0.380960
\(46\) −312.000 −1.00004
\(47\) −514.000 −1.59520 −0.797602 0.603184i \(-0.793899\pi\)
−0.797602 + 0.603184i \(0.793899\pi\)
\(48\) −128.000 −0.384900
\(49\) −307.000 −0.895044
\(50\) 100.000 0.282843
\(51\) −52.0000 −0.142774
\(52\) 304.000 0.810716
\(53\) 2.00000 0.00518342 0.00259171 0.999997i \(-0.499175\pi\)
0.00259171 + 0.999997i \(0.499175\pi\)
\(54\) −400.000 −1.00802
\(55\) 0 0
\(56\) 0 0
\(57\) −200.000 −0.464748
\(58\) 200.000 0.452781
\(59\) 500.000 1.10330 0.551648 0.834077i \(-0.313999\pi\)
0.551648 + 0.834077i \(0.313999\pi\)
\(60\) −80.0000 −0.172133
\(61\) 518.000 1.08726 0.543632 0.839324i \(-0.317049\pi\)
0.543632 + 0.839324i \(0.317049\pi\)
\(62\) −432.000 −0.884904
\(63\) 138.000 0.275974
\(64\) −512.000 −1.00000
\(65\) −190.000 −0.362563
\(66\) 0 0
\(67\) 126.000 0.229751 0.114876 0.993380i \(-0.463353\pi\)
0.114876 + 0.993380i \(0.463353\pi\)
\(68\) −208.000 −0.370937
\(69\) −156.000 −0.272177
\(70\) 120.000 0.204896
\(71\) 412.000 0.688668 0.344334 0.938847i \(-0.388105\pi\)
0.344334 + 0.938847i \(0.388105\pi\)
\(72\) 0 0
\(73\) 878.000 1.40770 0.703850 0.710348i \(-0.251463\pi\)
0.703850 + 0.710348i \(0.251463\pi\)
\(74\) 1064.00 1.67145
\(75\) 50.0000 0.0769800
\(76\) −800.000 −1.20745
\(77\) 0 0
\(78\) 304.000 0.441298
\(79\) −600.000 −0.854497 −0.427249 0.904134i \(-0.640517\pi\)
−0.427249 + 0.904134i \(0.640517\pi\)
\(80\) 320.000 0.447214
\(81\) 421.000 0.577503
\(82\) −88.0000 −0.118512
\(83\) −282.000 −0.372934 −0.186467 0.982461i \(-0.559704\pi\)
−0.186467 + 0.982461i \(0.559704\pi\)
\(84\) −96.0000 −0.124696
\(85\) 130.000 0.165888
\(86\) −1768.00 −2.21684
\(87\) 100.000 0.123231
\(88\) 0 0
\(89\) −150.000 −0.178651 −0.0893257 0.996002i \(-0.528471\pi\)
−0.0893257 + 0.996002i \(0.528471\pi\)
\(90\) 460.000 0.538758
\(91\) −228.000 −0.262647
\(92\) −624.000 −0.707136
\(93\) −216.000 −0.240840
\(94\) −2056.00 −2.25596
\(95\) 500.000 0.539989
\(96\) −512.000 −0.544331
\(97\) 386.000 0.404045 0.202022 0.979381i \(-0.435249\pi\)
0.202022 + 0.979381i \(0.435249\pi\)
\(98\) −1228.00 −1.26578
\(99\) 0 0
\(100\) 200.000 0.200000
\(101\) −702.000 −0.691600 −0.345800 0.938308i \(-0.612392\pi\)
−0.345800 + 0.938308i \(0.612392\pi\)
\(102\) −208.000 −0.201912
\(103\) −598.000 −0.572065 −0.286032 0.958220i \(-0.592337\pi\)
−0.286032 + 0.958220i \(0.592337\pi\)
\(104\) 0 0
\(105\) 60.0000 0.0557657
\(106\) 8.00000 0.00733046
\(107\) 1194.00 1.07877 0.539385 0.842059i \(-0.318657\pi\)
0.539385 + 0.842059i \(0.318657\pi\)
\(108\) −800.000 −0.712778
\(109\) 550.000 0.483307 0.241653 0.970363i \(-0.422310\pi\)
0.241653 + 0.970363i \(0.422310\pi\)
\(110\) 0 0
\(111\) 532.000 0.454912
\(112\) 384.000 0.323970
\(113\) 1562.00 1.30036 0.650180 0.759781i \(-0.274694\pi\)
0.650180 + 0.759781i \(0.274694\pi\)
\(114\) −800.000 −0.657253
\(115\) 390.000 0.316241
\(116\) 400.000 0.320164
\(117\) −874.000 −0.690610
\(118\) 2000.00 1.56030
\(119\) 156.000 0.120172
\(120\) 0 0
\(121\) 0 0
\(122\) 2072.00 1.53762
\(123\) −44.0000 −0.0322548
\(124\) −864.000 −0.625722
\(125\) −125.000 −0.0894427
\(126\) 552.000 0.390286
\(127\) −1846.00 −1.28981 −0.644906 0.764262i \(-0.723103\pi\)
−0.644906 + 0.764262i \(0.723103\pi\)
\(128\) 0 0
\(129\) −884.000 −0.603348
\(130\) −760.000 −0.512742
\(131\) 2208.00 1.47262 0.736312 0.676642i \(-0.236565\pi\)
0.736312 + 0.676642i \(0.236565\pi\)
\(132\) 0 0
\(133\) 600.000 0.391177
\(134\) 504.000 0.324918
\(135\) 500.000 0.318764
\(136\) 0 0
\(137\) −2334.00 −1.45553 −0.727763 0.685829i \(-0.759440\pi\)
−0.727763 + 0.685829i \(0.759440\pi\)
\(138\) −624.000 −0.384916
\(139\) 700.000 0.427146 0.213573 0.976927i \(-0.431490\pi\)
0.213573 + 0.976927i \(0.431490\pi\)
\(140\) 240.000 0.144884
\(141\) −1028.00 −0.613994
\(142\) 1648.00 0.973923
\(143\) 0 0
\(144\) 1472.00 0.851852
\(145\) −250.000 −0.143182
\(146\) 3512.00 1.99079
\(147\) −614.000 −0.344502
\(148\) 2128.00 1.18190
\(149\) −2050.00 −1.12713 −0.563566 0.826071i \(-0.690571\pi\)
−0.563566 + 0.826071i \(0.690571\pi\)
\(150\) 200.000 0.108866
\(151\) −1852.00 −0.998103 −0.499052 0.866572i \(-0.666318\pi\)
−0.499052 + 0.866572i \(0.666318\pi\)
\(152\) 0 0
\(153\) 598.000 0.315983
\(154\) 0 0
\(155\) 540.000 0.279831
\(156\) 608.000 0.312045
\(157\) −2494.00 −1.26779 −0.633894 0.773420i \(-0.718545\pi\)
−0.633894 + 0.773420i \(0.718545\pi\)
\(158\) −2400.00 −1.20844
\(159\) 4.00000 0.00199510
\(160\) 1280.00 0.632456
\(161\) 468.000 0.229090
\(162\) 1684.00 0.816713
\(163\) 2762.00 1.32722 0.663609 0.748080i \(-0.269024\pi\)
0.663609 + 0.748080i \(0.269024\pi\)
\(164\) −176.000 −0.0838006
\(165\) 0 0
\(166\) −1128.00 −0.527408
\(167\) −3126.00 −1.44849 −0.724243 0.689545i \(-0.757811\pi\)
−0.724243 + 0.689545i \(0.757811\pi\)
\(168\) 0 0
\(169\) −753.000 −0.342740
\(170\) 520.000 0.234601
\(171\) 2300.00 1.02857
\(172\) −3536.00 −1.56754
\(173\) 78.0000 0.0342788 0.0171394 0.999853i \(-0.494544\pi\)
0.0171394 + 0.999853i \(0.494544\pi\)
\(174\) 400.000 0.174275
\(175\) −150.000 −0.0647939
\(176\) 0 0
\(177\) 1000.00 0.424659
\(178\) −600.000 −0.252651
\(179\) −1300.00 −0.542830 −0.271415 0.962462i \(-0.587492\pi\)
−0.271415 + 0.962462i \(0.587492\pi\)
\(180\) 920.000 0.380960
\(181\) 1742.00 0.715369 0.357685 0.933842i \(-0.383566\pi\)
0.357685 + 0.933842i \(0.383566\pi\)
\(182\) −912.000 −0.371439
\(183\) 1036.00 0.418488
\(184\) 0 0
\(185\) −1330.00 −0.528560
\(186\) −864.000 −0.340600
\(187\) 0 0
\(188\) −4112.00 −1.59520
\(189\) 600.000 0.230918
\(190\) 2000.00 0.763659
\(191\) 3772.00 1.42897 0.714483 0.699653i \(-0.246662\pi\)
0.714483 + 0.699653i \(0.246662\pi\)
\(192\) −1024.00 −0.384900
\(193\) 358.000 0.133520 0.0667601 0.997769i \(-0.478734\pi\)
0.0667601 + 0.997769i \(0.478734\pi\)
\(194\) 1544.00 0.571406
\(195\) −380.000 −0.139551
\(196\) −2456.00 −0.895044
\(197\) 2214.00 0.800716 0.400358 0.916359i \(-0.368886\pi\)
0.400358 + 0.916359i \(0.368886\pi\)
\(198\) 0 0
\(199\) −2600.00 −0.926176 −0.463088 0.886312i \(-0.653259\pi\)
−0.463088 + 0.886312i \(0.653259\pi\)
\(200\) 0 0
\(201\) 252.000 0.0884314
\(202\) −2808.00 −0.978070
\(203\) −300.000 −0.103724
\(204\) −416.000 −0.142774
\(205\) 110.000 0.0374767
\(206\) −2392.00 −0.809022
\(207\) 1794.00 0.602375
\(208\) −2432.00 −0.810716
\(209\) 0 0
\(210\) 240.000 0.0788646
\(211\) 1168.00 0.381083 0.190541 0.981679i \(-0.438976\pi\)
0.190541 + 0.981679i \(0.438976\pi\)
\(212\) 16.0000 0.00518342
\(213\) 824.000 0.265068
\(214\) 4776.00 1.52561
\(215\) 2210.00 0.701027
\(216\) 0 0
\(217\) 648.000 0.202715
\(218\) 2200.00 0.683499
\(219\) 1756.00 0.541824
\(220\) 0 0
\(221\) −988.000 −0.300724
\(222\) 2128.00 0.643342
\(223\) −6478.00 −1.94529 −0.972643 0.232303i \(-0.925374\pi\)
−0.972643 + 0.232303i \(0.925374\pi\)
\(224\) 1536.00 0.458162
\(225\) −575.000 −0.170370
\(226\) 6248.00 1.83899
\(227\) −646.000 −0.188883 −0.0944417 0.995530i \(-0.530107\pi\)
−0.0944417 + 0.995530i \(0.530107\pi\)
\(228\) −1600.00 −0.464748
\(229\) 3750.00 1.08213 0.541063 0.840982i \(-0.318022\pi\)
0.541063 + 0.840982i \(0.318022\pi\)
\(230\) 1560.00 0.447232
\(231\) 0 0
\(232\) 0 0
\(233\) −1482.00 −0.416691 −0.208346 0.978055i \(-0.566808\pi\)
−0.208346 + 0.978055i \(0.566808\pi\)
\(234\) −3496.00 −0.976670
\(235\) 2570.00 0.713397
\(236\) 4000.00 1.10330
\(237\) −1200.00 −0.328896
\(238\) 624.000 0.169949
\(239\) −1400.00 −0.378906 −0.189453 0.981890i \(-0.560671\pi\)
−0.189453 + 0.981890i \(0.560671\pi\)
\(240\) 640.000 0.172133
\(241\) −3022.00 −0.807735 −0.403867 0.914817i \(-0.632334\pi\)
−0.403867 + 0.914817i \(0.632334\pi\)
\(242\) 0 0
\(243\) 3542.00 0.935059
\(244\) 4144.00 1.08726
\(245\) 1535.00 0.400276
\(246\) −176.000 −0.0456152
\(247\) −3800.00 −0.978900
\(248\) 0 0
\(249\) −564.000 −0.143542
\(250\) −500.000 −0.126491
\(251\) −1248.00 −0.313837 −0.156918 0.987612i \(-0.550156\pi\)
−0.156918 + 0.987612i \(0.550156\pi\)
\(252\) 1104.00 0.275974
\(253\) 0 0
\(254\) −7384.00 −1.82407
\(255\) 260.000 0.0638503
\(256\) 4096.00 1.00000
\(257\) 2106.00 0.511162 0.255581 0.966788i \(-0.417733\pi\)
0.255581 + 0.966788i \(0.417733\pi\)
\(258\) −3536.00 −0.853263
\(259\) −1596.00 −0.382898
\(260\) −1520.00 −0.362563
\(261\) −1150.00 −0.272733
\(262\) 8832.00 2.08261
\(263\) 3638.00 0.852961 0.426480 0.904497i \(-0.359753\pi\)
0.426480 + 0.904497i \(0.359753\pi\)
\(264\) 0 0
\(265\) −10.0000 −0.00231809
\(266\) 2400.00 0.553208
\(267\) −300.000 −0.0687629
\(268\) 1008.00 0.229751
\(269\) −6550.00 −1.48461 −0.742306 0.670061i \(-0.766268\pi\)
−0.742306 + 0.670061i \(0.766268\pi\)
\(270\) 2000.00 0.450800
\(271\) 4388.00 0.983587 0.491793 0.870712i \(-0.336342\pi\)
0.491793 + 0.870712i \(0.336342\pi\)
\(272\) 1664.00 0.370937
\(273\) −456.000 −0.101093
\(274\) −9336.00 −2.05842
\(275\) 0 0
\(276\) −1248.00 −0.272177
\(277\) −546.000 −0.118433 −0.0592165 0.998245i \(-0.518860\pi\)
−0.0592165 + 0.998245i \(0.518860\pi\)
\(278\) 2800.00 0.604075
\(279\) 2484.00 0.533022
\(280\) 0 0
\(281\) 6858.00 1.45592 0.727961 0.685619i \(-0.240468\pi\)
0.727961 + 0.685619i \(0.240468\pi\)
\(282\) −4112.00 −0.868319
\(283\) −9282.00 −1.94967 −0.974837 0.222920i \(-0.928441\pi\)
−0.974837 + 0.222920i \(0.928441\pi\)
\(284\) 3296.00 0.688668
\(285\) 1000.00 0.207842
\(286\) 0 0
\(287\) 132.000 0.0271488
\(288\) 5888.00 1.20470
\(289\) −4237.00 −0.862406
\(290\) −1000.00 −0.202490
\(291\) 772.000 0.155517
\(292\) 7024.00 1.40770
\(293\) −4842.00 −0.965436 −0.482718 0.875776i \(-0.660350\pi\)
−0.482718 + 0.875776i \(0.660350\pi\)
\(294\) −2456.00 −0.487200
\(295\) −2500.00 −0.493409
\(296\) 0 0
\(297\) 0 0
\(298\) −8200.00 −1.59400
\(299\) −2964.00 −0.573286
\(300\) 400.000 0.0769800
\(301\) 2652.00 0.507836
\(302\) −7408.00 −1.41153
\(303\) −1404.00 −0.266197
\(304\) 6400.00 1.20745
\(305\) −2590.00 −0.486239
\(306\) 2392.00 0.446868
\(307\) 2594.00 0.482239 0.241120 0.970495i \(-0.422485\pi\)
0.241120 + 0.970495i \(0.422485\pi\)
\(308\) 0 0
\(309\) −1196.00 −0.220188
\(310\) 2160.00 0.395741
\(311\) 7332.00 1.33685 0.668424 0.743781i \(-0.266969\pi\)
0.668424 + 0.743781i \(0.266969\pi\)
\(312\) 0 0
\(313\) 1562.00 0.282075 0.141037 0.990004i \(-0.454956\pi\)
0.141037 + 0.990004i \(0.454956\pi\)
\(314\) −9976.00 −1.79292
\(315\) −690.000 −0.123419
\(316\) −4800.00 −0.854497
\(317\) 1426.00 0.252657 0.126328 0.991988i \(-0.459681\pi\)
0.126328 + 0.991988i \(0.459681\pi\)
\(318\) 16.0000 0.00282150
\(319\) 0 0
\(320\) 2560.00 0.447214
\(321\) 2388.00 0.415219
\(322\) 1872.00 0.323983
\(323\) 2600.00 0.447888
\(324\) 3368.00 0.577503
\(325\) 950.000 0.162143
\(326\) 11048.0 1.87697
\(327\) 1100.00 0.186025
\(328\) 0 0
\(329\) 3084.00 0.516798
\(330\) 0 0
\(331\) −4008.00 −0.665558 −0.332779 0.943005i \(-0.607986\pi\)
−0.332779 + 0.943005i \(0.607986\pi\)
\(332\) −2256.00 −0.372934
\(333\) −6118.00 −1.00680
\(334\) −12504.0 −2.04847
\(335\) −630.000 −0.102748
\(336\) 768.000 0.124696
\(337\) −8866.00 −1.43312 −0.716561 0.697525i \(-0.754285\pi\)
−0.716561 + 0.697525i \(0.754285\pi\)
\(338\) −3012.00 −0.484708
\(339\) 3124.00 0.500509
\(340\) 1040.00 0.165888
\(341\) 0 0
\(342\) 9200.00 1.45462
\(343\) 3900.00 0.613936
\(344\) 0 0
\(345\) 780.000 0.121721
\(346\) 312.000 0.0484775
\(347\) 1714.00 0.265165 0.132583 0.991172i \(-0.457673\pi\)
0.132583 + 0.991172i \(0.457673\pi\)
\(348\) 800.000 0.123231
\(349\) −1150.00 −0.176384 −0.0881921 0.996103i \(-0.528109\pi\)
−0.0881921 + 0.996103i \(0.528109\pi\)
\(350\) −600.000 −0.0916324
\(351\) −3800.00 −0.577860
\(352\) 0 0
\(353\) −4398.00 −0.663122 −0.331561 0.943434i \(-0.607575\pi\)
−0.331561 + 0.943434i \(0.607575\pi\)
\(354\) 4000.00 0.600558
\(355\) −2060.00 −0.307982
\(356\) −1200.00 −0.178651
\(357\) 312.000 0.0462543
\(358\) −5200.00 −0.767677
\(359\) −1800.00 −0.264625 −0.132312 0.991208i \(-0.542240\pi\)
−0.132312 + 0.991208i \(0.542240\pi\)
\(360\) 0 0
\(361\) 3141.00 0.457938
\(362\) 6968.00 1.01168
\(363\) 0 0
\(364\) −1824.00 −0.262647
\(365\) −4390.00 −0.629543
\(366\) 4144.00 0.591832
\(367\) −5874.00 −0.835478 −0.417739 0.908567i \(-0.637177\pi\)
−0.417739 + 0.908567i \(0.637177\pi\)
\(368\) 4992.00 0.707136
\(369\) 506.000 0.0713857
\(370\) −5320.00 −0.747496
\(371\) −12.0000 −0.00167927
\(372\) −1728.00 −0.240840
\(373\) 2078.00 0.288458 0.144229 0.989544i \(-0.453930\pi\)
0.144229 + 0.989544i \(0.453930\pi\)
\(374\) 0 0
\(375\) −250.000 −0.0344265
\(376\) 0 0
\(377\) 1900.00 0.259562
\(378\) 2400.00 0.326568
\(379\) 7900.00 1.07070 0.535351 0.844630i \(-0.320179\pi\)
0.535351 + 0.844630i \(0.320179\pi\)
\(380\) 4000.00 0.539989
\(381\) −3692.00 −0.496449
\(382\) 15088.0 2.02086
\(383\) −7518.00 −1.00301 −0.501504 0.865155i \(-0.667220\pi\)
−0.501504 + 0.865155i \(0.667220\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1432.00 0.188826
\(387\) 10166.0 1.33531
\(388\) 3088.00 0.404045
\(389\) −1950.00 −0.254162 −0.127081 0.991892i \(-0.540561\pi\)
−0.127081 + 0.991892i \(0.540561\pi\)
\(390\) −1520.00 −0.197354
\(391\) 2028.00 0.262303
\(392\) 0 0
\(393\) 4416.00 0.566814
\(394\) 8856.00 1.13238
\(395\) 3000.00 0.382143
\(396\) 0 0
\(397\) 13786.0 1.74282 0.871410 0.490555i \(-0.163206\pi\)
0.871410 + 0.490555i \(0.163206\pi\)
\(398\) −10400.0 −1.30981
\(399\) 1200.00 0.150564
\(400\) −1600.00 −0.200000
\(401\) 6402.00 0.797258 0.398629 0.917112i \(-0.369486\pi\)
0.398629 + 0.917112i \(0.369486\pi\)
\(402\) 1008.00 0.125061
\(403\) −4104.00 −0.507282
\(404\) −5616.00 −0.691600
\(405\) −2105.00 −0.258267
\(406\) −1200.00 −0.146687
\(407\) 0 0
\(408\) 0 0
\(409\) −11150.0 −1.34800 −0.674000 0.738731i \(-0.735425\pi\)
−0.674000 + 0.738731i \(0.735425\pi\)
\(410\) 440.000 0.0530001
\(411\) −4668.00 −0.560232
\(412\) −4784.00 −0.572065
\(413\) −3000.00 −0.357434
\(414\) 7176.00 0.851887
\(415\) 1410.00 0.166781
\(416\) −9728.00 −1.14653
\(417\) 1400.00 0.164408
\(418\) 0 0
\(419\) −13700.0 −1.59735 −0.798674 0.601764i \(-0.794465\pi\)
−0.798674 + 0.601764i \(0.794465\pi\)
\(420\) 480.000 0.0557657
\(421\) −5438.00 −0.629529 −0.314765 0.949170i \(-0.601926\pi\)
−0.314765 + 0.949170i \(0.601926\pi\)
\(422\) 4672.00 0.538932
\(423\) 11822.0 1.35888
\(424\) 0 0
\(425\) −650.000 −0.0741874
\(426\) 3296.00 0.374863
\(427\) −3108.00 −0.352240
\(428\) 9552.00 1.07877
\(429\) 0 0
\(430\) 8840.00 0.991402
\(431\) −7692.00 −0.859653 −0.429827 0.902911i \(-0.641425\pi\)
−0.429827 + 0.902911i \(0.641425\pi\)
\(432\) 6400.00 0.712778
\(433\) −1118.00 −0.124082 −0.0620412 0.998074i \(-0.519761\pi\)
−0.0620412 + 0.998074i \(0.519761\pi\)
\(434\) 2592.00 0.286682
\(435\) −500.000 −0.0551107
\(436\) 4400.00 0.483307
\(437\) 7800.00 0.853832
\(438\) 7024.00 0.766255
\(439\) 2600.00 0.282668 0.141334 0.989962i \(-0.454861\pi\)
0.141334 + 0.989962i \(0.454861\pi\)
\(440\) 0 0
\(441\) 7061.00 0.762445
\(442\) −3952.00 −0.425288
\(443\) −11958.0 −1.28249 −0.641243 0.767337i \(-0.721581\pi\)
−0.641243 + 0.767337i \(0.721581\pi\)
\(444\) 4256.00 0.454912
\(445\) 750.000 0.0798953
\(446\) −25912.0 −2.75105
\(447\) −4100.00 −0.433833
\(448\) 3072.00 0.323970
\(449\) −17050.0 −1.79207 −0.896035 0.443984i \(-0.853565\pi\)
−0.896035 + 0.443984i \(0.853565\pi\)
\(450\) −2300.00 −0.240940
\(451\) 0 0
\(452\) 12496.0 1.30036
\(453\) −3704.00 −0.384170
\(454\) −2584.00 −0.267121
\(455\) 1140.00 0.117459
\(456\) 0 0
\(457\) 9494.00 0.971796 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(458\) 15000.0 1.53036
\(459\) 2600.00 0.264396
\(460\) 3120.00 0.316241
\(461\) 11418.0 1.15356 0.576778 0.816901i \(-0.304310\pi\)
0.576778 + 0.816901i \(0.304310\pi\)
\(462\) 0 0
\(463\) 7962.00 0.799191 0.399596 0.916692i \(-0.369151\pi\)
0.399596 + 0.916692i \(0.369151\pi\)
\(464\) −3200.00 −0.320164
\(465\) 1080.00 0.107707
\(466\) −5928.00 −0.589290
\(467\) 6526.00 0.646654 0.323327 0.946287i \(-0.395199\pi\)
0.323327 + 0.946287i \(0.395199\pi\)
\(468\) −6992.00 −0.690610
\(469\) −756.000 −0.0744325
\(470\) 10280.0 1.00890
\(471\) −4988.00 −0.487972
\(472\) 0 0
\(473\) 0 0
\(474\) −4800.00 −0.465129
\(475\) −2500.00 −0.241490
\(476\) 1248.00 0.120172
\(477\) −46.0000 −0.00441550
\(478\) −5600.00 −0.535854
\(479\) −17400.0 −1.65976 −0.829881 0.557940i \(-0.811592\pi\)
−0.829881 + 0.557940i \(0.811592\pi\)
\(480\) 2560.00 0.243432
\(481\) 10108.0 0.958181
\(482\) −12088.0 −1.14231
\(483\) 936.000 0.0881770
\(484\) 0 0
\(485\) −1930.00 −0.180694
\(486\) 14168.0 1.32237
\(487\) 1166.00 0.108494 0.0542469 0.998528i \(-0.482724\pi\)
0.0542469 + 0.998528i \(0.482724\pi\)
\(488\) 0 0
\(489\) 5524.00 0.510846
\(490\) 6140.00 0.566075
\(491\) −7072.00 −0.650010 −0.325005 0.945712i \(-0.605366\pi\)
−0.325005 + 0.945712i \(0.605366\pi\)
\(492\) −352.000 −0.0322548
\(493\) −1300.00 −0.118761
\(494\) −15200.0 −1.38437
\(495\) 0 0
\(496\) 6912.00 0.625722
\(497\) −2472.00 −0.223107
\(498\) −2256.00 −0.203000
\(499\) 100.000 0.00897117 0.00448559 0.999990i \(-0.498572\pi\)
0.00448559 + 0.999990i \(0.498572\pi\)
\(500\) −1000.00 −0.0894427
\(501\) −6252.00 −0.557522
\(502\) −4992.00 −0.443832
\(503\) −2602.00 −0.230651 −0.115325 0.993328i \(-0.536791\pi\)
−0.115325 + 0.993328i \(0.536791\pi\)
\(504\) 0 0
\(505\) 3510.00 0.309293
\(506\) 0 0
\(507\) −1506.00 −0.131921
\(508\) −14768.0 −1.28981
\(509\) 11150.0 0.970953 0.485476 0.874250i \(-0.338646\pi\)
0.485476 + 0.874250i \(0.338646\pi\)
\(510\) 1040.00 0.0902980
\(511\) −5268.00 −0.456052
\(512\) 16384.0 1.41421
\(513\) 10000.0 0.860645
\(514\) 8424.00 0.722892
\(515\) 2990.00 0.255835
\(516\) −7072.00 −0.603348
\(517\) 0 0
\(518\) −6384.00 −0.541500
\(519\) 156.000 0.0131939
\(520\) 0 0
\(521\) −3638.00 −0.305919 −0.152959 0.988232i \(-0.548880\pi\)
−0.152959 + 0.988232i \(0.548880\pi\)
\(522\) −4600.00 −0.385702
\(523\) 2078.00 0.173737 0.0868686 0.996220i \(-0.472314\pi\)
0.0868686 + 0.996220i \(0.472314\pi\)
\(524\) 17664.0 1.47262
\(525\) −300.000 −0.0249392
\(526\) 14552.0 1.20627
\(527\) 2808.00 0.232103
\(528\) 0 0
\(529\) −6083.00 −0.499959
\(530\) −40.0000 −0.00327828
\(531\) −11500.0 −0.939845
\(532\) 4800.00 0.391177
\(533\) −836.000 −0.0679384
\(534\) −1200.00 −0.0972455
\(535\) −5970.00 −0.482440
\(536\) 0 0
\(537\) −2600.00 −0.208935
\(538\) −26200.0 −2.09956
\(539\) 0 0
\(540\) 4000.00 0.318764
\(541\) −5622.00 −0.446781 −0.223391 0.974729i \(-0.571713\pi\)
−0.223391 + 0.974729i \(0.571713\pi\)
\(542\) 17552.0 1.39100
\(543\) 3484.00 0.275346
\(544\) 6656.00 0.524584
\(545\) −2750.00 −0.216141
\(546\) −1824.00 −0.142967
\(547\) −16486.0 −1.28865 −0.644324 0.764753i \(-0.722861\pi\)
−0.644324 + 0.764753i \(0.722861\pi\)
\(548\) −18672.0 −1.45553
\(549\) −11914.0 −0.926188
\(550\) 0 0
\(551\) −5000.00 −0.386583
\(552\) 0 0
\(553\) 3600.00 0.276831
\(554\) −2184.00 −0.167490
\(555\) −2660.00 −0.203443
\(556\) 5600.00 0.427146
\(557\) −11706.0 −0.890483 −0.445242 0.895410i \(-0.646882\pi\)
−0.445242 + 0.895410i \(0.646882\pi\)
\(558\) 9936.00 0.753807
\(559\) −16796.0 −1.27083
\(560\) −1920.00 −0.144884
\(561\) 0 0
\(562\) 27432.0 2.05898
\(563\) 25038.0 1.87429 0.937146 0.348939i \(-0.113458\pi\)
0.937146 + 0.348939i \(0.113458\pi\)
\(564\) −8224.00 −0.613994
\(565\) −7810.00 −0.581538
\(566\) −37128.0 −2.75725
\(567\) −2526.00 −0.187094
\(568\) 0 0
\(569\) −17550.0 −1.29303 −0.646515 0.762901i \(-0.723774\pi\)
−0.646515 + 0.762901i \(0.723774\pi\)
\(570\) 4000.00 0.293933
\(571\) −10712.0 −0.785084 −0.392542 0.919734i \(-0.628404\pi\)
−0.392542 + 0.919734i \(0.628404\pi\)
\(572\) 0 0
\(573\) 7544.00 0.550009
\(574\) 528.000 0.0383942
\(575\) −1950.00 −0.141427
\(576\) 11776.0 0.851852
\(577\) −13654.0 −0.985136 −0.492568 0.870274i \(-0.663942\pi\)
−0.492568 + 0.870274i \(0.663942\pi\)
\(578\) −16948.0 −1.21963
\(579\) 716.000 0.0513920
\(580\) −2000.00 −0.143182
\(581\) 1692.00 0.120819
\(582\) 3088.00 0.219934
\(583\) 0 0
\(584\) 0 0
\(585\) 4370.00 0.308850
\(586\) −19368.0 −1.36533
\(587\) 14166.0 0.996071 0.498035 0.867157i \(-0.334055\pi\)
0.498035 + 0.867157i \(0.334055\pi\)
\(588\) −4912.00 −0.344502
\(589\) 10800.0 0.755528
\(590\) −10000.0 −0.697786
\(591\) 4428.00 0.308196
\(592\) −17024.0 −1.18190
\(593\) −17842.0 −1.23555 −0.617777 0.786354i \(-0.711966\pi\)
−0.617777 + 0.786354i \(0.711966\pi\)
\(594\) 0 0
\(595\) −780.000 −0.0537427
\(596\) −16400.0 −1.12713
\(597\) −5200.00 −0.356485
\(598\) −11856.0 −0.810749
\(599\) −17600.0 −1.20053 −0.600264 0.799802i \(-0.704938\pi\)
−0.600264 + 0.799802i \(0.704938\pi\)
\(600\) 0 0
\(601\) −27302.0 −1.85303 −0.926516 0.376256i \(-0.877211\pi\)
−0.926516 + 0.376256i \(0.877211\pi\)
\(602\) 10608.0 0.718189
\(603\) −2898.00 −0.195714
\(604\) −14816.0 −0.998103
\(605\) 0 0
\(606\) −5616.00 −0.376459
\(607\) 3794.00 0.253696 0.126848 0.991922i \(-0.459514\pi\)
0.126848 + 0.991922i \(0.459514\pi\)
\(608\) 25600.0 1.70759
\(609\) −600.000 −0.0399232
\(610\) −10360.0 −0.687646
\(611\) −19532.0 −1.29326
\(612\) 4784.00 0.315983
\(613\) 13238.0 0.872231 0.436116 0.899891i \(-0.356354\pi\)
0.436116 + 0.899891i \(0.356354\pi\)
\(614\) 10376.0 0.681989
\(615\) 220.000 0.0144248
\(616\) 0 0
\(617\) −11574.0 −0.755189 −0.377595 0.925971i \(-0.623249\pi\)
−0.377595 + 0.925971i \(0.623249\pi\)
\(618\) −4784.00 −0.311393
\(619\) 8300.00 0.538942 0.269471 0.963008i \(-0.413151\pi\)
0.269471 + 0.963008i \(0.413151\pi\)
\(620\) 4320.00 0.279831
\(621\) 7800.00 0.504031
\(622\) 29328.0 1.89059
\(623\) 900.000 0.0578776
\(624\) −4864.00 −0.312045
\(625\) 625.000 0.0400000
\(626\) 6248.00 0.398914
\(627\) 0 0
\(628\) −19952.0 −1.26779
\(629\) −6916.00 −0.438409
\(630\) −2760.00 −0.174541
\(631\) −7508.00 −0.473675 −0.236837 0.971549i \(-0.576111\pi\)
−0.236837 + 0.971549i \(0.576111\pi\)
\(632\) 0 0
\(633\) 2336.00 0.146679
\(634\) 5704.00 0.357310
\(635\) 9230.00 0.576821
\(636\) 32.0000 0.00199510
\(637\) −11666.0 −0.725626
\(638\) 0 0
\(639\) −9476.00 −0.586643
\(640\) 0 0
\(641\) −27378.0 −1.68700 −0.843499 0.537130i \(-0.819508\pi\)
−0.843499 + 0.537130i \(0.819508\pi\)
\(642\) 9552.00 0.587208
\(643\) 1842.00 0.112973 0.0564863 0.998403i \(-0.482010\pi\)
0.0564863 + 0.998403i \(0.482010\pi\)
\(644\) 3744.00 0.229090
\(645\) 4420.00 0.269825
\(646\) 10400.0 0.633409
\(647\) −10114.0 −0.614563 −0.307282 0.951619i \(-0.599419\pi\)
−0.307282 + 0.951619i \(0.599419\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 3800.00 0.229305
\(651\) 1296.00 0.0780250
\(652\) 22096.0 1.32722
\(653\) 10402.0 0.623372 0.311686 0.950185i \(-0.399106\pi\)
0.311686 + 0.950185i \(0.399106\pi\)
\(654\) 4400.00 0.263079
\(655\) −11040.0 −0.658578
\(656\) 1408.00 0.0838006
\(657\) −20194.0 −1.19915
\(658\) 12336.0 0.730862
\(659\) −7100.00 −0.419692 −0.209846 0.977734i \(-0.567296\pi\)
−0.209846 + 0.977734i \(0.567296\pi\)
\(660\) 0 0
\(661\) −7118.00 −0.418847 −0.209424 0.977825i \(-0.567159\pi\)
−0.209424 + 0.977825i \(0.567159\pi\)
\(662\) −16032.0 −0.941241
\(663\) −1976.00 −0.115749
\(664\) 0 0
\(665\) −3000.00 −0.174940
\(666\) −24472.0 −1.42383
\(667\) −3900.00 −0.226400
\(668\) −25008.0 −1.44849
\(669\) −12956.0 −0.748741
\(670\) −2520.00 −0.145308
\(671\) 0 0
\(672\) 3072.00 0.176347
\(673\) 31278.0 1.79150 0.895749 0.444560i \(-0.146640\pi\)
0.895749 + 0.444560i \(0.146640\pi\)
\(674\) −35464.0 −2.02674
\(675\) −2500.00 −0.142556
\(676\) −6024.00 −0.342740
\(677\) 30054.0 1.70616 0.853079 0.521782i \(-0.174732\pi\)
0.853079 + 0.521782i \(0.174732\pi\)
\(678\) 12496.0 0.707826
\(679\) −2316.00 −0.130898
\(680\) 0 0
\(681\) −1292.00 −0.0727012
\(682\) 0 0
\(683\) −4518.00 −0.253113 −0.126557 0.991959i \(-0.540393\pi\)
−0.126557 + 0.991959i \(0.540393\pi\)
\(684\) 18400.0 1.02857
\(685\) 11670.0 0.650931
\(686\) 15600.0 0.868237
\(687\) 7500.00 0.416511
\(688\) 28288.0 1.56754
\(689\) 76.0000 0.00420228
\(690\) 3120.00 0.172140
\(691\) 29272.0 1.61152 0.805759 0.592243i \(-0.201758\pi\)
0.805759 + 0.592243i \(0.201758\pi\)
\(692\) 624.000 0.0342788
\(693\) 0 0
\(694\) 6856.00 0.375000
\(695\) −3500.00 −0.191025
\(696\) 0 0
\(697\) 572.000 0.0310847
\(698\) −4600.00 −0.249445
\(699\) −2964.00 −0.160385
\(700\) −1200.00 −0.0647939
\(701\) 5798.00 0.312393 0.156196 0.987726i \(-0.450077\pi\)
0.156196 + 0.987726i \(0.450077\pi\)
\(702\) −15200.0 −0.817218
\(703\) −26600.0 −1.42708
\(704\) 0 0
\(705\) 5140.00 0.274587
\(706\) −17592.0 −0.937796
\(707\) 4212.00 0.224057
\(708\) 8000.00 0.424659
\(709\) 8950.00 0.474082 0.237041 0.971500i \(-0.423822\pi\)
0.237041 + 0.971500i \(0.423822\pi\)
\(710\) −8240.00 −0.435552
\(711\) 13800.0 0.727905
\(712\) 0 0
\(713\) 8424.00 0.442470
\(714\) 1248.00 0.0654135
\(715\) 0 0
\(716\) −10400.0 −0.542830
\(717\) −2800.00 −0.145841
\(718\) −7200.00 −0.374236
\(719\) 7800.00 0.404577 0.202289 0.979326i \(-0.435162\pi\)
0.202289 + 0.979326i \(0.435162\pi\)
\(720\) −7360.00 −0.380960
\(721\) 3588.00 0.185332
\(722\) 12564.0 0.647623
\(723\) −6044.00 −0.310897
\(724\) 13936.0 0.715369
\(725\) 1250.00 0.0640329
\(726\) 0 0
\(727\) −8554.00 −0.436383 −0.218191 0.975906i \(-0.570016\pi\)
−0.218191 + 0.975906i \(0.570016\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) −17560.0 −0.890308
\(731\) 11492.0 0.581460
\(732\) 8288.00 0.418488
\(733\) −2882.00 −0.145224 −0.0726119 0.997360i \(-0.523133\pi\)
−0.0726119 + 0.997360i \(0.523133\pi\)
\(734\) −23496.0 −1.18154
\(735\) 3070.00 0.154066
\(736\) 19968.0 1.00004
\(737\) 0 0
\(738\) 2024.00 0.100955
\(739\) −18700.0 −0.930840 −0.465420 0.885090i \(-0.654097\pi\)
−0.465420 + 0.885090i \(0.654097\pi\)
\(740\) −10640.0 −0.528560
\(741\) −7600.00 −0.376779
\(742\) −48.0000 −0.00237485
\(743\) −12242.0 −0.604462 −0.302231 0.953235i \(-0.597731\pi\)
−0.302231 + 0.953235i \(0.597731\pi\)
\(744\) 0 0
\(745\) 10250.0 0.504068
\(746\) 8312.00 0.407941
\(747\) 6486.00 0.317685
\(748\) 0 0
\(749\) −7164.00 −0.349488
\(750\) −1000.00 −0.0486864
\(751\) −31148.0 −1.51346 −0.756729 0.653729i \(-0.773204\pi\)
−0.756729 + 0.653729i \(0.773204\pi\)
\(752\) 32896.0 1.59520
\(753\) −2496.00 −0.120796
\(754\) 7600.00 0.367076
\(755\) 9260.00 0.446365
\(756\) 4800.00 0.230918
\(757\) −7694.00 −0.369410 −0.184705 0.982794i \(-0.559133\pi\)
−0.184705 + 0.982794i \(0.559133\pi\)
\(758\) 31600.0 1.51420
\(759\) 0 0
\(760\) 0 0
\(761\) 4518.00 0.215213 0.107607 0.994194i \(-0.465681\pi\)
0.107607 + 0.994194i \(0.465681\pi\)
\(762\) −14768.0 −0.702084
\(763\) −3300.00 −0.156577
\(764\) 30176.0 1.42897
\(765\) −2990.00 −0.141312
\(766\) −30072.0 −1.41847
\(767\) 19000.0 0.894459
\(768\) 8192.00 0.384900
\(769\) 39550.0 1.85463 0.927314 0.374283i \(-0.122111\pi\)
0.927314 + 0.374283i \(0.122111\pi\)
\(770\) 0 0
\(771\) 4212.00 0.196746
\(772\) 2864.00 0.133520
\(773\) 22122.0 1.02933 0.514666 0.857391i \(-0.327916\pi\)
0.514666 + 0.857391i \(0.327916\pi\)
\(774\) 40664.0 1.88842
\(775\) −2700.00 −0.125144
\(776\) 0 0
\(777\) −3192.00 −0.147378
\(778\) −7800.00 −0.359439
\(779\) 2200.00 0.101185
\(780\) −3040.00 −0.139551
\(781\) 0 0
\(782\) 8112.00 0.370952
\(783\) −5000.00 −0.228206
\(784\) 19648.0 0.895044
\(785\) 12470.0 0.566972
\(786\) 17664.0 0.801595
\(787\) 16634.0 0.753416 0.376708 0.926332i \(-0.377056\pi\)
0.376708 + 0.926332i \(0.377056\pi\)
\(788\) 17712.0 0.800716
\(789\) 7276.00 0.328305
\(790\) 12000.0 0.540431
\(791\) −9372.00 −0.421277
\(792\) 0 0
\(793\) 19684.0 0.881462
\(794\) 55144.0 2.46472
\(795\) −20.0000 −0.000892235 0
\(796\) −20800.0 −0.926176
\(797\) 27586.0 1.22603 0.613015 0.790071i \(-0.289956\pi\)
0.613015 + 0.790071i \(0.289956\pi\)
\(798\) 4800.00 0.212930
\(799\) 13364.0 0.591720
\(800\) −6400.00 −0.282843
\(801\) 3450.00 0.152184
\(802\) 25608.0 1.12749
\(803\) 0 0
\(804\) 2016.00 0.0884314
\(805\) −2340.00 −0.102452
\(806\) −16416.0 −0.717406
\(807\) −13100.0 −0.571427
\(808\) 0 0
\(809\) −3850.00 −0.167316 −0.0836581 0.996495i \(-0.526660\pi\)
−0.0836581 + 0.996495i \(0.526660\pi\)
\(810\) −8420.00 −0.365245
\(811\) −10032.0 −0.434366 −0.217183 0.976131i \(-0.569687\pi\)
−0.217183 + 0.976131i \(0.569687\pi\)
\(812\) −2400.00 −0.103724
\(813\) 8776.00 0.378583
\(814\) 0 0
\(815\) −13810.0 −0.593550
\(816\) 3328.00 0.142774
\(817\) 44200.0 1.89273
\(818\) −44600.0 −1.90636
\(819\) 5244.00 0.223736
\(820\) 880.000 0.0374767
\(821\) −20562.0 −0.874079 −0.437039 0.899442i \(-0.643973\pi\)
−0.437039 + 0.899442i \(0.643973\pi\)
\(822\) −18672.0 −0.792288
\(823\) 10322.0 0.437184 0.218592 0.975816i \(-0.429854\pi\)
0.218592 + 0.975816i \(0.429854\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −12000.0 −0.505488
\(827\) −8846.00 −0.371954 −0.185977 0.982554i \(-0.559545\pi\)
−0.185977 + 0.982554i \(0.559545\pi\)
\(828\) 14352.0 0.602375
\(829\) −25350.0 −1.06205 −0.531026 0.847355i \(-0.678194\pi\)
−0.531026 + 0.847355i \(0.678194\pi\)
\(830\) 5640.00 0.235864
\(831\) −1092.00 −0.0455849
\(832\) −19456.0 −0.810716
\(833\) 7982.00 0.332005
\(834\) 5600.00 0.232509
\(835\) 15630.0 0.647783
\(836\) 0 0
\(837\) 10800.0 0.446001
\(838\) −54800.0 −2.25899
\(839\) 46000.0 1.89284 0.946422 0.322932i \(-0.104669\pi\)
0.946422 + 0.322932i \(0.104669\pi\)
\(840\) 0 0
\(841\) −21889.0 −0.897495
\(842\) −21752.0 −0.890289
\(843\) 13716.0 0.560385
\(844\) 9344.00 0.381083
\(845\) 3765.00 0.153278
\(846\) 47288.0 1.92174
\(847\) 0 0
\(848\) −128.000 −0.00518342
\(849\) −18564.0 −0.750430
\(850\) −2600.00 −0.104917
\(851\) −20748.0 −0.835761
\(852\) 6592.00 0.265068
\(853\) 16998.0 0.682298 0.341149 0.940009i \(-0.389184\pi\)
0.341149 + 0.940009i \(0.389184\pi\)
\(854\) −12432.0 −0.498143
\(855\) −11500.0 −0.459990
\(856\) 0 0
\(857\) 26494.0 1.05603 0.528015 0.849235i \(-0.322936\pi\)
0.528015 + 0.849235i \(0.322936\pi\)
\(858\) 0 0
\(859\) −21500.0 −0.853982 −0.426991 0.904256i \(-0.640426\pi\)
−0.426991 + 0.904256i \(0.640426\pi\)
\(860\) 17680.0 0.701027
\(861\) 264.000 0.0104496
\(862\) −30768.0 −1.21573
\(863\) 25762.0 1.01616 0.508082 0.861309i \(-0.330355\pi\)
0.508082 + 0.861309i \(0.330355\pi\)
\(864\) 25600.0 1.00802
\(865\) −390.000 −0.0153299
\(866\) −4472.00 −0.175479
\(867\) −8474.00 −0.331940
\(868\) 5184.00 0.202715
\(869\) 0 0
\(870\) −2000.00 −0.0779383
\(871\) 4788.00 0.186263
\(872\) 0 0
\(873\) −8878.00 −0.344186
\(874\) 31200.0 1.20750
\(875\) 750.000 0.0289767
\(876\) 14048.0 0.541824
\(877\) −30546.0 −1.17613 −0.588064 0.808814i \(-0.700110\pi\)
−0.588064 + 0.808814i \(0.700110\pi\)
\(878\) 10400.0 0.399753
\(879\) −9684.00 −0.371596
\(880\) 0 0
\(881\) 32942.0 1.25976 0.629878 0.776694i \(-0.283105\pi\)
0.629878 + 0.776694i \(0.283105\pi\)
\(882\) 28244.0 1.07826
\(883\) −27118.0 −1.03351 −0.516757 0.856132i \(-0.672861\pi\)
−0.516757 + 0.856132i \(0.672861\pi\)
\(884\) −7904.00 −0.300724
\(885\) −5000.00 −0.189913
\(886\) −47832.0 −1.81371
\(887\) 38634.0 1.46246 0.731230 0.682131i \(-0.238946\pi\)
0.731230 + 0.682131i \(0.238946\pi\)
\(888\) 0 0
\(889\) 11076.0 0.417860
\(890\) 3000.00 0.112989
\(891\) 0 0
\(892\) −51824.0 −1.94529
\(893\) 51400.0 1.92613
\(894\) −16400.0 −0.613532
\(895\) 6500.00 0.242761
\(896\) 0 0
\(897\) −5928.00 −0.220658
\(898\) −68200.0 −2.53437
\(899\) −5400.00 −0.200334
\(900\) −4600.00 −0.170370
\(901\) −52.0000 −0.00192272
\(902\) 0 0
\(903\) 5304.00 0.195466
\(904\) 0 0
\(905\) −8710.00 −0.319923
\(906\) −14816.0 −0.543299
\(907\) −1794.00 −0.0656767 −0.0328384 0.999461i \(-0.510455\pi\)
−0.0328384 + 0.999461i \(0.510455\pi\)
\(908\) −5168.00 −0.188883
\(909\) 16146.0 0.589141
\(910\) 4560.00 0.166113
\(911\) 41732.0 1.51772 0.758860 0.651254i \(-0.225757\pi\)
0.758860 + 0.651254i \(0.225757\pi\)
\(912\) 12800.0 0.464748
\(913\) 0 0
\(914\) 37976.0 1.37433
\(915\) −5180.00 −0.187154
\(916\) 30000.0 1.08213
\(917\) −13248.0 −0.477086
\(918\) 10400.0 0.373912
\(919\) −29200.0 −1.04812 −0.524058 0.851682i \(-0.675583\pi\)
−0.524058 + 0.851682i \(0.675583\pi\)
\(920\) 0 0
\(921\) 5188.00 0.185614
\(922\) 45672.0 1.63137
\(923\) 15656.0 0.558314
\(924\) 0 0
\(925\) 6650.00 0.236379
\(926\) 31848.0 1.13023
\(927\) 13754.0 0.487315
\(928\) −12800.0 −0.452781
\(929\) −48650.0 −1.71814 −0.859071 0.511856i \(-0.828958\pi\)
−0.859071 + 0.511856i \(0.828958\pi\)
\(930\) 4320.00 0.152321
\(931\) 30700.0 1.08072
\(932\) −11856.0 −0.416691
\(933\) 14664.0 0.514553
\(934\) 26104.0 0.914506
\(935\) 0 0
\(936\) 0 0
\(937\) 11334.0 0.395161 0.197580 0.980287i \(-0.436692\pi\)
0.197580 + 0.980287i \(0.436692\pi\)
\(938\) −3024.00 −0.105263
\(939\) 3124.00 0.108571
\(940\) 20560.0 0.713397
\(941\) 31178.0 1.08010 0.540050 0.841633i \(-0.318405\pi\)
0.540050 + 0.841633i \(0.318405\pi\)
\(942\) −19952.0 −0.690097
\(943\) 1716.00 0.0592584
\(944\) −32000.0 −1.10330
\(945\) −3000.00 −0.103270
\(946\) 0 0
\(947\) 4686.00 0.160797 0.0803984 0.996763i \(-0.474381\pi\)
0.0803984 + 0.996763i \(0.474381\pi\)
\(948\) −9600.00 −0.328896
\(949\) 33364.0 1.14124
\(950\) −10000.0 −0.341519
\(951\) 2852.00 0.0972476
\(952\) 0 0
\(953\) 598.000 0.0203265 0.0101632 0.999948i \(-0.496765\pi\)
0.0101632 + 0.999948i \(0.496765\pi\)
\(954\) −184.000 −0.00624447
\(955\) −18860.0 −0.639053
\(956\) −11200.0 −0.378906
\(957\) 0 0
\(958\) −69600.0 −2.34726
\(959\) 14004.0 0.471546
\(960\) 5120.00 0.172133
\(961\) −18127.0 −0.608472
\(962\) 40432.0 1.35507
\(963\) −27462.0 −0.918952
\(964\) −24176.0 −0.807735
\(965\) −1790.00 −0.0597121
\(966\) 3744.00 0.124701
\(967\) −41726.0 −1.38761 −0.693804 0.720163i \(-0.744067\pi\)
−0.693804 + 0.720163i \(0.744067\pi\)
\(968\) 0 0
\(969\) 5200.00 0.172392
\(970\) −7720.00 −0.255540
\(971\) 24312.0 0.803511 0.401756 0.915747i \(-0.368400\pi\)
0.401756 + 0.915747i \(0.368400\pi\)
\(972\) 28336.0 0.935059
\(973\) −4200.00 −0.138382
\(974\) 4664.00 0.153433
\(975\) 1900.00 0.0624089
\(976\) −33152.0 −1.08726
\(977\) 40946.0 1.34082 0.670409 0.741992i \(-0.266119\pi\)
0.670409 + 0.741992i \(0.266119\pi\)
\(978\) 22096.0 0.722446
\(979\) 0 0
\(980\) 12280.0 0.400276
\(981\) −12650.0 −0.411706
\(982\) −28288.0 −0.919253
\(983\) 42282.0 1.37191 0.685954 0.727645i \(-0.259385\pi\)
0.685954 + 0.727645i \(0.259385\pi\)
\(984\) 0 0
\(985\) −11070.0 −0.358091
\(986\) −5200.00 −0.167953
\(987\) 6168.00 0.198916
\(988\) −30400.0 −0.978900
\(989\) 34476.0 1.10847
\(990\) 0 0
\(991\) 1172.00 0.0375679 0.0187840 0.999824i \(-0.494021\pi\)
0.0187840 + 0.999824i \(0.494021\pi\)
\(992\) 27648.0 0.884904
\(993\) −8016.00 −0.256173
\(994\) −9888.00 −0.315521
\(995\) 13000.0 0.414199
\(996\) −4512.00 −0.143542
\(997\) 31614.0 1.00424 0.502119 0.864798i \(-0.332554\pi\)
0.502119 + 0.864798i \(0.332554\pi\)
\(998\) 400.000 0.0126872
\(999\) −26600.0 −0.842429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.d.1.1 1
11.10 odd 2 5.4.a.a.1.1 1
33.32 even 2 45.4.a.d.1.1 1
44.43 even 2 80.4.a.d.1.1 1
55.32 even 4 25.4.b.a.24.1 2
55.43 even 4 25.4.b.a.24.2 2
55.54 odd 2 25.4.a.c.1.1 1
77.10 even 6 245.4.e.g.226.1 2
77.32 odd 6 245.4.e.f.226.1 2
77.54 even 6 245.4.e.g.116.1 2
77.65 odd 6 245.4.e.f.116.1 2
77.76 even 2 245.4.a.a.1.1 1
88.21 odd 2 320.4.a.g.1.1 1
88.43 even 2 320.4.a.h.1.1 1
99.32 even 6 405.4.e.c.136.1 2
99.43 odd 6 405.4.e.l.271.1 2
99.65 even 6 405.4.e.c.271.1 2
99.76 odd 6 405.4.e.l.136.1 2
132.131 odd 2 720.4.a.u.1.1 1
143.142 odd 2 845.4.a.b.1.1 1
165.32 odd 4 225.4.b.c.199.2 2
165.98 odd 4 225.4.b.c.199.1 2
165.164 even 2 225.4.a.b.1.1 1
176.21 odd 4 1280.4.d.e.641.1 2
176.43 even 4 1280.4.d.l.641.2 2
176.109 odd 4 1280.4.d.e.641.2 2
176.131 even 4 1280.4.d.l.641.1 2
187.186 odd 2 1445.4.a.a.1.1 1
209.208 even 2 1805.4.a.h.1.1 1
220.43 odd 4 400.4.c.k.49.1 2
220.87 odd 4 400.4.c.k.49.2 2
220.219 even 2 400.4.a.m.1.1 1
231.230 odd 2 2205.4.a.q.1.1 1
385.384 even 2 1225.4.a.k.1.1 1
440.109 odd 2 1600.4.a.bi.1.1 1
440.219 even 2 1600.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.4.a.a.1.1 1 11.10 odd 2
25.4.a.c.1.1 1 55.54 odd 2
25.4.b.a.24.1 2 55.32 even 4
25.4.b.a.24.2 2 55.43 even 4
45.4.a.d.1.1 1 33.32 even 2
80.4.a.d.1.1 1 44.43 even 2
225.4.a.b.1.1 1 165.164 even 2
225.4.b.c.199.1 2 165.98 odd 4
225.4.b.c.199.2 2 165.32 odd 4
245.4.a.a.1.1 1 77.76 even 2
245.4.e.f.116.1 2 77.65 odd 6
245.4.e.f.226.1 2 77.32 odd 6
245.4.e.g.116.1 2 77.54 even 6
245.4.e.g.226.1 2 77.10 even 6
320.4.a.g.1.1 1 88.21 odd 2
320.4.a.h.1.1 1 88.43 even 2
400.4.a.m.1.1 1 220.219 even 2
400.4.c.k.49.1 2 220.43 odd 4
400.4.c.k.49.2 2 220.87 odd 4
405.4.e.c.136.1 2 99.32 even 6
405.4.e.c.271.1 2 99.65 even 6
405.4.e.l.136.1 2 99.76 odd 6
405.4.e.l.271.1 2 99.43 odd 6
605.4.a.d.1.1 1 1.1 even 1 trivial
720.4.a.u.1.1 1 132.131 odd 2
845.4.a.b.1.1 1 143.142 odd 2
1225.4.a.k.1.1 1 385.384 even 2
1280.4.d.e.641.1 2 176.21 odd 4
1280.4.d.e.641.2 2 176.109 odd 4
1280.4.d.l.641.1 2 176.131 even 4
1280.4.d.l.641.2 2 176.43 even 4
1445.4.a.a.1.1 1 187.186 odd 2
1600.4.a.s.1.1 1 440.219 even 2
1600.4.a.bi.1.1 1 440.109 odd 2
1805.4.a.h.1.1 1 209.208 even 2
2205.4.a.q.1.1 1 231.230 odd 2