Properties

Label 605.4.a.d
Level $605$
Weight $4$
Character orbit 605.a
Self dual yes
Analytic conductor $35.696$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 2 q^{3} + 8 q^{4} - 5 q^{5} + 8 q^{6} - 6 q^{7} - 23 q^{9} - 20 q^{10} + 16 q^{12} + 38 q^{13} - 24 q^{14} - 10 q^{15} - 64 q^{16} - 26 q^{17} - 92 q^{18} - 100 q^{19} - 40 q^{20} - 12 q^{21}+ \cdots - 1228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 2.00000 8.00000 −5.00000 8.00000 −6.00000 0 −23.0000 −20.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.4.a.d 1
11.b odd 2 1 5.4.a.a 1
33.d even 2 1 45.4.a.d 1
44.c even 2 1 80.4.a.d 1
55.d odd 2 1 25.4.a.c 1
55.e even 4 2 25.4.b.a 2
77.b even 2 1 245.4.a.a 1
77.h odd 6 2 245.4.e.f 2
77.i even 6 2 245.4.e.g 2
88.b odd 2 1 320.4.a.g 1
88.g even 2 1 320.4.a.h 1
99.g even 6 2 405.4.e.c 2
99.h odd 6 2 405.4.e.l 2
132.d odd 2 1 720.4.a.u 1
143.d odd 2 1 845.4.a.b 1
165.d even 2 1 225.4.a.b 1
165.l odd 4 2 225.4.b.c 2
176.i even 4 2 1280.4.d.l 2
176.l odd 4 2 1280.4.d.e 2
187.b odd 2 1 1445.4.a.a 1
209.d even 2 1 1805.4.a.h 1
220.g even 2 1 400.4.a.m 1
220.i odd 4 2 400.4.c.k 2
231.h odd 2 1 2205.4.a.q 1
385.h even 2 1 1225.4.a.k 1
440.c even 2 1 1600.4.a.s 1
440.o odd 2 1 1600.4.a.bi 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 11.b odd 2 1
25.4.a.c 1 55.d odd 2 1
25.4.b.a 2 55.e even 4 2
45.4.a.d 1 33.d even 2 1
80.4.a.d 1 44.c even 2 1
225.4.a.b 1 165.d even 2 1
225.4.b.c 2 165.l odd 4 2
245.4.a.a 1 77.b even 2 1
245.4.e.f 2 77.h odd 6 2
245.4.e.g 2 77.i even 6 2
320.4.a.g 1 88.b odd 2 1
320.4.a.h 1 88.g even 2 1
400.4.a.m 1 220.g even 2 1
400.4.c.k 2 220.i odd 4 2
405.4.e.c 2 99.g even 6 2
405.4.e.l 2 99.h odd 6 2
605.4.a.d 1 1.a even 1 1 trivial
720.4.a.u 1 132.d odd 2 1
845.4.a.b 1 143.d odd 2 1
1225.4.a.k 1 385.h even 2 1
1280.4.d.e 2 176.l odd 4 2
1280.4.d.l 2 176.i even 4 2
1445.4.a.a 1 187.b odd 2 1
1600.4.a.s 1 440.c even 2 1
1600.4.a.bi 1 440.o odd 2 1
1805.4.a.h 1 209.d even 2 1
2205.4.a.q 1 231.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(605))\):

\( T_{2} - 4 \) Copy content Toggle raw display
\( T_{3} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 6 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 38 \) Copy content Toggle raw display
$17$ \( T + 26 \) Copy content Toggle raw display
$19$ \( T + 100 \) Copy content Toggle raw display
$23$ \( T + 78 \) Copy content Toggle raw display
$29$ \( T - 50 \) Copy content Toggle raw display
$31$ \( T + 108 \) Copy content Toggle raw display
$37$ \( T - 266 \) Copy content Toggle raw display
$41$ \( T + 22 \) Copy content Toggle raw display
$43$ \( T + 442 \) Copy content Toggle raw display
$47$ \( T + 514 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T - 500 \) Copy content Toggle raw display
$61$ \( T - 518 \) Copy content Toggle raw display
$67$ \( T - 126 \) Copy content Toggle raw display
$71$ \( T - 412 \) Copy content Toggle raw display
$73$ \( T - 878 \) Copy content Toggle raw display
$79$ \( T + 600 \) Copy content Toggle raw display
$83$ \( T + 282 \) Copy content Toggle raw display
$89$ \( T + 150 \) Copy content Toggle raw display
$97$ \( T - 386 \) Copy content Toggle raw display
show more
show less