Properties

Label 320.4.a.g
Level $320$
Weight $4$
Character orbit 320.a
Self dual yes
Analytic conductor $18.881$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [320,4,Mod(1,320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.8806112018\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{3} + 5 q^{5} + 6 q^{7} - 23 q^{9} - 32 q^{11} + 38 q^{13} - 10 q^{15} + 26 q^{17} - 100 q^{19} - 12 q^{21} - 78 q^{23} + 25 q^{25} + 100 q^{27} + 50 q^{29} - 108 q^{31} + 64 q^{33} + 30 q^{35}+ \cdots + 736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 0 5.00000 0 6.00000 0 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.4.a.g 1
4.b odd 2 1 320.4.a.h 1
5.b even 2 1 1600.4.a.bi 1
8.b even 2 1 5.4.a.a 1
8.d odd 2 1 80.4.a.d 1
16.e even 4 2 1280.4.d.e 2
16.f odd 4 2 1280.4.d.l 2
20.d odd 2 1 1600.4.a.s 1
24.f even 2 1 720.4.a.u 1
24.h odd 2 1 45.4.a.d 1
40.e odd 2 1 400.4.a.m 1
40.f even 2 1 25.4.a.c 1
40.i odd 4 2 25.4.b.a 2
40.k even 4 2 400.4.c.k 2
56.h odd 2 1 245.4.a.a 1
56.j odd 6 2 245.4.e.g 2
56.p even 6 2 245.4.e.f 2
72.j odd 6 2 405.4.e.c 2
72.n even 6 2 405.4.e.l 2
88.b odd 2 1 605.4.a.d 1
104.e even 2 1 845.4.a.b 1
120.i odd 2 1 225.4.a.b 1
120.w even 4 2 225.4.b.c 2
136.h even 2 1 1445.4.a.a 1
152.g odd 2 1 1805.4.a.h 1
168.i even 2 1 2205.4.a.q 1
280.c odd 2 1 1225.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 8.b even 2 1
25.4.a.c 1 40.f even 2 1
25.4.b.a 2 40.i odd 4 2
45.4.a.d 1 24.h odd 2 1
80.4.a.d 1 8.d odd 2 1
225.4.a.b 1 120.i odd 2 1
225.4.b.c 2 120.w even 4 2
245.4.a.a 1 56.h odd 2 1
245.4.e.f 2 56.p even 6 2
245.4.e.g 2 56.j odd 6 2
320.4.a.g 1 1.a even 1 1 trivial
320.4.a.h 1 4.b odd 2 1
400.4.a.m 1 40.e odd 2 1
400.4.c.k 2 40.k even 4 2
405.4.e.c 2 72.j odd 6 2
405.4.e.l 2 72.n even 6 2
605.4.a.d 1 88.b odd 2 1
720.4.a.u 1 24.f even 2 1
845.4.a.b 1 104.e even 2 1
1225.4.a.k 1 280.c odd 2 1
1280.4.d.e 2 16.e even 4 2
1280.4.d.l 2 16.f odd 4 2
1445.4.a.a 1 136.h even 2 1
1600.4.a.s 1 20.d odd 2 1
1600.4.a.bi 1 5.b even 2 1
1805.4.a.h 1 152.g odd 2 1
2205.4.a.q 1 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(320))\):

\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{7} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 6 \) Copy content Toggle raw display
$11$ \( T + 32 \) Copy content Toggle raw display
$13$ \( T - 38 \) Copy content Toggle raw display
$17$ \( T - 26 \) Copy content Toggle raw display
$19$ \( T + 100 \) Copy content Toggle raw display
$23$ \( T + 78 \) Copy content Toggle raw display
$29$ \( T - 50 \) Copy content Toggle raw display
$31$ \( T + 108 \) Copy content Toggle raw display
$37$ \( T + 266 \) Copy content Toggle raw display
$41$ \( T - 22 \) Copy content Toggle raw display
$43$ \( T + 442 \) Copy content Toggle raw display
$47$ \( T + 514 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 500 \) Copy content Toggle raw display
$61$ \( T - 518 \) Copy content Toggle raw display
$67$ \( T + 126 \) Copy content Toggle raw display
$71$ \( T - 412 \) Copy content Toggle raw display
$73$ \( T + 878 \) Copy content Toggle raw display
$79$ \( T - 600 \) Copy content Toggle raw display
$83$ \( T + 282 \) Copy content Toggle raw display
$89$ \( T + 150 \) Copy content Toggle raw display
$97$ \( T - 386 \) Copy content Toggle raw display
show more
show less