Properties

Label 183.2.a.b.1.2
Level $183$
Weight $2$
Character 183.1
Self dual yes
Analytic conductor $1.461$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [183,2,Mod(1,183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("183.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 183 = 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 183.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.46126235699\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 183.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108 q^{2} -1.00000 q^{3} -1.90321 q^{4} +2.00000 q^{5} -0.311108 q^{6} +4.42864 q^{7} -1.21432 q^{8} +1.00000 q^{9} +0.622216 q^{10} +2.90321 q^{11} +1.90321 q^{12} -2.42864 q^{13} +1.37778 q^{14} -2.00000 q^{15} +3.42864 q^{16} +6.28100 q^{17} +0.311108 q^{18} -2.62222 q^{19} -3.80642 q^{20} -4.42864 q^{21} +0.903212 q^{22} -5.95407 q^{23} +1.21432 q^{24} -1.00000 q^{25} -0.755569 q^{26} -1.00000 q^{27} -8.42864 q^{28} +3.52543 q^{29} -0.622216 q^{30} -7.18421 q^{31} +3.49532 q^{32} -2.90321 q^{33} +1.95407 q^{34} +8.85728 q^{35} -1.90321 q^{36} -10.8573 q^{37} -0.815792 q^{38} +2.42864 q^{39} -2.42864 q^{40} +5.05086 q^{41} -1.37778 q^{42} +0.133353 q^{43} -5.52543 q^{44} +2.00000 q^{45} -1.85236 q^{46} +1.24443 q^{47} -3.42864 q^{48} +12.6128 q^{49} -0.311108 q^{50} -6.28100 q^{51} +4.62222 q^{52} +10.5763 q^{53} -0.311108 q^{54} +5.80642 q^{55} -5.37778 q^{56} +2.62222 q^{57} +1.09679 q^{58} -13.5669 q^{59} +3.80642 q^{60} +1.00000 q^{61} -2.23506 q^{62} +4.42864 q^{63} -5.76986 q^{64} -4.85728 q^{65} -0.903212 q^{66} -8.99063 q^{67} -11.9541 q^{68} +5.95407 q^{69} +2.75557 q^{70} -1.95407 q^{71} -1.21432 q^{72} +8.10171 q^{73} -3.37778 q^{74} +1.00000 q^{75} +4.99063 q^{76} +12.8573 q^{77} +0.755569 q^{78} +4.99063 q^{79} +6.85728 q^{80} +1.00000 q^{81} +1.57136 q^{82} -11.6128 q^{83} +8.42864 q^{84} +12.5620 q^{85} +0.0414872 q^{86} -3.52543 q^{87} -3.52543 q^{88} -12.3827 q^{89} +0.622216 q^{90} -10.7556 q^{91} +11.3319 q^{92} +7.18421 q^{93} +0.387152 q^{94} -5.24443 q^{95} -3.49532 q^{96} +1.57136 q^{97} +3.92396 q^{98} +2.90321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 3 q^{3} + q^{4} + 6 q^{5} - q^{6} + 3 q^{8} + 3 q^{9} + 2 q^{10} + 2 q^{11} - q^{12} + 6 q^{13} + 4 q^{14} - 6 q^{15} - 3 q^{16} + 12 q^{17} + q^{18} - 8 q^{19} + 2 q^{20} - 4 q^{22}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108 0.219986 0.109993 0.993932i \(-0.464917\pi\)
0.109993 + 0.993932i \(0.464917\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.90321 −0.951606
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) −0.311108 −0.127009
\(7\) 4.42864 1.67387 0.836934 0.547304i \(-0.184346\pi\)
0.836934 + 0.547304i \(0.184346\pi\)
\(8\) −1.21432 −0.429327
\(9\) 1.00000 0.333333
\(10\) 0.622216 0.196762
\(11\) 2.90321 0.875351 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(12\) 1.90321 0.549410
\(13\) −2.42864 −0.673583 −0.336792 0.941579i \(-0.609342\pi\)
−0.336792 + 0.941579i \(0.609342\pi\)
\(14\) 1.37778 0.368228
\(15\) −2.00000 −0.516398
\(16\) 3.42864 0.857160
\(17\) 6.28100 1.52337 0.761683 0.647950i \(-0.224374\pi\)
0.761683 + 0.647950i \(0.224374\pi\)
\(18\) 0.311108 0.0733288
\(19\) −2.62222 −0.601578 −0.300789 0.953691i \(-0.597250\pi\)
−0.300789 + 0.953691i \(0.597250\pi\)
\(20\) −3.80642 −0.851142
\(21\) −4.42864 −0.966408
\(22\) 0.903212 0.192565
\(23\) −5.95407 −1.24151 −0.620754 0.784005i \(-0.713174\pi\)
−0.620754 + 0.784005i \(0.713174\pi\)
\(24\) 1.21432 0.247872
\(25\) −1.00000 −0.200000
\(26\) −0.755569 −0.148179
\(27\) −1.00000 −0.192450
\(28\) −8.42864 −1.59286
\(29\) 3.52543 0.654655 0.327328 0.944911i \(-0.393852\pi\)
0.327328 + 0.944911i \(0.393852\pi\)
\(30\) −0.622216 −0.113601
\(31\) −7.18421 −1.29032 −0.645161 0.764047i \(-0.723210\pi\)
−0.645161 + 0.764047i \(0.723210\pi\)
\(32\) 3.49532 0.617890
\(33\) −2.90321 −0.505384
\(34\) 1.95407 0.335120
\(35\) 8.85728 1.49715
\(36\) −1.90321 −0.317202
\(37\) −10.8573 −1.78493 −0.892463 0.451121i \(-0.851024\pi\)
−0.892463 + 0.451121i \(0.851024\pi\)
\(38\) −0.815792 −0.132339
\(39\) 2.42864 0.388894
\(40\) −2.42864 −0.384002
\(41\) 5.05086 0.788811 0.394406 0.918936i \(-0.370951\pi\)
0.394406 + 0.918936i \(0.370951\pi\)
\(42\) −1.37778 −0.212597
\(43\) 0.133353 0.0203362 0.0101681 0.999948i \(-0.496763\pi\)
0.0101681 + 0.999948i \(0.496763\pi\)
\(44\) −5.52543 −0.832990
\(45\) 2.00000 0.298142
\(46\) −1.85236 −0.273115
\(47\) 1.24443 0.181519 0.0907595 0.995873i \(-0.471071\pi\)
0.0907595 + 0.995873i \(0.471071\pi\)
\(48\) −3.42864 −0.494881
\(49\) 12.6128 1.80184
\(50\) −0.311108 −0.0439973
\(51\) −6.28100 −0.879515
\(52\) 4.62222 0.640986
\(53\) 10.5763 1.45276 0.726382 0.687291i \(-0.241200\pi\)
0.726382 + 0.687291i \(0.241200\pi\)
\(54\) −0.311108 −0.0423364
\(55\) 5.80642 0.782938
\(56\) −5.37778 −0.718637
\(57\) 2.62222 0.347321
\(58\) 1.09679 0.144015
\(59\) −13.5669 −1.76626 −0.883131 0.469127i \(-0.844569\pi\)
−0.883131 + 0.469127i \(0.844569\pi\)
\(60\) 3.80642 0.491407
\(61\) 1.00000 0.128037
\(62\) −2.23506 −0.283853
\(63\) 4.42864 0.557956
\(64\) −5.76986 −0.721232
\(65\) −4.85728 −0.602471
\(66\) −0.903212 −0.111178
\(67\) −8.99063 −1.09838 −0.549190 0.835697i \(-0.685064\pi\)
−0.549190 + 0.835697i \(0.685064\pi\)
\(68\) −11.9541 −1.44964
\(69\) 5.95407 0.716785
\(70\) 2.75557 0.329353
\(71\) −1.95407 −0.231905 −0.115953 0.993255i \(-0.536992\pi\)
−0.115953 + 0.993255i \(0.536992\pi\)
\(72\) −1.21432 −0.143109
\(73\) 8.10171 0.948233 0.474117 0.880462i \(-0.342767\pi\)
0.474117 + 0.880462i \(0.342767\pi\)
\(74\) −3.37778 −0.392659
\(75\) 1.00000 0.115470
\(76\) 4.99063 0.572465
\(77\) 12.8573 1.46522
\(78\) 0.755569 0.0855513
\(79\) 4.99063 0.561490 0.280745 0.959782i \(-0.409418\pi\)
0.280745 + 0.959782i \(0.409418\pi\)
\(80\) 6.85728 0.766667
\(81\) 1.00000 0.111111
\(82\) 1.57136 0.173528
\(83\) −11.6128 −1.27468 −0.637338 0.770585i \(-0.719964\pi\)
−0.637338 + 0.770585i \(0.719964\pi\)
\(84\) 8.42864 0.919640
\(85\) 12.5620 1.36254
\(86\) 0.0414872 0.00447368
\(87\) −3.52543 −0.377966
\(88\) −3.52543 −0.375812
\(89\) −12.3827 −1.31256 −0.656282 0.754516i \(-0.727872\pi\)
−0.656282 + 0.754516i \(0.727872\pi\)
\(90\) 0.622216 0.0655873
\(91\) −10.7556 −1.12749
\(92\) 11.3319 1.18143
\(93\) 7.18421 0.744968
\(94\) 0.387152 0.0399317
\(95\) −5.24443 −0.538067
\(96\) −3.49532 −0.356739
\(97\) 1.57136 0.159547 0.0797737 0.996813i \(-0.474580\pi\)
0.0797737 + 0.996813i \(0.474580\pi\)
\(98\) 3.92396 0.396379
\(99\) 2.90321 0.291784
\(100\) 1.90321 0.190321
\(101\) −0.0874201 −0.00869863 −0.00434931 0.999991i \(-0.501384\pi\)
−0.00434931 + 0.999991i \(0.501384\pi\)
\(102\) −1.95407 −0.193481
\(103\) 1.37778 0.135757 0.0678786 0.997694i \(-0.478377\pi\)
0.0678786 + 0.997694i \(0.478377\pi\)
\(104\) 2.94914 0.289187
\(105\) −8.85728 −0.864382
\(106\) 3.29036 0.319588
\(107\) −1.24443 −0.120304 −0.0601519 0.998189i \(-0.519158\pi\)
−0.0601519 + 0.998189i \(0.519158\pi\)
\(108\) 1.90321 0.183137
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 1.80642 0.172236
\(111\) 10.8573 1.03053
\(112\) 15.1842 1.43477
\(113\) 19.4193 1.82681 0.913406 0.407050i \(-0.133443\pi\)
0.913406 + 0.407050i \(0.133443\pi\)
\(114\) 0.815792 0.0764059
\(115\) −11.9081 −1.11044
\(116\) −6.70964 −0.622974
\(117\) −2.42864 −0.224528
\(118\) −4.22077 −0.388554
\(119\) 27.8163 2.54991
\(120\) 2.42864 0.221703
\(121\) −2.57136 −0.233760
\(122\) 0.311108 0.0281664
\(123\) −5.05086 −0.455420
\(124\) 13.6731 1.22788
\(125\) −12.0000 −1.07331
\(126\) 1.37778 0.122743
\(127\) 1.11108 0.0985922 0.0492961 0.998784i \(-0.484302\pi\)
0.0492961 + 0.998784i \(0.484302\pi\)
\(128\) −8.78568 −0.776552
\(129\) −0.133353 −0.0117411
\(130\) −1.51114 −0.132536
\(131\) 6.36842 0.556411 0.278206 0.960522i \(-0.410260\pi\)
0.278206 + 0.960522i \(0.410260\pi\)
\(132\) 5.52543 0.480927
\(133\) −11.6128 −1.00696
\(134\) −2.79706 −0.241629
\(135\) −2.00000 −0.172133
\(136\) −7.62714 −0.654022
\(137\) −7.80642 −0.666948 −0.333474 0.942759i \(-0.608221\pi\)
−0.333474 + 0.942759i \(0.608221\pi\)
\(138\) 1.85236 0.157683
\(139\) 15.0923 1.28012 0.640058 0.768327i \(-0.278910\pi\)
0.640058 + 0.768327i \(0.278910\pi\)
\(140\) −16.8573 −1.42470
\(141\) −1.24443 −0.104800
\(142\) −0.607926 −0.0510160
\(143\) −7.05086 −0.589622
\(144\) 3.42864 0.285720
\(145\) 7.05086 0.585542
\(146\) 2.52051 0.208599
\(147\) −12.6128 −1.04029
\(148\) 20.6637 1.69855
\(149\) −13.0509 −1.06917 −0.534584 0.845115i \(-0.679532\pi\)
−0.534584 + 0.845115i \(0.679532\pi\)
\(150\) 0.311108 0.0254018
\(151\) −15.7462 −1.28141 −0.640704 0.767788i \(-0.721357\pi\)
−0.640704 + 0.767788i \(0.721357\pi\)
\(152\) 3.18421 0.258273
\(153\) 6.28100 0.507788
\(154\) 4.00000 0.322329
\(155\) −14.3684 −1.15410
\(156\) −4.62222 −0.370073
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 1.55262 0.123520
\(159\) −10.5763 −0.838754
\(160\) 6.99063 0.552658
\(161\) −26.3684 −2.07812
\(162\) 0.311108 0.0244429
\(163\) −7.86665 −0.616163 −0.308082 0.951360i \(-0.599687\pi\)
−0.308082 + 0.951360i \(0.599687\pi\)
\(164\) −9.61285 −0.750637
\(165\) −5.80642 −0.452029
\(166\) −3.61285 −0.280411
\(167\) 9.80642 0.758844 0.379422 0.925224i \(-0.376123\pi\)
0.379422 + 0.925224i \(0.376123\pi\)
\(168\) 5.37778 0.414905
\(169\) −7.10171 −0.546285
\(170\) 3.90813 0.299740
\(171\) −2.62222 −0.200526
\(172\) −0.253799 −0.0193520
\(173\) 14.1891 1.07878 0.539390 0.842056i \(-0.318655\pi\)
0.539390 + 0.842056i \(0.318655\pi\)
\(174\) −1.09679 −0.0831473
\(175\) −4.42864 −0.334774
\(176\) 9.95407 0.750316
\(177\) 13.5669 1.01975
\(178\) −3.85236 −0.288746
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −3.80642 −0.283714
\(181\) −6.94914 −0.516526 −0.258263 0.966075i \(-0.583150\pi\)
−0.258263 + 0.966075i \(0.583150\pi\)
\(182\) −3.34614 −0.248033
\(183\) −1.00000 −0.0739221
\(184\) 7.23014 0.533013
\(185\) −21.7146 −1.59649
\(186\) 2.23506 0.163883
\(187\) 18.2351 1.33348
\(188\) −2.36842 −0.172735
\(189\) −4.42864 −0.322136
\(190\) −1.63158 −0.118368
\(191\) −13.0049 −0.941003 −0.470502 0.882399i \(-0.655927\pi\)
−0.470502 + 0.882399i \(0.655927\pi\)
\(192\) 5.76986 0.416404
\(193\) 16.1017 1.15903 0.579513 0.814963i \(-0.303243\pi\)
0.579513 + 0.814963i \(0.303243\pi\)
\(194\) 0.488863 0.0350983
\(195\) 4.85728 0.347837
\(196\) −24.0049 −1.71464
\(197\) 17.2257 1.22728 0.613640 0.789586i \(-0.289705\pi\)
0.613640 + 0.789586i \(0.289705\pi\)
\(198\) 0.903212 0.0641885
\(199\) −6.10171 −0.432539 −0.216269 0.976334i \(-0.569389\pi\)
−0.216269 + 0.976334i \(0.569389\pi\)
\(200\) 1.21432 0.0858654
\(201\) 8.99063 0.634150
\(202\) −0.0271971 −0.00191358
\(203\) 15.6128 1.09581
\(204\) 11.9541 0.836952
\(205\) 10.1017 0.705534
\(206\) 0.428639 0.0298647
\(207\) −5.95407 −0.413836
\(208\) −8.32693 −0.577369
\(209\) −7.61285 −0.526592
\(210\) −2.75557 −0.190152
\(211\) −9.76494 −0.672246 −0.336123 0.941818i \(-0.609116\pi\)
−0.336123 + 0.941818i \(0.609116\pi\)
\(212\) −20.1289 −1.38246
\(213\) 1.95407 0.133890
\(214\) −0.387152 −0.0264652
\(215\) 0.266706 0.0181892
\(216\) 1.21432 0.0826240
\(217\) −31.8163 −2.15983
\(218\) −3.11108 −0.210709
\(219\) −8.10171 −0.547463
\(220\) −11.0509 −0.745049
\(221\) −15.2543 −1.02611
\(222\) 3.37778 0.226702
\(223\) 17.9398 1.20134 0.600668 0.799498i \(-0.294901\pi\)
0.600668 + 0.799498i \(0.294901\pi\)
\(224\) 15.4795 1.03427
\(225\) −1.00000 −0.0666667
\(226\) 6.04149 0.401874
\(227\) 27.1066 1.79913 0.899565 0.436787i \(-0.143883\pi\)
0.899565 + 0.436787i \(0.143883\pi\)
\(228\) −4.99063 −0.330513
\(229\) −8.53035 −0.563701 −0.281851 0.959458i \(-0.590948\pi\)
−0.281851 + 0.959458i \(0.590948\pi\)
\(230\) −3.70471 −0.244282
\(231\) −12.8573 −0.845947
\(232\) −4.28100 −0.281061
\(233\) −19.6084 −1.28459 −0.642295 0.766458i \(-0.722017\pi\)
−0.642295 + 0.766458i \(0.722017\pi\)
\(234\) −0.755569 −0.0493931
\(235\) 2.48886 0.162355
\(236\) 25.8207 1.68079
\(237\) −4.99063 −0.324176
\(238\) 8.65386 0.560946
\(239\) 6.48886 0.419730 0.209865 0.977730i \(-0.432698\pi\)
0.209865 + 0.977730i \(0.432698\pi\)
\(240\) −6.85728 −0.442635
\(241\) 6.81579 0.439044 0.219522 0.975608i \(-0.429550\pi\)
0.219522 + 0.975608i \(0.429550\pi\)
\(242\) −0.799970 −0.0514240
\(243\) −1.00000 −0.0641500
\(244\) −1.90321 −0.121841
\(245\) 25.2257 1.61161
\(246\) −1.57136 −0.100186
\(247\) 6.36842 0.405213
\(248\) 8.72393 0.553970
\(249\) 11.6128 0.735934
\(250\) −3.73329 −0.236114
\(251\) 12.4429 0.785391 0.392695 0.919669i \(-0.371543\pi\)
0.392695 + 0.919669i \(0.371543\pi\)
\(252\) −8.42864 −0.530954
\(253\) −17.2859 −1.08676
\(254\) 0.345665 0.0216890
\(255\) −12.5620 −0.786662
\(256\) 8.80642 0.550401
\(257\) 23.1526 1.44422 0.722109 0.691780i \(-0.243173\pi\)
0.722109 + 0.691780i \(0.243173\pi\)
\(258\) −0.0414872 −0.00258288
\(259\) −48.0830 −2.98773
\(260\) 9.24443 0.573315
\(261\) 3.52543 0.218218
\(262\) 1.98126 0.122403
\(263\) 2.48886 0.153470 0.0767349 0.997052i \(-0.475550\pi\)
0.0767349 + 0.997052i \(0.475550\pi\)
\(264\) 3.52543 0.216975
\(265\) 21.1526 1.29939
\(266\) −3.61285 −0.221518
\(267\) 12.3827 0.757809
\(268\) 17.1111 1.04523
\(269\) 2.47013 0.150606 0.0753031 0.997161i \(-0.476008\pi\)
0.0753031 + 0.997161i \(0.476008\pi\)
\(270\) −0.622216 −0.0378668
\(271\) 31.8163 1.93270 0.966350 0.257230i \(-0.0828097\pi\)
0.966350 + 0.257230i \(0.0828097\pi\)
\(272\) 21.5353 1.30577
\(273\) 10.7556 0.650957
\(274\) −2.42864 −0.146719
\(275\) −2.90321 −0.175070
\(276\) −11.3319 −0.682097
\(277\) 23.1526 1.39110 0.695551 0.718476i \(-0.255160\pi\)
0.695551 + 0.718476i \(0.255160\pi\)
\(278\) 4.69535 0.281608
\(279\) −7.18421 −0.430107
\(280\) −10.7556 −0.642768
\(281\) 15.4050 0.918984 0.459492 0.888182i \(-0.348031\pi\)
0.459492 + 0.888182i \(0.348031\pi\)
\(282\) −0.387152 −0.0230546
\(283\) 16.4701 0.979047 0.489524 0.871990i \(-0.337171\pi\)
0.489524 + 0.871990i \(0.337171\pi\)
\(284\) 3.71900 0.220682
\(285\) 5.24443 0.310653
\(286\) −2.19358 −0.129709
\(287\) 22.3684 1.32037
\(288\) 3.49532 0.205963
\(289\) 22.4509 1.32064
\(290\) 2.19358 0.128811
\(291\) −1.57136 −0.0921148
\(292\) −15.4193 −0.902345
\(293\) −13.0509 −0.762439 −0.381220 0.924485i \(-0.624496\pi\)
−0.381220 + 0.924485i \(0.624496\pi\)
\(294\) −3.92396 −0.228850
\(295\) −27.1338 −1.57979
\(296\) 13.1842 0.766317
\(297\) −2.90321 −0.168461
\(298\) −4.06022 −0.235202
\(299\) 14.4603 0.836260
\(300\) −1.90321 −0.109882
\(301\) 0.590573 0.0340400
\(302\) −4.89877 −0.281892
\(303\) 0.0874201 0.00502216
\(304\) −8.99063 −0.515648
\(305\) 2.00000 0.114520
\(306\) 1.95407 0.111707
\(307\) −24.7239 −1.41107 −0.705534 0.708676i \(-0.749293\pi\)
−0.705534 + 0.708676i \(0.749293\pi\)
\(308\) −24.4701 −1.39431
\(309\) −1.37778 −0.0783794
\(310\) −4.47013 −0.253886
\(311\) −16.7096 −0.947517 −0.473758 0.880655i \(-0.657103\pi\)
−0.473758 + 0.880655i \(0.657103\pi\)
\(312\) −2.94914 −0.166962
\(313\) 26.8573 1.51806 0.759032 0.651054i \(-0.225673\pi\)
0.759032 + 0.651054i \(0.225673\pi\)
\(314\) 1.86665 0.105341
\(315\) 8.85728 0.499051
\(316\) −9.49823 −0.534317
\(317\) −34.1748 −1.91945 −0.959725 0.280941i \(-0.909354\pi\)
−0.959725 + 0.280941i \(0.909354\pi\)
\(318\) −3.29036 −0.184514
\(319\) 10.2351 0.573054
\(320\) −11.5397 −0.645090
\(321\) 1.24443 0.0694574
\(322\) −8.20342 −0.457159
\(323\) −16.4701 −0.916422
\(324\) −1.90321 −0.105734
\(325\) 2.42864 0.134717
\(326\) −2.44738 −0.135548
\(327\) 10.0000 0.553001
\(328\) −6.13335 −0.338658
\(329\) 5.51114 0.303839
\(330\) −1.80642 −0.0994404
\(331\) −25.5526 −1.40450 −0.702250 0.711931i \(-0.747821\pi\)
−0.702250 + 0.711931i \(0.747821\pi\)
\(332\) 22.1017 1.21299
\(333\) −10.8573 −0.594975
\(334\) 3.05086 0.166935
\(335\) −17.9813 −0.982421
\(336\) −15.1842 −0.828366
\(337\) −3.80642 −0.207349 −0.103675 0.994611i \(-0.533060\pi\)
−0.103675 + 0.994611i \(0.533060\pi\)
\(338\) −2.20940 −0.120175
\(339\) −19.4193 −1.05471
\(340\) −23.9081 −1.29660
\(341\) −20.8573 −1.12948
\(342\) −0.815792 −0.0441130
\(343\) 24.8573 1.34217
\(344\) −0.161933 −0.00873086
\(345\) 11.9081 0.641112
\(346\) 4.41435 0.237317
\(347\) 18.6637 1.00192 0.500960 0.865470i \(-0.332980\pi\)
0.500960 + 0.865470i \(0.332980\pi\)
\(348\) 6.70964 0.359674
\(349\) 22.8573 1.22352 0.611761 0.791043i \(-0.290461\pi\)
0.611761 + 0.791043i \(0.290461\pi\)
\(350\) −1.37778 −0.0736457
\(351\) 2.42864 0.129631
\(352\) 10.1476 0.540871
\(353\) 7.12399 0.379171 0.189586 0.981864i \(-0.439286\pi\)
0.189586 + 0.981864i \(0.439286\pi\)
\(354\) 4.22077 0.224332
\(355\) −3.90813 −0.207422
\(356\) 23.5669 1.24904
\(357\) −27.8163 −1.47219
\(358\) 0 0
\(359\) 13.1798 0.695601 0.347801 0.937569i \(-0.386929\pi\)
0.347801 + 0.937569i \(0.386929\pi\)
\(360\) −2.42864 −0.128001
\(361\) −12.1240 −0.638104
\(362\) −2.16193 −0.113629
\(363\) 2.57136 0.134961
\(364\) 20.4701 1.07293
\(365\) 16.2034 0.848126
\(366\) −0.311108 −0.0162619
\(367\) 7.74620 0.404348 0.202174 0.979350i \(-0.435199\pi\)
0.202174 + 0.979350i \(0.435199\pi\)
\(368\) −20.4143 −1.06417
\(369\) 5.05086 0.262937
\(370\) −6.75557 −0.351205
\(371\) 46.8385 2.43174
\(372\) −13.6731 −0.708916
\(373\) −21.6128 −1.11907 −0.559535 0.828806i \(-0.689020\pi\)
−0.559535 + 0.828806i \(0.689020\pi\)
\(374\) 5.67307 0.293348
\(375\) 12.0000 0.619677
\(376\) −1.51114 −0.0779310
\(377\) −8.56199 −0.440965
\(378\) −1.37778 −0.0708656
\(379\) −5.89829 −0.302975 −0.151487 0.988459i \(-0.548406\pi\)
−0.151487 + 0.988459i \(0.548406\pi\)
\(380\) 9.98126 0.512028
\(381\) −1.11108 −0.0569223
\(382\) −4.04593 −0.207008
\(383\) −16.6178 −0.849128 −0.424564 0.905398i \(-0.639573\pi\)
−0.424564 + 0.905398i \(0.639573\pi\)
\(384\) 8.78568 0.448342
\(385\) 25.7146 1.31054
\(386\) 5.00937 0.254970
\(387\) 0.133353 0.00677872
\(388\) −2.99063 −0.151826
\(389\) −35.3131 −1.79045 −0.895223 0.445618i \(-0.852984\pi\)
−0.895223 + 0.445618i \(0.852984\pi\)
\(390\) 1.51114 0.0765194
\(391\) −37.3975 −1.89127
\(392\) −15.3160 −0.773576
\(393\) −6.36842 −0.321244
\(394\) 5.35905 0.269985
\(395\) 9.98126 0.502212
\(396\) −5.52543 −0.277663
\(397\) 1.34614 0.0675609 0.0337805 0.999429i \(-0.489245\pi\)
0.0337805 + 0.999429i \(0.489245\pi\)
\(398\) −1.89829 −0.0951527
\(399\) 11.6128 0.581370
\(400\) −3.42864 −0.171432
\(401\) 7.25872 0.362483 0.181242 0.983439i \(-0.441988\pi\)
0.181242 + 0.983439i \(0.441988\pi\)
\(402\) 2.79706 0.139504
\(403\) 17.4479 0.869139
\(404\) 0.166379 0.00827767
\(405\) 2.00000 0.0993808
\(406\) 4.85728 0.241063
\(407\) −31.5210 −1.56244
\(408\) 7.62714 0.377600
\(409\) −20.3970 −1.00857 −0.504283 0.863538i \(-0.668243\pi\)
−0.504283 + 0.863538i \(0.668243\pi\)
\(410\) 3.14272 0.155208
\(411\) 7.80642 0.385062
\(412\) −2.62222 −0.129187
\(413\) −60.0830 −2.95649
\(414\) −1.85236 −0.0910384
\(415\) −23.2257 −1.14010
\(416\) −8.48886 −0.416201
\(417\) −15.0923 −0.739075
\(418\) −2.36842 −0.115843
\(419\) 27.7605 1.35619 0.678094 0.734975i \(-0.262806\pi\)
0.678094 + 0.734975i \(0.262806\pi\)
\(420\) 16.8573 0.822551
\(421\) 12.0731 0.588408 0.294204 0.955743i \(-0.404945\pi\)
0.294204 + 0.955743i \(0.404945\pi\)
\(422\) −3.03795 −0.147885
\(423\) 1.24443 0.0605063
\(424\) −12.8430 −0.623711
\(425\) −6.28100 −0.304673
\(426\) 0.607926 0.0294541
\(427\) 4.42864 0.214317
\(428\) 2.36842 0.114482
\(429\) 7.05086 0.340418
\(430\) 0.0829744 0.00400138
\(431\) 1.63158 0.0785906 0.0392953 0.999228i \(-0.487489\pi\)
0.0392953 + 0.999228i \(0.487489\pi\)
\(432\) −3.42864 −0.164960
\(433\) 38.4701 1.84876 0.924378 0.381477i \(-0.124585\pi\)
0.924378 + 0.381477i \(0.124585\pi\)
\(434\) −9.89829 −0.475133
\(435\) −7.05086 −0.338063
\(436\) 19.0321 0.911473
\(437\) 15.6128 0.746864
\(438\) −2.52051 −0.120434
\(439\) −9.12399 −0.435464 −0.217732 0.976009i \(-0.569866\pi\)
−0.217732 + 0.976009i \(0.569866\pi\)
\(440\) −7.05086 −0.336136
\(441\) 12.6128 0.600612
\(442\) −4.74572 −0.225731
\(443\) −23.9911 −1.13985 −0.569926 0.821696i \(-0.693028\pi\)
−0.569926 + 0.821696i \(0.693028\pi\)
\(444\) −20.6637 −0.980656
\(445\) −24.7654 −1.17399
\(446\) 5.58120 0.264278
\(447\) 13.0509 0.617284
\(448\) −25.5526 −1.20725
\(449\) 24.0098 1.13309 0.566547 0.824029i \(-0.308279\pi\)
0.566547 + 0.824029i \(0.308279\pi\)
\(450\) −0.311108 −0.0146658
\(451\) 14.6637 0.690487
\(452\) −36.9590 −1.73840
\(453\) 15.7462 0.739821
\(454\) 8.43309 0.395784
\(455\) −21.5111 −1.00846
\(456\) −3.18421 −0.149114
\(457\) 25.5210 1.19382 0.596911 0.802308i \(-0.296395\pi\)
0.596911 + 0.802308i \(0.296395\pi\)
\(458\) −2.65386 −0.124007
\(459\) −6.28100 −0.293172
\(460\) 22.6637 1.05670
\(461\) −12.5807 −0.585943 −0.292971 0.956121i \(-0.594644\pi\)
−0.292971 + 0.956121i \(0.594644\pi\)
\(462\) −4.00000 −0.186097
\(463\) −9.64449 −0.448217 −0.224109 0.974564i \(-0.571947\pi\)
−0.224109 + 0.974564i \(0.571947\pi\)
\(464\) 12.0874 0.561144
\(465\) 14.3684 0.666319
\(466\) −6.10033 −0.282592
\(467\) 6.99508 0.323694 0.161847 0.986816i \(-0.448255\pi\)
0.161847 + 0.986816i \(0.448255\pi\)
\(468\) 4.62222 0.213662
\(469\) −39.8163 −1.83854
\(470\) 0.774305 0.0357160
\(471\) −6.00000 −0.276465
\(472\) 16.4746 0.758304
\(473\) 0.387152 0.0178013
\(474\) −1.55262 −0.0713144
\(475\) 2.62222 0.120316
\(476\) −52.9403 −2.42651
\(477\) 10.5763 0.484255
\(478\) 2.01874 0.0923348
\(479\) 22.2766 1.01784 0.508921 0.860813i \(-0.330045\pi\)
0.508921 + 0.860813i \(0.330045\pi\)
\(480\) −6.99063 −0.319077
\(481\) 26.3684 1.20230
\(482\) 2.12045 0.0965837
\(483\) 26.3684 1.19980
\(484\) 4.89384 0.222447
\(485\) 3.14272 0.142704
\(486\) −0.311108 −0.0141121
\(487\) 2.48886 0.112781 0.0563906 0.998409i \(-0.482041\pi\)
0.0563906 + 0.998409i \(0.482041\pi\)
\(488\) −1.21432 −0.0549697
\(489\) 7.86665 0.355742
\(490\) 7.84791 0.354532
\(491\) 6.84743 0.309020 0.154510 0.987991i \(-0.450620\pi\)
0.154510 + 0.987991i \(0.450620\pi\)
\(492\) 9.61285 0.433381
\(493\) 22.1432 0.997279
\(494\) 1.98126 0.0891413
\(495\) 5.80642 0.260979
\(496\) −24.6321 −1.10601
\(497\) −8.65386 −0.388179
\(498\) 3.61285 0.161896
\(499\) −34.6222 −1.54990 −0.774952 0.632021i \(-0.782226\pi\)
−0.774952 + 0.632021i \(0.782226\pi\)
\(500\) 22.8385 1.02137
\(501\) −9.80642 −0.438119
\(502\) 3.87109 0.172775
\(503\) 7.87955 0.351332 0.175666 0.984450i \(-0.443792\pi\)
0.175666 + 0.984450i \(0.443792\pi\)
\(504\) −5.37778 −0.239546
\(505\) −0.174840 −0.00778029
\(506\) −5.37778 −0.239072
\(507\) 7.10171 0.315398
\(508\) −2.11462 −0.0938210
\(509\) 1.80198 0.0798713 0.0399356 0.999202i \(-0.487285\pi\)
0.0399356 + 0.999202i \(0.487285\pi\)
\(510\) −3.90813 −0.173055
\(511\) 35.8796 1.58722
\(512\) 20.3111 0.897633
\(513\) 2.62222 0.115774
\(514\) 7.20294 0.317708
\(515\) 2.75557 0.121425
\(516\) 0.253799 0.0111729
\(517\) 3.61285 0.158893
\(518\) −14.9590 −0.657260
\(519\) −14.1891 −0.622834
\(520\) 5.89829 0.258657
\(521\) 12.3541 0.541244 0.270622 0.962686i \(-0.412771\pi\)
0.270622 + 0.962686i \(0.412771\pi\)
\(522\) 1.09679 0.0480051
\(523\) 18.3269 0.801381 0.400690 0.916214i \(-0.368770\pi\)
0.400690 + 0.916214i \(0.368770\pi\)
\(524\) −12.1204 −0.529484
\(525\) 4.42864 0.193282
\(526\) 0.774305 0.0337613
\(527\) −45.1240 −1.96563
\(528\) −9.95407 −0.433195
\(529\) 12.4509 0.541344
\(530\) 6.58073 0.285849
\(531\) −13.5669 −0.588754
\(532\) 22.1017 0.958231
\(533\) −12.2667 −0.531330
\(534\) 3.85236 0.166708
\(535\) −2.48886 −0.107603
\(536\) 10.9175 0.471564
\(537\) 0 0
\(538\) 0.768476 0.0331313
\(539\) 36.6178 1.57724
\(540\) 3.80642 0.163802
\(541\) −25.2543 −1.08577 −0.542883 0.839808i \(-0.682667\pi\)
−0.542883 + 0.839808i \(0.682667\pi\)
\(542\) 9.89829 0.425168
\(543\) 6.94914 0.298216
\(544\) 21.9541 0.941273
\(545\) −20.0000 −0.856706
\(546\) 3.34614 0.143202
\(547\) −4.54909 −0.194505 −0.0972524 0.995260i \(-0.531005\pi\)
−0.0972524 + 0.995260i \(0.531005\pi\)
\(548\) 14.8573 0.634672
\(549\) 1.00000 0.0426790
\(550\) −0.903212 −0.0385131
\(551\) −9.24443 −0.393826
\(552\) −7.23014 −0.307735
\(553\) 22.1017 0.939860
\(554\) 7.20294 0.306024
\(555\) 21.7146 0.921732
\(556\) −28.7239 −1.21817
\(557\) 16.8528 0.714077 0.357039 0.934090i \(-0.383786\pi\)
0.357039 + 0.934090i \(0.383786\pi\)
\(558\) −2.23506 −0.0946178
\(559\) −0.323867 −0.0136981
\(560\) 30.3684 1.28330
\(561\) −18.2351 −0.769885
\(562\) 4.79261 0.202164
\(563\) −21.1240 −0.890270 −0.445135 0.895464i \(-0.646844\pi\)
−0.445135 + 0.895464i \(0.646844\pi\)
\(564\) 2.36842 0.0997283
\(565\) 38.8385 1.63395
\(566\) 5.12399 0.215377
\(567\) 4.42864 0.185985
\(568\) 2.37286 0.0995631
\(569\) 6.56199 0.275093 0.137547 0.990495i \(-0.456078\pi\)
0.137547 + 0.990495i \(0.456078\pi\)
\(570\) 1.63158 0.0683395
\(571\) 13.3778 0.559843 0.279921 0.960023i \(-0.409692\pi\)
0.279921 + 0.960023i \(0.409692\pi\)
\(572\) 13.4193 0.561088
\(573\) 13.0049 0.543288
\(574\) 6.95899 0.290463
\(575\) 5.95407 0.248302
\(576\) −5.76986 −0.240411
\(577\) −35.9180 −1.49529 −0.747643 0.664101i \(-0.768814\pi\)
−0.747643 + 0.664101i \(0.768814\pi\)
\(578\) 6.98465 0.290523
\(579\) −16.1017 −0.669164
\(580\) −13.4193 −0.557205
\(581\) −51.4291 −2.13364
\(582\) −0.488863 −0.0202640
\(583\) 30.7052 1.27168
\(584\) −9.83807 −0.407102
\(585\) −4.85728 −0.200824
\(586\) −4.06022 −0.167726
\(587\) 33.0968 1.36605 0.683025 0.730395i \(-0.260664\pi\)
0.683025 + 0.730395i \(0.260664\pi\)
\(588\) 24.0049 0.989946
\(589\) 18.8385 0.776229
\(590\) −8.44155 −0.347533
\(591\) −17.2257 −0.708570
\(592\) −37.2257 −1.52997
\(593\) 16.9161 0.694662 0.347331 0.937743i \(-0.387088\pi\)
0.347331 + 0.937743i \(0.387088\pi\)
\(594\) −0.903212 −0.0370592
\(595\) 55.6325 2.28071
\(596\) 24.8385 1.01743
\(597\) 6.10171 0.249726
\(598\) 4.49871 0.183966
\(599\) 42.3323 1.72965 0.864826 0.502072i \(-0.167429\pi\)
0.864826 + 0.502072i \(0.167429\pi\)
\(600\) −1.21432 −0.0495744
\(601\) −38.7783 −1.58180 −0.790900 0.611945i \(-0.790387\pi\)
−0.790900 + 0.611945i \(0.790387\pi\)
\(602\) 0.183732 0.00748835
\(603\) −8.99063 −0.366127
\(604\) 29.9684 1.21940
\(605\) −5.14272 −0.209081
\(606\) 0.0271971 0.00110481
\(607\) 9.63158 0.390934 0.195467 0.980710i \(-0.437378\pi\)
0.195467 + 0.980710i \(0.437378\pi\)
\(608\) −9.16547 −0.371709
\(609\) −15.6128 −0.632665
\(610\) 0.622216 0.0251928
\(611\) −3.02227 −0.122268
\(612\) −11.9541 −0.483215
\(613\) −40.6133 −1.64036 −0.820178 0.572108i \(-0.806126\pi\)
−0.820178 + 0.572108i \(0.806126\pi\)
\(614\) −7.69181 −0.310416
\(615\) −10.1017 −0.407340
\(616\) −15.6128 −0.629060
\(617\) −41.1195 −1.65541 −0.827705 0.561163i \(-0.810354\pi\)
−0.827705 + 0.561163i \(0.810354\pi\)
\(618\) −0.428639 −0.0172424
\(619\) −28.3368 −1.13895 −0.569476 0.822008i \(-0.692854\pi\)
−0.569476 + 0.822008i \(0.692854\pi\)
\(620\) 27.3461 1.09825
\(621\) 5.95407 0.238928
\(622\) −5.19850 −0.208441
\(623\) −54.8385 −2.19706
\(624\) 8.32693 0.333344
\(625\) −19.0000 −0.760000
\(626\) 8.35551 0.333953
\(627\) 7.61285 0.304028
\(628\) −11.4193 −0.455679
\(629\) −68.1945 −2.71909
\(630\) 2.75557 0.109784
\(631\) 6.06022 0.241254 0.120627 0.992698i \(-0.461510\pi\)
0.120627 + 0.992698i \(0.461510\pi\)
\(632\) −6.06022 −0.241063
\(633\) 9.76494 0.388121
\(634\) −10.6321 −0.422253
\(635\) 2.22216 0.0881836
\(636\) 20.1289 0.798163
\(637\) −30.6321 −1.21369
\(638\) 3.18421 0.126064
\(639\) −1.95407 −0.0773017
\(640\) −17.5714 −0.694569
\(641\) 9.12843 0.360551 0.180276 0.983616i \(-0.442301\pi\)
0.180276 + 0.983616i \(0.442301\pi\)
\(642\) 0.387152 0.0152797
\(643\) 10.3269 0.407254 0.203627 0.979049i \(-0.434727\pi\)
0.203627 + 0.979049i \(0.434727\pi\)
\(644\) 50.1847 1.97755
\(645\) −0.266706 −0.0105015
\(646\) −5.12399 −0.201600
\(647\) −26.3323 −1.03523 −0.517615 0.855613i \(-0.673180\pi\)
−0.517615 + 0.855613i \(0.673180\pi\)
\(648\) −1.21432 −0.0477030
\(649\) −39.3876 −1.54610
\(650\) 0.755569 0.0296358
\(651\) 31.8163 1.24698
\(652\) 14.9719 0.586345
\(653\) 43.1294 1.68778 0.843892 0.536514i \(-0.180259\pi\)
0.843892 + 0.536514i \(0.180259\pi\)
\(654\) 3.11108 0.121653
\(655\) 12.7368 0.497669
\(656\) 17.3176 0.676137
\(657\) 8.10171 0.316078
\(658\) 1.71456 0.0668404
\(659\) −18.1017 −0.705143 −0.352571 0.935785i \(-0.614693\pi\)
−0.352571 + 0.935785i \(0.614693\pi\)
\(660\) 11.0509 0.430154
\(661\) 8.83854 0.343779 0.171890 0.985116i \(-0.445013\pi\)
0.171890 + 0.985116i \(0.445013\pi\)
\(662\) −7.94962 −0.308971
\(663\) 15.2543 0.592427
\(664\) 14.1017 0.547252
\(665\) −23.2257 −0.900654
\(666\) −3.37778 −0.130886
\(667\) −20.9906 −0.812761
\(668\) −18.6637 −0.722120
\(669\) −17.9398 −0.693592
\(670\) −5.59411 −0.216119
\(671\) 2.90321 0.112077
\(672\) −15.4795 −0.597134
\(673\) −6.26671 −0.241564 −0.120782 0.992679i \(-0.538540\pi\)
−0.120782 + 0.992679i \(0.538540\pi\)
\(674\) −1.18421 −0.0456140
\(675\) 1.00000 0.0384900
\(676\) 13.5161 0.519848
\(677\) −32.0874 −1.23322 −0.616610 0.787269i \(-0.711494\pi\)
−0.616610 + 0.787269i \(0.711494\pi\)
\(678\) −6.04149 −0.232022
\(679\) 6.95899 0.267061
\(680\) −15.2543 −0.584975
\(681\) −27.1066 −1.03873
\(682\) −6.48886 −0.248471
\(683\) −13.1526 −0.503269 −0.251634 0.967822i \(-0.580968\pi\)
−0.251634 + 0.967822i \(0.580968\pi\)
\(684\) 4.99063 0.190822
\(685\) −15.6128 −0.596536
\(686\) 7.73329 0.295259
\(687\) 8.53035 0.325453
\(688\) 0.457220 0.0174313
\(689\) −25.6860 −0.978558
\(690\) 3.70471 0.141036
\(691\) 16.9906 0.646354 0.323177 0.946339i \(-0.395249\pi\)
0.323177 + 0.946339i \(0.395249\pi\)
\(692\) −27.0049 −1.02657
\(693\) 12.8573 0.488408
\(694\) 5.80642 0.220409
\(695\) 30.1847 1.14497
\(696\) 4.28100 0.162271
\(697\) 31.7244 1.20165
\(698\) 7.11108 0.269158
\(699\) 19.6084 0.741658
\(700\) 8.42864 0.318573
\(701\) 21.0651 0.795620 0.397810 0.917468i \(-0.369770\pi\)
0.397810 + 0.917468i \(0.369770\pi\)
\(702\) 0.755569 0.0285171
\(703\) 28.4701 1.07377
\(704\) −16.7511 −0.631332
\(705\) −2.48886 −0.0937360
\(706\) 2.21633 0.0834126
\(707\) −0.387152 −0.0145604
\(708\) −25.8207 −0.970402
\(709\) 14.8859 0.559050 0.279525 0.960138i \(-0.409823\pi\)
0.279525 + 0.960138i \(0.409823\pi\)
\(710\) −1.21585 −0.0456301
\(711\) 4.99063 0.187163
\(712\) 15.0366 0.563519
\(713\) 42.7753 1.60195
\(714\) −8.65386 −0.323863
\(715\) −14.1017 −0.527374
\(716\) 0 0
\(717\) −6.48886 −0.242331
\(718\) 4.10033 0.153023
\(719\) −17.4479 −0.650695 −0.325348 0.945595i \(-0.605481\pi\)
−0.325348 + 0.945595i \(0.605481\pi\)
\(720\) 6.85728 0.255556
\(721\) 6.10171 0.227240
\(722\) −3.77187 −0.140374
\(723\) −6.81579 −0.253482
\(724\) 13.2257 0.491529
\(725\) −3.52543 −0.130931
\(726\) 0.799970 0.0296897
\(727\) 20.4572 0.758716 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(728\) 13.0607 0.484062
\(729\) 1.00000 0.0370370
\(730\) 5.04101 0.186576
\(731\) 0.837590 0.0309794
\(732\) 1.90321 0.0703447
\(733\) −48.4514 −1.78959 −0.894796 0.446474i \(-0.852679\pi\)
−0.894796 + 0.446474i \(0.852679\pi\)
\(734\) 2.40990 0.0889512
\(735\) −25.2257 −0.930464
\(736\) −20.8113 −0.767116
\(737\) −26.1017 −0.961469
\(738\) 1.57136 0.0578426
\(739\) −20.3368 −0.748100 −0.374050 0.927408i \(-0.622031\pi\)
−0.374050 + 0.927408i \(0.622031\pi\)
\(740\) 41.3274 1.51923
\(741\) −6.36842 −0.233950
\(742\) 14.5718 0.534949
\(743\) −5.65878 −0.207601 −0.103800 0.994598i \(-0.533100\pi\)
−0.103800 + 0.994598i \(0.533100\pi\)
\(744\) −8.72393 −0.319835
\(745\) −26.1017 −0.956293
\(746\) −6.72393 −0.246180
\(747\) −11.6128 −0.424892
\(748\) −34.7052 −1.26895
\(749\) −5.51114 −0.201373
\(750\) 3.73329 0.136321
\(751\) −10.4889 −0.382744 −0.191372 0.981518i \(-0.561294\pi\)
−0.191372 + 0.981518i \(0.561294\pi\)
\(752\) 4.26671 0.155591
\(753\) −12.4429 −0.453446
\(754\) −2.66370 −0.0970063
\(755\) −31.4924 −1.14613
\(756\) 8.42864 0.306547
\(757\) 13.2257 0.480696 0.240348 0.970687i \(-0.422738\pi\)
0.240348 + 0.970687i \(0.422738\pi\)
\(758\) −1.83500 −0.0666503
\(759\) 17.2859 0.627439
\(760\) 6.36842 0.231007
\(761\) 8.74128 0.316871 0.158436 0.987369i \(-0.449355\pi\)
0.158436 + 0.987369i \(0.449355\pi\)
\(762\) −0.345665 −0.0125221
\(763\) −44.2864 −1.60328
\(764\) 24.7511 0.895464
\(765\) 12.5620 0.454180
\(766\) −5.16992 −0.186797
\(767\) 32.9491 1.18972
\(768\) −8.80642 −0.317774
\(769\) −13.4924 −0.486548 −0.243274 0.969958i \(-0.578221\pi\)
−0.243274 + 0.969958i \(0.578221\pi\)
\(770\) 8.00000 0.288300
\(771\) −23.1526 −0.833819
\(772\) −30.6450 −1.10294
\(773\) 12.9304 0.465074 0.232537 0.972587i \(-0.425297\pi\)
0.232537 + 0.972587i \(0.425297\pi\)
\(774\) 0.0414872 0.00149123
\(775\) 7.18421 0.258064
\(776\) −1.90813 −0.0684980
\(777\) 48.0830 1.72497
\(778\) −10.9862 −0.393874
\(779\) −13.2444 −0.474531
\(780\) −9.24443 −0.331004
\(781\) −5.67307 −0.202998
\(782\) −11.6346 −0.416054
\(783\) −3.52543 −0.125989
\(784\) 43.2449 1.54446
\(785\) 12.0000 0.428298
\(786\) −1.98126 −0.0706694
\(787\) 10.1432 0.361566 0.180783 0.983523i \(-0.442137\pi\)
0.180783 + 0.983523i \(0.442137\pi\)
\(788\) −32.7841 −1.16789
\(789\) −2.48886 −0.0886059
\(790\) 3.10525 0.110480
\(791\) 86.0010 3.05784
\(792\) −3.52543 −0.125271
\(793\) −2.42864 −0.0862435
\(794\) 0.418795 0.0148625
\(795\) −21.1526 −0.750204
\(796\) 11.6128 0.411606
\(797\) 4.75557 0.168451 0.0842254 0.996447i \(-0.473158\pi\)
0.0842254 + 0.996447i \(0.473158\pi\)
\(798\) 3.61285 0.127893
\(799\) 7.81627 0.276520
\(800\) −3.49532 −0.123578
\(801\) −12.3827 −0.437521
\(802\) 2.25824 0.0797414
\(803\) 23.5210 0.830037
\(804\) −17.1111 −0.603461
\(805\) −52.7368 −1.85873
\(806\) 5.42816 0.191199
\(807\) −2.47013 −0.0869526
\(808\) 0.106156 0.00373456
\(809\) 27.0321 0.950399 0.475199 0.879878i \(-0.342376\pi\)
0.475199 + 0.879878i \(0.342376\pi\)
\(810\) 0.622216 0.0218624
\(811\) 43.7748 1.53714 0.768570 0.639765i \(-0.220969\pi\)
0.768570 + 0.639765i \(0.220969\pi\)
\(812\) −29.7146 −1.04278
\(813\) −31.8163 −1.11585
\(814\) −9.80642 −0.343715
\(815\) −15.7333 −0.551113
\(816\) −21.5353 −0.753885
\(817\) −0.349681 −0.0122338
\(818\) −6.34567 −0.221871
\(819\) −10.7556 −0.375830
\(820\) −19.2257 −0.671390
\(821\) −27.3417 −0.954232 −0.477116 0.878840i \(-0.658318\pi\)
−0.477116 + 0.878840i \(0.658318\pi\)
\(822\) 2.42864 0.0847085
\(823\) −47.8292 −1.66722 −0.833610 0.552353i \(-0.813730\pi\)
−0.833610 + 0.552353i \(0.813730\pi\)
\(824\) −1.67307 −0.0582842
\(825\) 2.90321 0.101077
\(826\) −18.6923 −0.650388
\(827\) 16.8573 0.586185 0.293093 0.956084i \(-0.405316\pi\)
0.293093 + 0.956084i \(0.405316\pi\)
\(828\) 11.3319 0.393809
\(829\) −5.02227 −0.174431 −0.0872154 0.996189i \(-0.527797\pi\)
−0.0872154 + 0.996189i \(0.527797\pi\)
\(830\) −7.22570 −0.250808
\(831\) −23.1526 −0.803154
\(832\) 14.0129 0.485810
\(833\) 79.2212 2.74485
\(834\) −4.69535 −0.162587
\(835\) 19.6128 0.678731
\(836\) 14.4889 0.501108
\(837\) 7.18421 0.248323
\(838\) 8.63651 0.298343
\(839\) −24.8573 −0.858169 −0.429084 0.903264i \(-0.641164\pi\)
−0.429084 + 0.903264i \(0.641164\pi\)
\(840\) 10.7556 0.371102
\(841\) −16.5714 −0.571426
\(842\) 3.75605 0.129442
\(843\) −15.4050 −0.530576
\(844\) 18.5847 0.639713
\(845\) −14.2034 −0.488613
\(846\) 0.387152 0.0133106
\(847\) −11.3876 −0.391284
\(848\) 36.2623 1.24525
\(849\) −16.4701 −0.565253
\(850\) −1.95407 −0.0670239
\(851\) 64.6450 2.21600
\(852\) −3.71900 −0.127411
\(853\) 0.838543 0.0287112 0.0143556 0.999897i \(-0.495430\pi\)
0.0143556 + 0.999897i \(0.495430\pi\)
\(854\) 1.37778 0.0471468
\(855\) −5.24443 −0.179356
\(856\) 1.51114 0.0516496
\(857\) 42.1116 1.43850 0.719252 0.694750i \(-0.244485\pi\)
0.719252 + 0.694750i \(0.244485\pi\)
\(858\) 2.19358 0.0748875
\(859\) −5.98126 −0.204078 −0.102039 0.994780i \(-0.532537\pi\)
−0.102039 + 0.994780i \(0.532537\pi\)
\(860\) −0.507598 −0.0173090
\(861\) −22.3684 −0.762314
\(862\) 0.507598 0.0172889
\(863\) −23.8796 −0.812869 −0.406435 0.913680i \(-0.633228\pi\)
−0.406435 + 0.913680i \(0.633228\pi\)
\(864\) −3.49532 −0.118913
\(865\) 28.3783 0.964890
\(866\) 11.9684 0.406701
\(867\) −22.4509 −0.762473
\(868\) 60.5531 2.05531
\(869\) 14.4889 0.491501
\(870\) −2.19358 −0.0743692
\(871\) 21.8350 0.739851
\(872\) 12.1432 0.411221
\(873\) 1.57136 0.0531825
\(874\) 4.85728 0.164300
\(875\) −53.1437 −1.79658
\(876\) 15.4193 0.520969
\(877\) −13.3461 −0.450667 −0.225334 0.974282i \(-0.572347\pi\)
−0.225334 + 0.974282i \(0.572347\pi\)
\(878\) −2.83854 −0.0957962
\(879\) 13.0509 0.440194
\(880\) 19.9081 0.671103
\(881\) 31.9813 1.07748 0.538738 0.842473i \(-0.318901\pi\)
0.538738 + 0.842473i \(0.318901\pi\)
\(882\) 3.92396 0.132126
\(883\) 42.9719 1.44612 0.723060 0.690786i \(-0.242735\pi\)
0.723060 + 0.690786i \(0.242735\pi\)
\(884\) 29.0321 0.976456
\(885\) 27.1338 0.912094
\(886\) −7.46382 −0.250752
\(887\) −35.9353 −1.20659 −0.603295 0.797518i \(-0.706146\pi\)
−0.603295 + 0.797518i \(0.706146\pi\)
\(888\) −13.1842 −0.442433
\(889\) 4.92056 0.165030
\(890\) −7.70471 −0.258263
\(891\) 2.90321 0.0972613
\(892\) −34.1432 −1.14320
\(893\) −3.26317 −0.109198
\(894\) 4.06022 0.135794
\(895\) 0 0
\(896\) −38.9086 −1.29985
\(897\) −14.4603 −0.482815
\(898\) 7.46965 0.249265
\(899\) −25.3274 −0.844716
\(900\) 1.90321 0.0634404
\(901\) 66.4296 2.21309
\(902\) 4.56199 0.151898
\(903\) −0.590573 −0.0196530
\(904\) −23.5812 −0.784299
\(905\) −13.8983 −0.461995
\(906\) 4.89877 0.162751
\(907\) 14.5303 0.482472 0.241236 0.970466i \(-0.422447\pi\)
0.241236 + 0.970466i \(0.422447\pi\)
\(908\) −51.5897 −1.71206
\(909\) −0.0874201 −0.00289954
\(910\) −6.69228 −0.221847
\(911\) 59.3087 1.96498 0.982492 0.186305i \(-0.0596513\pi\)
0.982492 + 0.186305i \(0.0596513\pi\)
\(912\) 8.99063 0.297710
\(913\) −33.7146 −1.11579
\(914\) 7.93978 0.262624
\(915\) −2.00000 −0.0661180
\(916\) 16.2351 0.536422
\(917\) 28.2034 0.931359
\(918\) −1.95407 −0.0644938
\(919\) −15.8163 −0.521731 −0.260865 0.965375i \(-0.584008\pi\)
−0.260865 + 0.965375i \(0.584008\pi\)
\(920\) 14.4603 0.476741
\(921\) 24.7239 0.814681
\(922\) −3.91396 −0.128900
\(923\) 4.74572 0.156207
\(924\) 24.4701 0.805008
\(925\) 10.8573 0.356985
\(926\) −3.00048 −0.0986018
\(927\) 1.37778 0.0452524
\(928\) 12.3225 0.404505
\(929\) −38.9117 −1.27665 −0.638325 0.769767i \(-0.720373\pi\)
−0.638325 + 0.769767i \(0.720373\pi\)
\(930\) 4.47013 0.146581
\(931\) −33.0736 −1.08394
\(932\) 37.3189 1.22242
\(933\) 16.7096 0.547049
\(934\) 2.17622 0.0712082
\(935\) 36.4701 1.19270
\(936\) 2.94914 0.0963958
\(937\) 12.3269 0.402703 0.201352 0.979519i \(-0.435467\pi\)
0.201352 + 0.979519i \(0.435467\pi\)
\(938\) −12.3872 −0.404455
\(939\) −26.8573 −0.876454
\(940\) −4.73683 −0.154498
\(941\) −16.2623 −0.530135 −0.265067 0.964230i \(-0.585394\pi\)
−0.265067 + 0.964230i \(0.585394\pi\)
\(942\) −1.86665 −0.0608186
\(943\) −30.0731 −0.979316
\(944\) −46.5161 −1.51397
\(945\) −8.85728 −0.288127
\(946\) 0.120446 0.00391604
\(947\) 49.7703 1.61732 0.808659 0.588277i \(-0.200194\pi\)
0.808659 + 0.588277i \(0.200194\pi\)
\(948\) 9.49823 0.308488
\(949\) −19.6761 −0.638714
\(950\) 0.815792 0.0264678
\(951\) 34.1748 1.10820
\(952\) −33.7778 −1.09475
\(953\) 38.0973 1.23409 0.617046 0.786927i \(-0.288329\pi\)
0.617046 + 0.786927i \(0.288329\pi\)
\(954\) 3.29036 0.106529
\(955\) −26.0098 −0.841659
\(956\) −12.3497 −0.399417
\(957\) −10.2351 −0.330853
\(958\) 6.93041 0.223911
\(959\) −34.5718 −1.11638
\(960\) 11.5397 0.372443
\(961\) 20.6128 0.664931
\(962\) 8.20342 0.264489
\(963\) −1.24443 −0.0401012
\(964\) −12.9719 −0.417797
\(965\) 32.2034 1.03666
\(966\) 8.20342 0.263941
\(967\) −2.75557 −0.0886131 −0.0443066 0.999018i \(-0.514108\pi\)
−0.0443066 + 0.999018i \(0.514108\pi\)
\(968\) 3.12245 0.100359
\(969\) 16.4701 0.529097
\(970\) 0.977725 0.0313929
\(971\) 25.7146 0.825219 0.412610 0.910908i \(-0.364617\pi\)
0.412610 + 0.910908i \(0.364617\pi\)
\(972\) 1.90321 0.0610456
\(973\) 66.8385 2.14275
\(974\) 0.774305 0.0248103
\(975\) −2.42864 −0.0777787
\(976\) 3.42864 0.109748
\(977\) 25.1427 0.804387 0.402193 0.915555i \(-0.368248\pi\)
0.402193 + 0.915555i \(0.368248\pi\)
\(978\) 2.44738 0.0782584
\(979\) −35.9496 −1.14895
\(980\) −48.0098 −1.53362
\(981\) −10.0000 −0.319275
\(982\) 2.13029 0.0679803
\(983\) 47.2815 1.50804 0.754022 0.656849i \(-0.228111\pi\)
0.754022 + 0.656849i \(0.228111\pi\)
\(984\) 6.13335 0.195524
\(985\) 34.4514 1.09771
\(986\) 6.88892 0.219388
\(987\) −5.51114 −0.175421
\(988\) −12.1204 −0.385603
\(989\) −0.793993 −0.0252475
\(990\) 1.80642 0.0574119
\(991\) 49.1941 1.56270 0.781350 0.624093i \(-0.214531\pi\)
0.781350 + 0.624093i \(0.214531\pi\)
\(992\) −25.1111 −0.797278
\(993\) 25.5526 0.810888
\(994\) −2.69228 −0.0853940
\(995\) −12.2034 −0.386874
\(996\) −22.1017 −0.700319
\(997\) 4.55215 0.144168 0.0720840 0.997399i \(-0.477035\pi\)
0.0720840 + 0.997399i \(0.477035\pi\)
\(998\) −10.7712 −0.340958
\(999\) 10.8573 0.343509
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 183.2.a.b.1.2 3
3.2 odd 2 549.2.a.f.1.2 3
4.3 odd 2 2928.2.a.y.1.1 3
5.4 even 2 4575.2.a.j.1.2 3
7.6 odd 2 8967.2.a.s.1.2 3
12.11 even 2 8784.2.a.bk.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
183.2.a.b.1.2 3 1.1 even 1 trivial
549.2.a.f.1.2 3 3.2 odd 2
2928.2.a.y.1.1 3 4.3 odd 2
4575.2.a.j.1.2 3 5.4 even 2
8784.2.a.bk.1.1 3 12.11 even 2
8967.2.a.s.1.2 3 7.6 odd 2