Properties

Label 1840.2.a.o
Level $1840$
Weight $2$
Character orbit 1840.a
Self dual yes
Analytic conductor $14.692$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1840,2,Mod(1,1840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1840 = 2^{4} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.6924739719\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - q^{5} + ( - \beta + 1) q^{7} + (\beta + 1) q^{9} + 2 q^{11} + (\beta - 2) q^{13} - \beta q^{15} + (\beta + 3) q^{17} + 2 q^{19} - 4 q^{21} + q^{23} + q^{25} + ( - \beta + 4) q^{27} + \cdots + (2 \beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 2 q^{5} + q^{7} + 3 q^{9} + 4 q^{11} - 3 q^{13} - q^{15} + 7 q^{17} + 4 q^{19} - 8 q^{21} + 2 q^{23} + 2 q^{25} + 7 q^{27} - 8 q^{29} + 8 q^{31} + 2 q^{33} - q^{35} - 3 q^{37} + 7 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −1.56155 0 −1.00000 0 2.56155 0 −0.561553 0
1.2 0 2.56155 0 −1.00000 0 −1.56155 0 3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1840.2.a.o 2
4.b odd 2 1 920.2.a.e 2
5.b even 2 1 9200.2.a.bq 2
8.b even 2 1 7360.2.a.bl 2
8.d odd 2 1 7360.2.a.bp 2
12.b even 2 1 8280.2.a.bf 2
20.d odd 2 1 4600.2.a.t 2
20.e even 4 2 4600.2.e.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.e 2 4.b odd 2 1
1840.2.a.o 2 1.a even 1 1 trivial
4600.2.a.t 2 20.d odd 2 1
4600.2.e.n 4 20.e even 4 2
7360.2.a.bl 2 8.b even 2 1
7360.2.a.bp 2 8.d odd 2 1
8280.2.a.bf 2 12.b even 2 1
9200.2.a.bq 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1840))\):

\( T_{3}^{2} - T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$17$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 8T - 1 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$41$ \( T^{2} - 17 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$47$ \( T^{2} - 5T - 32 \) Copy content Toggle raw display
$53$ \( T^{2} - 13T + 38 \) Copy content Toggle raw display
$59$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$67$ \( T^{2} - 19T + 86 \) Copy content Toggle raw display
$71$ \( (T - 5)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 11T + 26 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$83$ \( T^{2} + 3T - 36 \) Copy content Toggle raw display
$89$ \( (T - 8)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
show more
show less