Properties

Label 4600.2.e.n
Level $4600$
Weight $2$
Character orbit 4600.e
Analytic conductor $36.731$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(4049,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{2} + \beta_1) q^{7} + (\beta_{3} - 2) q^{9} - 2 q^{11} + ( - 2 \beta_{2} - \beta_1) q^{13} + ( - 3 \beta_{2} + \beta_1) q^{17} + 2 q^{19} - 4 q^{21} - \beta_{2} q^{23} + (4 \beta_{2} + \beta_1) q^{27}+ \cdots + ( - 2 \beta_{3} + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 8 q^{11} + 8 q^{19} - 16 q^{21} + 16 q^{29} - 16 q^{31} + 14 q^{39} + 10 q^{49} - 24 q^{51} + 14 q^{59} - 20 q^{61} - 2 q^{69} - 20 q^{71} + 20 q^{79} - 28 q^{81} - 32 q^{89} + 20 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4049.1
2.56155i
1.56155i
1.56155i
2.56155i
0 2.56155i 0 0 0 1.56155i 0 −3.56155 0
4049.2 0 1.56155i 0 0 0 2.56155i 0 0.561553 0
4049.3 0 1.56155i 0 0 0 2.56155i 0 0.561553 0
4049.4 0 2.56155i 0 0 0 1.56155i 0 −3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4600.2.e.n 4
5.b even 2 1 inner 4600.2.e.n 4
5.c odd 4 1 920.2.a.e 2
5.c odd 4 1 4600.2.a.t 2
15.e even 4 1 8280.2.a.bf 2
20.e even 4 1 1840.2.a.o 2
20.e even 4 1 9200.2.a.bq 2
40.i odd 4 1 7360.2.a.bp 2
40.k even 4 1 7360.2.a.bl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.e 2 5.c odd 4 1
1840.2.a.o 2 20.e even 4 1
4600.2.a.t 2 5.c odd 4 1
4600.2.e.n 4 1.a even 1 1 trivial
4600.2.e.n 4 5.b even 2 1 inner
7360.2.a.bl 2 40.k even 4 1
7360.2.a.bp 2 40.i odd 4 1
8280.2.a.bf 2 15.e even 4 1
9200.2.a.bq 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4600, [\chi])\):

\( T_{3}^{4} + 9T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{7}^{4} + 9T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 13T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 2)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{4} + 33T^{2} + 64 \) Copy content Toggle raw display
$19$ \( (T - 2)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T^{2} - 17)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 144T^{2} + 4096 \) Copy content Toggle raw display
$47$ \( T^{4} + 89T^{2} + 1024 \) Copy content Toggle raw display
$53$ \( T^{4} + 93T^{2} + 1444 \) Copy content Toggle raw display
$59$ \( (T^{2} - 7 T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 10 T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 189T^{2} + 7396 \) Copy content Toggle raw display
$71$ \( (T + 5)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 69T^{2} + 676 \) Copy content Toggle raw display
$79$ \( (T^{2} - 10 T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 81T^{2} + 1296 \) Copy content Toggle raw display
$89$ \( (T + 8)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
show more
show less