Properties

Label 1859.4.a.j.1.10
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(0.370518\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.370518 q^{2} -0.548979 q^{3} -7.86272 q^{4} +11.6192 q^{5} +0.203406 q^{6} -19.9902 q^{7} +5.87742 q^{8} -26.6986 q^{9} -4.30511 q^{10} -11.0000 q^{11} +4.31646 q^{12} +7.40673 q^{14} -6.37868 q^{15} +60.7240 q^{16} +6.29819 q^{17} +9.89231 q^{18} +71.8312 q^{19} -91.3583 q^{20} +10.9742 q^{21} +4.07569 q^{22} -37.7543 q^{23} -3.22658 q^{24} +10.0053 q^{25} +29.4794 q^{27} +157.177 q^{28} +113.264 q^{29} +2.36341 q^{30} +253.495 q^{31} -69.5187 q^{32} +6.03876 q^{33} -2.33359 q^{34} -232.270 q^{35} +209.924 q^{36} +100.341 q^{37} -26.6147 q^{38} +68.2908 q^{40} +25.1578 q^{41} -4.06613 q^{42} -297.870 q^{43} +86.4899 q^{44} -310.216 q^{45} +13.9886 q^{46} +409.760 q^{47} -33.3362 q^{48} +56.6087 q^{49} -3.70715 q^{50} -3.45757 q^{51} +385.030 q^{53} -10.9226 q^{54} -127.811 q^{55} -117.491 q^{56} -39.4338 q^{57} -41.9662 q^{58} +416.523 q^{59} +50.1538 q^{60} -460.113 q^{61} -93.9243 q^{62} +533.711 q^{63} -460.034 q^{64} -2.23747 q^{66} +241.736 q^{67} -49.5209 q^{68} +20.7263 q^{69} +86.0601 q^{70} -554.420 q^{71} -156.919 q^{72} -402.299 q^{73} -37.1781 q^{74} -5.49270 q^{75} -564.788 q^{76} +219.892 q^{77} -490.363 q^{79} +705.564 q^{80} +704.679 q^{81} -9.32143 q^{82} -294.088 q^{83} -86.2870 q^{84} +73.1798 q^{85} +110.366 q^{86} -62.1794 q^{87} -64.6516 q^{88} -396.547 q^{89} +114.941 q^{90} +296.852 q^{92} -139.163 q^{93} -151.823 q^{94} +834.620 q^{95} +38.1643 q^{96} -852.333 q^{97} -20.9745 q^{98} +293.685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 76 q^{4} - 20 q^{5} - 49 q^{6} - 28 q^{7} + 12 q^{8} + 180 q^{9} + 56 q^{10} - 198 q^{11} + 54 q^{12} + 4 q^{14} - 60 q^{15} + 364 q^{16} - 138 q^{17} - 298 q^{18} - 24 q^{19} - 160 q^{20}+ \cdots - 1980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.370518 −0.130998 −0.0654989 0.997853i \(-0.520864\pi\)
−0.0654989 + 0.997853i \(0.520864\pi\)
\(3\) −0.548979 −0.105651 −0.0528255 0.998604i \(-0.516823\pi\)
−0.0528255 + 0.998604i \(0.516823\pi\)
\(4\) −7.86272 −0.982840
\(5\) 11.6192 1.03925 0.519625 0.854394i \(-0.326071\pi\)
0.519625 + 0.854394i \(0.326071\pi\)
\(6\) 0.203406 0.0138400
\(7\) −19.9902 −1.07937 −0.539685 0.841867i \(-0.681457\pi\)
−0.539685 + 0.841867i \(0.681457\pi\)
\(8\) 5.87742 0.259748
\(9\) −26.6986 −0.988838
\(10\) −4.30511 −0.136140
\(11\) −11.0000 −0.301511
\(12\) 4.31646 0.103838
\(13\) 0 0
\(14\) 7.40673 0.141395
\(15\) −6.37868 −0.109798
\(16\) 60.7240 0.948813
\(17\) 6.29819 0.0898550 0.0449275 0.998990i \(-0.485694\pi\)
0.0449275 + 0.998990i \(0.485694\pi\)
\(18\) 9.89231 0.129536
\(19\) 71.8312 0.867327 0.433663 0.901075i \(-0.357221\pi\)
0.433663 + 0.901075i \(0.357221\pi\)
\(20\) −91.3583 −1.02142
\(21\) 10.9742 0.114037
\(22\) 4.07569 0.0394973
\(23\) −37.7543 −0.342275 −0.171137 0.985247i \(-0.554744\pi\)
−0.171137 + 0.985247i \(0.554744\pi\)
\(24\) −3.22658 −0.0274426
\(25\) 10.0053 0.0800425
\(26\) 0 0
\(27\) 29.4794 0.210123
\(28\) 157.177 1.06085
\(29\) 113.264 0.725261 0.362630 0.931933i \(-0.381879\pi\)
0.362630 + 0.931933i \(0.381879\pi\)
\(30\) 2.36341 0.0143833
\(31\) 253.495 1.46868 0.734339 0.678783i \(-0.237492\pi\)
0.734339 + 0.678783i \(0.237492\pi\)
\(32\) −69.5187 −0.384040
\(33\) 6.03876 0.0318550
\(34\) −2.33359 −0.0117708
\(35\) −232.270 −1.12174
\(36\) 209.924 0.971869
\(37\) 100.341 0.445837 0.222919 0.974837i \(-0.428442\pi\)
0.222919 + 0.974837i \(0.428442\pi\)
\(38\) −26.6147 −0.113618
\(39\) 0 0
\(40\) 68.2908 0.269943
\(41\) 25.1578 0.0958292 0.0479146 0.998851i \(-0.484742\pi\)
0.0479146 + 0.998851i \(0.484742\pi\)
\(42\) −4.06613 −0.0149385
\(43\) −297.870 −1.05639 −0.528195 0.849123i \(-0.677131\pi\)
−0.528195 + 0.849123i \(0.677131\pi\)
\(44\) 86.4899 0.296337
\(45\) −310.216 −1.02765
\(46\) 13.9886 0.0448373
\(47\) 409.760 1.27169 0.635847 0.771815i \(-0.280651\pi\)
0.635847 + 0.771815i \(0.280651\pi\)
\(48\) −33.3362 −0.100243
\(49\) 56.6087 0.165040
\(50\) −3.70715 −0.0104854
\(51\) −3.45757 −0.00949327
\(52\) 0 0
\(53\) 385.030 0.997884 0.498942 0.866635i \(-0.333722\pi\)
0.498942 + 0.866635i \(0.333722\pi\)
\(54\) −10.9226 −0.0275256
\(55\) −127.811 −0.313346
\(56\) −117.491 −0.280364
\(57\) −39.4338 −0.0916339
\(58\) −41.9662 −0.0950075
\(59\) 416.523 0.919097 0.459549 0.888153i \(-0.348011\pi\)
0.459549 + 0.888153i \(0.348011\pi\)
\(60\) 50.1538 0.107914
\(61\) −460.113 −0.965761 −0.482881 0.875686i \(-0.660410\pi\)
−0.482881 + 0.875686i \(0.660410\pi\)
\(62\) −93.9243 −0.192393
\(63\) 533.711 1.06732
\(64\) −460.034 −0.898505
\(65\) 0 0
\(66\) −2.23747 −0.00417293
\(67\) 241.736 0.440788 0.220394 0.975411i \(-0.429266\pi\)
0.220394 + 0.975411i \(0.429266\pi\)
\(68\) −49.5209 −0.0883131
\(69\) 20.7263 0.0361617
\(70\) 86.0601 0.146945
\(71\) −554.420 −0.926727 −0.463363 0.886168i \(-0.653358\pi\)
−0.463363 + 0.886168i \(0.653358\pi\)
\(72\) −156.919 −0.256848
\(73\) −402.299 −0.645008 −0.322504 0.946568i \(-0.604525\pi\)
−0.322504 + 0.946568i \(0.604525\pi\)
\(74\) −37.1781 −0.0584037
\(75\) −5.49270 −0.00845657
\(76\) −564.788 −0.852443
\(77\) 219.892 0.325442
\(78\) 0 0
\(79\) −490.363 −0.698357 −0.349178 0.937056i \(-0.613539\pi\)
−0.349178 + 0.937056i \(0.613539\pi\)
\(80\) 705.564 0.986055
\(81\) 704.679 0.966638
\(82\) −9.32143 −0.0125534
\(83\) −294.088 −0.388920 −0.194460 0.980910i \(-0.562295\pi\)
−0.194460 + 0.980910i \(0.562295\pi\)
\(84\) −86.2870 −0.112080
\(85\) 73.1798 0.0933819
\(86\) 110.366 0.138385
\(87\) −62.1794 −0.0766245
\(88\) −64.6516 −0.0783168
\(89\) −396.547 −0.472291 −0.236146 0.971718i \(-0.575884\pi\)
−0.236146 + 0.971718i \(0.575884\pi\)
\(90\) 114.941 0.134620
\(91\) 0 0
\(92\) 296.852 0.336401
\(93\) −139.163 −0.155167
\(94\) −151.823 −0.166589
\(95\) 834.620 0.901370
\(96\) 38.1643 0.0405742
\(97\) −852.333 −0.892179 −0.446089 0.894988i \(-0.647184\pi\)
−0.446089 + 0.894988i \(0.647184\pi\)
\(98\) −20.9745 −0.0216199
\(99\) 293.685 0.298146
\(100\) −78.6690 −0.0786690
\(101\) 414.163 0.408028 0.204014 0.978968i \(-0.434601\pi\)
0.204014 + 0.978968i \(0.434601\pi\)
\(102\) 1.28109 0.00124360
\(103\) −1094.16 −1.04671 −0.523353 0.852116i \(-0.675319\pi\)
−0.523353 + 0.852116i \(0.675319\pi\)
\(104\) 0 0
\(105\) 127.511 0.118513
\(106\) −142.660 −0.130721
\(107\) −1001.90 −0.905207 −0.452603 0.891712i \(-0.649505\pi\)
−0.452603 + 0.891712i \(0.649505\pi\)
\(108\) −231.788 −0.206517
\(109\) 1310.76 1.15182 0.575909 0.817514i \(-0.304648\pi\)
0.575909 + 0.817514i \(0.304648\pi\)
\(110\) 47.3562 0.0410476
\(111\) −55.0851 −0.0471031
\(112\) −1213.89 −1.02412
\(113\) 1059.52 0.882045 0.441023 0.897496i \(-0.354616\pi\)
0.441023 + 0.897496i \(0.354616\pi\)
\(114\) 14.6109 0.0120038
\(115\) −438.674 −0.355710
\(116\) −890.561 −0.712815
\(117\) 0 0
\(118\) −154.329 −0.120400
\(119\) −125.902 −0.0969869
\(120\) −37.4902 −0.0285197
\(121\) 121.000 0.0909091
\(122\) 170.480 0.126513
\(123\) −13.8111 −0.0101244
\(124\) −1993.16 −1.44347
\(125\) −1336.14 −0.956067
\(126\) −197.749 −0.139817
\(127\) −288.170 −0.201346 −0.100673 0.994920i \(-0.532100\pi\)
−0.100673 + 0.994920i \(0.532100\pi\)
\(128\) 726.600 0.501742
\(129\) 163.524 0.111609
\(130\) 0 0
\(131\) −777.678 −0.518672 −0.259336 0.965787i \(-0.583504\pi\)
−0.259336 + 0.965787i \(0.583504\pi\)
\(132\) −47.4811 −0.0313083
\(133\) −1435.92 −0.936167
\(134\) −89.5676 −0.0577423
\(135\) 342.526 0.218370
\(136\) 37.0171 0.0233396
\(137\) −1489.37 −0.928802 −0.464401 0.885625i \(-0.653730\pi\)
−0.464401 + 0.885625i \(0.653730\pi\)
\(138\) −7.67947 −0.00473710
\(139\) 2056.72 1.25503 0.627514 0.778605i \(-0.284072\pi\)
0.627514 + 0.778605i \(0.284072\pi\)
\(140\) 1826.27 1.10249
\(141\) −224.949 −0.134356
\(142\) 205.423 0.121399
\(143\) 0 0
\(144\) −1621.25 −0.938222
\(145\) 1316.03 0.753728
\(146\) 149.059 0.0844946
\(147\) −31.0769 −0.0174366
\(148\) −788.953 −0.438186
\(149\) −799.199 −0.439416 −0.219708 0.975566i \(-0.570510\pi\)
−0.219708 + 0.975566i \(0.570510\pi\)
\(150\) 2.03514 0.00110779
\(151\) −2561.75 −1.38061 −0.690306 0.723517i \(-0.742524\pi\)
−0.690306 + 0.723517i \(0.742524\pi\)
\(152\) 422.182 0.225286
\(153\) −168.153 −0.0888521
\(154\) −81.4740 −0.0426322
\(155\) 2945.40 1.52632
\(156\) 0 0
\(157\) 895.890 0.455413 0.227706 0.973730i \(-0.426877\pi\)
0.227706 + 0.973730i \(0.426877\pi\)
\(158\) 181.688 0.0914832
\(159\) −211.373 −0.105427
\(160\) −807.750 −0.399114
\(161\) 754.717 0.369441
\(162\) −261.096 −0.126627
\(163\) 841.453 0.404342 0.202171 0.979350i \(-0.435200\pi\)
0.202171 + 0.979350i \(0.435200\pi\)
\(164\) −197.809 −0.0941847
\(165\) 70.1655 0.0331053
\(166\) 108.965 0.0509476
\(167\) 4256.21 1.97219 0.986095 0.166184i \(-0.0531445\pi\)
0.986095 + 0.166184i \(0.0531445\pi\)
\(168\) 64.4999 0.0296207
\(169\) 0 0
\(170\) −27.1144 −0.0122328
\(171\) −1917.79 −0.857646
\(172\) 2342.07 1.03826
\(173\) 2668.41 1.17269 0.586346 0.810061i \(-0.300566\pi\)
0.586346 + 0.810061i \(0.300566\pi\)
\(174\) 23.0386 0.0100376
\(175\) −200.008 −0.0863955
\(176\) −667.965 −0.286078
\(177\) −228.662 −0.0971035
\(178\) 146.928 0.0618691
\(179\) −4420.16 −1.84569 −0.922845 0.385173i \(-0.874142\pi\)
−0.922845 + 0.385173i \(0.874142\pi\)
\(180\) 2439.14 1.01002
\(181\) 354.730 0.145673 0.0728367 0.997344i \(-0.476795\pi\)
0.0728367 + 0.997344i \(0.476795\pi\)
\(182\) 0 0
\(183\) 252.592 0.102034
\(184\) −221.898 −0.0889051
\(185\) 1165.88 0.463337
\(186\) 51.5624 0.0203266
\(187\) −69.2801 −0.0270923
\(188\) −3221.82 −1.24987
\(189\) −589.299 −0.226800
\(190\) −309.241 −0.118078
\(191\) 798.518 0.302507 0.151253 0.988495i \(-0.451669\pi\)
0.151253 + 0.988495i \(0.451669\pi\)
\(192\) 252.549 0.0949279
\(193\) 2394.76 0.893155 0.446578 0.894745i \(-0.352643\pi\)
0.446578 + 0.894745i \(0.352643\pi\)
\(194\) 315.805 0.116873
\(195\) 0 0
\(196\) −445.098 −0.162208
\(197\) −4331.69 −1.56660 −0.783299 0.621645i \(-0.786465\pi\)
−0.783299 + 0.621645i \(0.786465\pi\)
\(198\) −108.815 −0.0390564
\(199\) 4850.75 1.72794 0.863971 0.503541i \(-0.167970\pi\)
0.863971 + 0.503541i \(0.167970\pi\)
\(200\) 58.8054 0.0207909
\(201\) −132.708 −0.0465697
\(202\) −153.455 −0.0534507
\(203\) −2264.17 −0.782825
\(204\) 27.1859 0.00933036
\(205\) 292.313 0.0995905
\(206\) 405.406 0.137116
\(207\) 1007.99 0.338454
\(208\) 0 0
\(209\) −790.143 −0.261509
\(210\) −47.2451 −0.0155249
\(211\) 2211.57 0.721569 0.360784 0.932649i \(-0.382509\pi\)
0.360784 + 0.932649i \(0.382509\pi\)
\(212\) −3027.38 −0.980760
\(213\) 304.365 0.0979096
\(214\) 371.221 0.118580
\(215\) −3461.00 −1.09785
\(216\) 173.263 0.0545789
\(217\) −5067.41 −1.58525
\(218\) −485.660 −0.150886
\(219\) 220.854 0.0681457
\(220\) 1004.94 0.307969
\(221\) 0 0
\(222\) 20.4100 0.00617040
\(223\) −2734.21 −0.821059 −0.410530 0.911847i \(-0.634656\pi\)
−0.410530 + 0.911847i \(0.634656\pi\)
\(224\) 1389.69 0.414521
\(225\) −267.128 −0.0791491
\(226\) −392.570 −0.115546
\(227\) −2762.57 −0.807745 −0.403873 0.914815i \(-0.632336\pi\)
−0.403873 + 0.914815i \(0.632336\pi\)
\(228\) 310.057 0.0900614
\(229\) −6302.02 −1.81855 −0.909277 0.416191i \(-0.863365\pi\)
−0.909277 + 0.416191i \(0.863365\pi\)
\(230\) 162.537 0.0465972
\(231\) −120.716 −0.0343833
\(232\) 665.699 0.188385
\(233\) 506.850 0.142510 0.0712551 0.997458i \(-0.477300\pi\)
0.0712551 + 0.997458i \(0.477300\pi\)
\(234\) 0 0
\(235\) 4761.07 1.32161
\(236\) −3275.01 −0.903325
\(237\) 269.199 0.0737821
\(238\) 46.6490 0.0127051
\(239\) −570.486 −0.154400 −0.0772001 0.997016i \(-0.524598\pi\)
−0.0772001 + 0.997016i \(0.524598\pi\)
\(240\) −387.339 −0.104178
\(241\) −5154.44 −1.37770 −0.688852 0.724902i \(-0.741885\pi\)
−0.688852 + 0.724902i \(0.741885\pi\)
\(242\) −44.8326 −0.0119089
\(243\) −1182.80 −0.312249
\(244\) 3617.74 0.949188
\(245\) 657.746 0.171518
\(246\) 5.11726 0.00132628
\(247\) 0 0
\(248\) 1489.89 0.381485
\(249\) 161.448 0.0410897
\(250\) 495.065 0.125243
\(251\) −6819.28 −1.71486 −0.857429 0.514602i \(-0.827940\pi\)
−0.857429 + 0.514602i \(0.827940\pi\)
\(252\) −4196.42 −1.04901
\(253\) 415.298 0.103200
\(254\) 106.772 0.0263759
\(255\) −40.1741 −0.00986589
\(256\) 3411.06 0.832778
\(257\) −5607.15 −1.36095 −0.680476 0.732771i \(-0.738227\pi\)
−0.680476 + 0.732771i \(0.738227\pi\)
\(258\) −60.5886 −0.0146205
\(259\) −2005.84 −0.481223
\(260\) 0 0
\(261\) −3023.99 −0.717165
\(262\) 288.144 0.0679449
\(263\) −3781.28 −0.886555 −0.443278 0.896384i \(-0.646184\pi\)
−0.443278 + 0.896384i \(0.646184\pi\)
\(264\) 35.4923 0.00827425
\(265\) 4473.73 1.03705
\(266\) 532.034 0.122636
\(267\) 217.696 0.0498980
\(268\) −1900.71 −0.433224
\(269\) −4827.98 −1.09430 −0.547151 0.837034i \(-0.684288\pi\)
−0.547151 + 0.837034i \(0.684288\pi\)
\(270\) −126.912 −0.0286060
\(271\) −5864.01 −1.31444 −0.657220 0.753699i \(-0.728268\pi\)
−0.657220 + 0.753699i \(0.728268\pi\)
\(272\) 382.452 0.0852557
\(273\) 0 0
\(274\) 551.840 0.121671
\(275\) −110.058 −0.0241337
\(276\) −162.965 −0.0355411
\(277\) 5378.70 1.16670 0.583348 0.812222i \(-0.301742\pi\)
0.583348 + 0.812222i \(0.301742\pi\)
\(278\) −762.053 −0.164406
\(279\) −6767.96 −1.45228
\(280\) −1365.15 −0.291368
\(281\) −7785.08 −1.65274 −0.826368 0.563131i \(-0.809597\pi\)
−0.826368 + 0.563131i \(0.809597\pi\)
\(282\) 83.3477 0.0176003
\(283\) 5481.62 1.15141 0.575704 0.817658i \(-0.304728\pi\)
0.575704 + 0.817658i \(0.304728\pi\)
\(284\) 4359.25 0.910824
\(285\) −458.188 −0.0952306
\(286\) 0 0
\(287\) −502.911 −0.103435
\(288\) 1856.05 0.379753
\(289\) −4873.33 −0.991926
\(290\) −487.613 −0.0987367
\(291\) 467.913 0.0942595
\(292\) 3163.17 0.633939
\(293\) −6656.08 −1.32714 −0.663571 0.748114i \(-0.730960\pi\)
−0.663571 + 0.748114i \(0.730960\pi\)
\(294\) 11.5146 0.00228416
\(295\) 4839.66 0.955173
\(296\) 589.746 0.115805
\(297\) −324.273 −0.0633544
\(298\) 296.117 0.0575625
\(299\) 0 0
\(300\) 43.1876 0.00831145
\(301\) 5954.49 1.14024
\(302\) 949.175 0.180857
\(303\) −227.367 −0.0431085
\(304\) 4361.88 0.822931
\(305\) −5346.14 −1.00367
\(306\) 62.3037 0.0116394
\(307\) −6778.67 −1.26019 −0.630096 0.776517i \(-0.716985\pi\)
−0.630096 + 0.776517i \(0.716985\pi\)
\(308\) −1728.95 −0.319858
\(309\) 600.670 0.110586
\(310\) −1091.32 −0.199945
\(311\) 1691.71 0.308451 0.154226 0.988036i \(-0.450712\pi\)
0.154226 + 0.988036i \(0.450712\pi\)
\(312\) 0 0
\(313\) 4230.92 0.764043 0.382022 0.924153i \(-0.375228\pi\)
0.382022 + 0.924153i \(0.375228\pi\)
\(314\) −331.943 −0.0596581
\(315\) 6201.29 1.10922
\(316\) 3855.59 0.686373
\(317\) −867.246 −0.153657 −0.0768287 0.997044i \(-0.524479\pi\)
−0.0768287 + 0.997044i \(0.524479\pi\)
\(318\) 78.3174 0.0138108
\(319\) −1245.90 −0.218674
\(320\) −5345.22 −0.933772
\(321\) 550.020 0.0956360
\(322\) −279.636 −0.0483960
\(323\) 452.407 0.0779337
\(324\) −5540.69 −0.950050
\(325\) 0 0
\(326\) −311.773 −0.0529679
\(327\) −719.580 −0.121691
\(328\) 147.863 0.0248914
\(329\) −8191.18 −1.37263
\(330\) −25.9976 −0.00433672
\(331\) −3642.56 −0.604874 −0.302437 0.953169i \(-0.597800\pi\)
−0.302437 + 0.953169i \(0.597800\pi\)
\(332\) 2312.33 0.382246
\(333\) −2678.97 −0.440861
\(334\) −1577.00 −0.258352
\(335\) 2808.78 0.458090
\(336\) 666.398 0.108199
\(337\) −8388.11 −1.35587 −0.677937 0.735120i \(-0.737126\pi\)
−0.677937 + 0.735120i \(0.737126\pi\)
\(338\) 0 0
\(339\) −581.653 −0.0931889
\(340\) −575.392 −0.0917795
\(341\) −2788.44 −0.442823
\(342\) 710.577 0.112350
\(343\) 5725.02 0.901231
\(344\) −1750.71 −0.274395
\(345\) 240.823 0.0375811
\(346\) −988.695 −0.153620
\(347\) −7895.82 −1.22153 −0.610763 0.791813i \(-0.709137\pi\)
−0.610763 + 0.791813i \(0.709137\pi\)
\(348\) 488.899 0.0753096
\(349\) 3785.89 0.580670 0.290335 0.956925i \(-0.406233\pi\)
0.290335 + 0.956925i \(0.406233\pi\)
\(350\) 74.1066 0.0113176
\(351\) 0 0
\(352\) 764.705 0.115792
\(353\) 11750.9 1.77177 0.885886 0.463902i \(-0.153551\pi\)
0.885886 + 0.463902i \(0.153551\pi\)
\(354\) 84.7235 0.0127203
\(355\) −6441.91 −0.963102
\(356\) 3117.94 0.464187
\(357\) 69.1176 0.0102468
\(358\) 1637.75 0.241781
\(359\) 12559.3 1.84639 0.923195 0.384332i \(-0.125568\pi\)
0.923195 + 0.384332i \(0.125568\pi\)
\(360\) −1823.27 −0.266930
\(361\) −1699.28 −0.247744
\(362\) −131.434 −0.0190829
\(363\) −66.4264 −0.00960463
\(364\) 0 0
\(365\) −4674.39 −0.670325
\(366\) −93.5899 −0.0133662
\(367\) −2343.63 −0.333342 −0.166671 0.986013i \(-0.553302\pi\)
−0.166671 + 0.986013i \(0.553302\pi\)
\(368\) −2292.60 −0.324755
\(369\) −671.680 −0.0947595
\(370\) −431.980 −0.0606961
\(371\) −7696.82 −1.07709
\(372\) 1094.20 0.152504
\(373\) 6730.50 0.934296 0.467148 0.884179i \(-0.345282\pi\)
0.467148 + 0.884179i \(0.345282\pi\)
\(374\) 25.6695 0.00354903
\(375\) 733.514 0.101009
\(376\) 2408.33 0.330319
\(377\) 0 0
\(378\) 218.346 0.0297103
\(379\) −11278.4 −1.52858 −0.764288 0.644875i \(-0.776910\pi\)
−0.764288 + 0.644875i \(0.776910\pi\)
\(380\) −6562.38 −0.885902
\(381\) 158.199 0.0212724
\(382\) −295.865 −0.0396277
\(383\) −5394.67 −0.719726 −0.359863 0.933005i \(-0.617177\pi\)
−0.359863 + 0.933005i \(0.617177\pi\)
\(384\) −398.888 −0.0530095
\(385\) 2554.97 0.338216
\(386\) −887.303 −0.117001
\(387\) 7952.72 1.04460
\(388\) 6701.65 0.876868
\(389\) −8909.94 −1.16132 −0.580658 0.814148i \(-0.697205\pi\)
−0.580658 + 0.814148i \(0.697205\pi\)
\(390\) 0 0
\(391\) −237.784 −0.0307551
\(392\) 332.713 0.0428687
\(393\) 426.929 0.0547982
\(394\) 1604.97 0.205221
\(395\) −5697.62 −0.725768
\(396\) −2309.16 −0.293030
\(397\) 7513.36 0.949835 0.474918 0.880030i \(-0.342478\pi\)
0.474918 + 0.880030i \(0.342478\pi\)
\(398\) −1797.29 −0.226357
\(399\) 788.290 0.0989069
\(400\) 607.563 0.0759454
\(401\) −4025.54 −0.501311 −0.250656 0.968076i \(-0.580646\pi\)
−0.250656 + 0.968076i \(0.580646\pi\)
\(402\) 49.1707 0.00610053
\(403\) 0 0
\(404\) −3256.45 −0.401026
\(405\) 8187.79 1.00458
\(406\) 838.914 0.102548
\(407\) −1103.75 −0.134425
\(408\) −20.3216 −0.00246585
\(409\) −13707.7 −1.65722 −0.828609 0.559828i \(-0.810867\pi\)
−0.828609 + 0.559828i \(0.810867\pi\)
\(410\) −108.307 −0.0130461
\(411\) 817.635 0.0981288
\(412\) 8603.07 1.02874
\(413\) −8326.39 −0.992046
\(414\) −373.478 −0.0443368
\(415\) −3417.06 −0.404185
\(416\) 0 0
\(417\) −1129.10 −0.132595
\(418\) 292.762 0.0342571
\(419\) −6830.53 −0.796404 −0.398202 0.917298i \(-0.630366\pi\)
−0.398202 + 0.917298i \(0.630366\pi\)
\(420\) −1002.58 −0.116479
\(421\) 13958.9 1.61595 0.807974 0.589218i \(-0.200564\pi\)
0.807974 + 0.589218i \(0.200564\pi\)
\(422\) −819.427 −0.0945239
\(423\) −10940.0 −1.25750
\(424\) 2262.98 0.259198
\(425\) 63.0154 0.00719222
\(426\) −112.773 −0.0128259
\(427\) 9197.76 1.04241
\(428\) 7877.64 0.889673
\(429\) 0 0
\(430\) 1282.36 0.143816
\(431\) −2206.57 −0.246604 −0.123302 0.992369i \(-0.539348\pi\)
−0.123302 + 0.992369i \(0.539348\pi\)
\(432\) 1790.11 0.199367
\(433\) 7897.72 0.876536 0.438268 0.898844i \(-0.355592\pi\)
0.438268 + 0.898844i \(0.355592\pi\)
\(434\) 1877.57 0.207664
\(435\) −722.473 −0.0796321
\(436\) −10306.1 −1.13205
\(437\) −2711.94 −0.296864
\(438\) −81.8302 −0.00892694
\(439\) −2111.17 −0.229523 −0.114762 0.993393i \(-0.536610\pi\)
−0.114762 + 0.993393i \(0.536610\pi\)
\(440\) −751.198 −0.0813909
\(441\) −1511.37 −0.163198
\(442\) 0 0
\(443\) −4984.00 −0.534530 −0.267265 0.963623i \(-0.586120\pi\)
−0.267265 + 0.963623i \(0.586120\pi\)
\(444\) 433.119 0.0462948
\(445\) −4607.55 −0.490829
\(446\) 1013.07 0.107557
\(447\) 438.743 0.0464247
\(448\) 9196.19 0.969819
\(449\) 11621.5 1.22150 0.610751 0.791823i \(-0.290868\pi\)
0.610751 + 0.791823i \(0.290868\pi\)
\(450\) 98.9757 0.0103684
\(451\) −276.736 −0.0288936
\(452\) −8330.69 −0.866909
\(453\) 1406.35 0.145863
\(454\) 1023.58 0.105813
\(455\) 0 0
\(456\) −231.769 −0.0238017
\(457\) −17200.8 −1.76066 −0.880329 0.474364i \(-0.842678\pi\)
−0.880329 + 0.474364i \(0.842678\pi\)
\(458\) 2335.01 0.238227
\(459\) 185.667 0.0188806
\(460\) 3449.17 0.349605
\(461\) −2531.30 −0.255736 −0.127868 0.991791i \(-0.540813\pi\)
−0.127868 + 0.991791i \(0.540813\pi\)
\(462\) 44.7275 0.00450414
\(463\) 16502.1 1.65641 0.828203 0.560428i \(-0.189363\pi\)
0.828203 + 0.560428i \(0.189363\pi\)
\(464\) 6877.84 0.688137
\(465\) −1616.96 −0.161258
\(466\) −187.797 −0.0186685
\(467\) 12689.4 1.25737 0.628686 0.777659i \(-0.283593\pi\)
0.628686 + 0.777659i \(0.283593\pi\)
\(468\) 0 0
\(469\) −4832.36 −0.475774
\(470\) −1764.06 −0.173128
\(471\) −491.824 −0.0481148
\(472\) 2448.08 0.238733
\(473\) 3276.57 0.318513
\(474\) −99.7430 −0.00966529
\(475\) 718.694 0.0694230
\(476\) 989.933 0.0953225
\(477\) −10279.8 −0.986746
\(478\) 211.375 0.0202261
\(479\) 861.353 0.0821633 0.0410817 0.999156i \(-0.486920\pi\)
0.0410817 + 0.999156i \(0.486920\pi\)
\(480\) 443.437 0.0421668
\(481\) 0 0
\(482\) 1909.81 0.180476
\(483\) −414.324 −0.0390318
\(484\) −951.389 −0.0893491
\(485\) −9903.41 −0.927197
\(486\) 438.247 0.0409039
\(487\) −10759.2 −1.00112 −0.500560 0.865702i \(-0.666873\pi\)
−0.500560 + 0.865702i \(0.666873\pi\)
\(488\) −2704.28 −0.250854
\(489\) −461.940 −0.0427191
\(490\) −243.707 −0.0224685
\(491\) 17282.5 1.58849 0.794245 0.607598i \(-0.207867\pi\)
0.794245 + 0.607598i \(0.207867\pi\)
\(492\) 108.593 0.00995070
\(493\) 713.357 0.0651683
\(494\) 0 0
\(495\) 3412.38 0.309848
\(496\) 15393.2 1.39350
\(497\) 11083.0 1.00028
\(498\) −59.8193 −0.00538266
\(499\) 265.837 0.0238487 0.0119244 0.999929i \(-0.496204\pi\)
0.0119244 + 0.999929i \(0.496204\pi\)
\(500\) 10505.7 0.939660
\(501\) −2336.57 −0.208364
\(502\) 2526.67 0.224643
\(503\) 11660.0 1.03358 0.516792 0.856111i \(-0.327126\pi\)
0.516792 + 0.856111i \(0.327126\pi\)
\(504\) 3136.84 0.277234
\(505\) 4812.24 0.424043
\(506\) −153.875 −0.0135189
\(507\) 0 0
\(508\) 2265.80 0.197891
\(509\) 19777.1 1.72221 0.861105 0.508427i \(-0.169773\pi\)
0.861105 + 0.508427i \(0.169773\pi\)
\(510\) 14.8852 0.00129241
\(511\) 8042.05 0.696202
\(512\) −7076.66 −0.610834
\(513\) 2117.54 0.182245
\(514\) 2077.55 0.178282
\(515\) −12713.2 −1.08779
\(516\) −1285.74 −0.109693
\(517\) −4507.36 −0.383430
\(518\) 743.199 0.0630392
\(519\) −1464.90 −0.123896
\(520\) 0 0
\(521\) 10244.5 0.861458 0.430729 0.902481i \(-0.358256\pi\)
0.430729 + 0.902481i \(0.358256\pi\)
\(522\) 1120.44 0.0939470
\(523\) 535.008 0.0447309 0.0223654 0.999750i \(-0.492880\pi\)
0.0223654 + 0.999750i \(0.492880\pi\)
\(524\) 6114.66 0.509772
\(525\) 109.800 0.00912777
\(526\) 1401.03 0.116137
\(527\) 1596.56 0.131968
\(528\) 366.698 0.0302244
\(529\) −10741.6 −0.882848
\(530\) −1657.59 −0.135852
\(531\) −11120.6 −0.908838
\(532\) 11290.2 0.920102
\(533\) 0 0
\(534\) −80.6602 −0.00653653
\(535\) −11641.2 −0.940737
\(536\) 1420.79 0.114494
\(537\) 2426.57 0.194999
\(538\) 1788.85 0.143351
\(539\) −622.695 −0.0497614
\(540\) −2693.19 −0.214623
\(541\) −6941.17 −0.551616 −0.275808 0.961213i \(-0.588945\pi\)
−0.275808 + 0.961213i \(0.588945\pi\)
\(542\) 2172.72 0.172189
\(543\) −194.739 −0.0153905
\(544\) −437.842 −0.0345079
\(545\) 15230.0 1.19703
\(546\) 0 0
\(547\) 9812.69 0.767020 0.383510 0.923537i \(-0.374715\pi\)
0.383510 + 0.923537i \(0.374715\pi\)
\(548\) 11710.5 0.912863
\(549\) 12284.4 0.954981
\(550\) 40.7786 0.00316146
\(551\) 8135.88 0.629038
\(552\) 121.817 0.00939291
\(553\) 9802.47 0.753785
\(554\) −1992.90 −0.152835
\(555\) −640.044 −0.0489520
\(556\) −16171.4 −1.23349
\(557\) −20923.0 −1.59163 −0.795813 0.605542i \(-0.792956\pi\)
−0.795813 + 0.605542i \(0.792956\pi\)
\(558\) 2507.65 0.190246
\(559\) 0 0
\(560\) −14104.4 −1.06432
\(561\) 38.0333 0.00286233
\(562\) 2884.51 0.216505
\(563\) −18951.1 −1.41864 −0.709319 0.704887i \(-0.750998\pi\)
−0.709319 + 0.704887i \(0.750998\pi\)
\(564\) 1768.71 0.132050
\(565\) 12310.7 0.916666
\(566\) −2031.04 −0.150832
\(567\) −14086.7 −1.04336
\(568\) −3258.56 −0.240715
\(569\) −24060.2 −1.77268 −0.886342 0.463031i \(-0.846762\pi\)
−0.886342 + 0.463031i \(0.846762\pi\)
\(570\) 169.767 0.0124750
\(571\) 5557.77 0.407330 0.203665 0.979041i \(-0.434715\pi\)
0.203665 + 0.979041i \(0.434715\pi\)
\(572\) 0 0
\(573\) −438.369 −0.0319601
\(574\) 186.337 0.0135498
\(575\) −377.744 −0.0273965
\(576\) 12282.3 0.888476
\(577\) −24437.9 −1.76319 −0.881597 0.472003i \(-0.843531\pi\)
−0.881597 + 0.472003i \(0.843531\pi\)
\(578\) 1805.66 0.129940
\(579\) −1314.67 −0.0943627
\(580\) −10347.6 −0.740793
\(581\) 5878.88 0.419788
\(582\) −173.370 −0.0123478
\(583\) −4235.32 −0.300873
\(584\) −2364.48 −0.167539
\(585\) 0 0
\(586\) 2466.20 0.173853
\(587\) −5503.17 −0.386951 −0.193476 0.981105i \(-0.561976\pi\)
−0.193476 + 0.981105i \(0.561976\pi\)
\(588\) 244.349 0.0171374
\(589\) 18208.8 1.27382
\(590\) −1793.18 −0.125125
\(591\) 2378.00 0.165513
\(592\) 6093.12 0.423016
\(593\) −2330.82 −0.161409 −0.0807043 0.996738i \(-0.525717\pi\)
−0.0807043 + 0.996738i \(0.525717\pi\)
\(594\) 120.149 0.00829928
\(595\) −1462.88 −0.100794
\(596\) 6283.87 0.431875
\(597\) −2662.96 −0.182559
\(598\) 0 0
\(599\) 3514.35 0.239720 0.119860 0.992791i \(-0.461755\pi\)
0.119860 + 0.992791i \(0.461755\pi\)
\(600\) −32.2829 −0.00219657
\(601\) 5198.76 0.352849 0.176424 0.984314i \(-0.443547\pi\)
0.176424 + 0.984314i \(0.443547\pi\)
\(602\) −2206.24 −0.149368
\(603\) −6454.03 −0.435868
\(604\) 20142.3 1.35692
\(605\) 1405.92 0.0944774
\(606\) 84.2434 0.00564712
\(607\) 20939.8 1.40019 0.700097 0.714047i \(-0.253140\pi\)
0.700097 + 0.714047i \(0.253140\pi\)
\(608\) −4993.61 −0.333088
\(609\) 1242.98 0.0827062
\(610\) 1980.84 0.131478
\(611\) 0 0
\(612\) 1322.14 0.0873273
\(613\) −20854.6 −1.37408 −0.687038 0.726622i \(-0.741089\pi\)
−0.687038 + 0.726622i \(0.741089\pi\)
\(614\) 2511.62 0.165082
\(615\) −160.474 −0.0105218
\(616\) 1292.40 0.0845329
\(617\) −16354.9 −1.06714 −0.533569 0.845757i \(-0.679150\pi\)
−0.533569 + 0.845757i \(0.679150\pi\)
\(618\) −222.559 −0.0144865
\(619\) 23288.7 1.51220 0.756099 0.654457i \(-0.227103\pi\)
0.756099 + 0.654457i \(0.227103\pi\)
\(620\) −23158.8 −1.50013
\(621\) −1112.97 −0.0719197
\(622\) −626.810 −0.0404064
\(623\) 7927.06 0.509777
\(624\) 0 0
\(625\) −16775.6 −1.07364
\(626\) −1567.63 −0.100088
\(627\) 433.772 0.0276287
\(628\) −7044.13 −0.447598
\(629\) 631.967 0.0400607
\(630\) −2297.69 −0.145305
\(631\) 25716.8 1.62246 0.811229 0.584728i \(-0.198799\pi\)
0.811229 + 0.584728i \(0.198799\pi\)
\(632\) −2882.07 −0.181396
\(633\) −1214.11 −0.0762344
\(634\) 321.330 0.0201288
\(635\) −3348.30 −0.209249
\(636\) 1661.97 0.103618
\(637\) 0 0
\(638\) 461.629 0.0286458
\(639\) 14802.3 0.916382
\(640\) 8442.50 0.521436
\(641\) 10221.0 0.629806 0.314903 0.949124i \(-0.398028\pi\)
0.314903 + 0.949124i \(0.398028\pi\)
\(642\) −203.792 −0.0125281
\(643\) 9836.84 0.603308 0.301654 0.953417i \(-0.402461\pi\)
0.301654 + 0.953417i \(0.402461\pi\)
\(644\) −5934.13 −0.363102
\(645\) 1900.02 0.115989
\(646\) −167.625 −0.0102091
\(647\) 27544.5 1.67370 0.836851 0.547431i \(-0.184394\pi\)
0.836851 + 0.547431i \(0.184394\pi\)
\(648\) 4141.69 0.251082
\(649\) −4581.76 −0.277118
\(650\) 0 0
\(651\) 2781.90 0.167483
\(652\) −6616.11 −0.397403
\(653\) −27098.7 −1.62397 −0.811986 0.583677i \(-0.801614\pi\)
−0.811986 + 0.583677i \(0.801614\pi\)
\(654\) 266.617 0.0159412
\(655\) −9035.98 −0.539031
\(656\) 1527.69 0.0909240
\(657\) 10740.8 0.637808
\(658\) 3034.98 0.179811
\(659\) 24699.6 1.46003 0.730014 0.683432i \(-0.239513\pi\)
0.730014 + 0.683432i \(0.239513\pi\)
\(660\) −551.691 −0.0325372
\(661\) −5548.01 −0.326464 −0.163232 0.986588i \(-0.552192\pi\)
−0.163232 + 0.986588i \(0.552192\pi\)
\(662\) 1349.63 0.0792372
\(663\) 0 0
\(664\) −1728.48 −0.101021
\(665\) −16684.2 −0.972912
\(666\) 992.605 0.0577518
\(667\) −4276.20 −0.248238
\(668\) −33465.4 −1.93835
\(669\) 1501.02 0.0867457
\(670\) −1040.70 −0.0600087
\(671\) 5061.24 0.291188
\(672\) −762.912 −0.0437946
\(673\) 26941.8 1.54314 0.771569 0.636146i \(-0.219472\pi\)
0.771569 + 0.636146i \(0.219472\pi\)
\(674\) 3107.94 0.177617
\(675\) 294.951 0.0168187
\(676\) 0 0
\(677\) 2357.13 0.133814 0.0669069 0.997759i \(-0.478687\pi\)
0.0669069 + 0.997759i \(0.478687\pi\)
\(678\) 215.513 0.0122075
\(679\) 17038.3 0.962991
\(680\) 430.108 0.0242557
\(681\) 1516.59 0.0853391
\(682\) 1033.17 0.0580088
\(683\) 7349.73 0.411756 0.205878 0.978578i \(-0.433995\pi\)
0.205878 + 0.978578i \(0.433995\pi\)
\(684\) 15079.1 0.842928
\(685\) −17305.3 −0.965258
\(686\) −2121.22 −0.118059
\(687\) 3459.67 0.192132
\(688\) −18087.9 −1.00232
\(689\) 0 0
\(690\) −89.2291 −0.00492304
\(691\) −7901.25 −0.434990 −0.217495 0.976061i \(-0.569789\pi\)
−0.217495 + 0.976061i \(0.569789\pi\)
\(692\) −20981.0 −1.15257
\(693\) −5870.82 −0.321810
\(694\) 2925.54 0.160017
\(695\) 23897.4 1.30429
\(696\) −365.454 −0.0199030
\(697\) 158.449 0.00861073
\(698\) −1402.74 −0.0760665
\(699\) −278.250 −0.0150563
\(700\) 1572.61 0.0849129
\(701\) −22650.1 −1.22037 −0.610187 0.792258i \(-0.708906\pi\)
−0.610187 + 0.792258i \(0.708906\pi\)
\(702\) 0 0
\(703\) 7207.62 0.386686
\(704\) 5060.38 0.270909
\(705\) −2613.73 −0.139629
\(706\) −4353.91 −0.232098
\(707\) −8279.22 −0.440413
\(708\) 1797.91 0.0954372
\(709\) −1520.18 −0.0805243 −0.0402621 0.999189i \(-0.512819\pi\)
−0.0402621 + 0.999189i \(0.512819\pi\)
\(710\) 2386.84 0.126164
\(711\) 13092.0 0.690562
\(712\) −2330.67 −0.122677
\(713\) −9570.52 −0.502691
\(714\) −25.6093 −0.00134230
\(715\) 0 0
\(716\) 34754.5 1.81402
\(717\) 313.184 0.0163125
\(718\) −4653.44 −0.241873
\(719\) −7000.07 −0.363085 −0.181543 0.983383i \(-0.558109\pi\)
−0.181543 + 0.983383i \(0.558109\pi\)
\(720\) −18837.6 −0.975049
\(721\) 21872.5 1.12978
\(722\) 629.612 0.0324539
\(723\) 2829.68 0.145556
\(724\) −2789.14 −0.143174
\(725\) 1133.24 0.0580517
\(726\) 24.6122 0.00125819
\(727\) −31551.4 −1.60960 −0.804798 0.593549i \(-0.797726\pi\)
−0.804798 + 0.593549i \(0.797726\pi\)
\(728\) 0 0
\(729\) −18377.0 −0.933649
\(730\) 1731.94 0.0878111
\(731\) −1876.04 −0.0949219
\(732\) −1986.06 −0.100283
\(733\) 16460.8 0.829458 0.414729 0.909945i \(-0.363876\pi\)
0.414729 + 0.909945i \(0.363876\pi\)
\(734\) 868.357 0.0436671
\(735\) −361.089 −0.0181210
\(736\) 2624.63 0.131447
\(737\) −2659.10 −0.132903
\(738\) 248.869 0.0124133
\(739\) −9719.80 −0.483828 −0.241914 0.970298i \(-0.577775\pi\)
−0.241914 + 0.970298i \(0.577775\pi\)
\(740\) −9166.99 −0.455386
\(741\) 0 0
\(742\) 2851.81 0.141096
\(743\) −16063.9 −0.793174 −0.396587 0.917997i \(-0.629805\pi\)
−0.396587 + 0.917997i \(0.629805\pi\)
\(744\) −817.920 −0.0403043
\(745\) −9286.03 −0.456663
\(746\) −2493.77 −0.122391
\(747\) 7851.74 0.384578
\(748\) 544.730 0.0266274
\(749\) 20028.2 0.977053
\(750\) −271.780 −0.0132320
\(751\) 26001.5 1.26339 0.631695 0.775217i \(-0.282359\pi\)
0.631695 + 0.775217i \(0.282359\pi\)
\(752\) 24882.3 1.20660
\(753\) 3743.64 0.181176
\(754\) 0 0
\(755\) −29765.5 −1.43480
\(756\) 4633.49 0.222908
\(757\) 9051.63 0.434593 0.217297 0.976106i \(-0.430276\pi\)
0.217297 + 0.976106i \(0.430276\pi\)
\(758\) 4178.83 0.200240
\(759\) −227.990 −0.0109032
\(760\) 4905.41 0.234129
\(761\) 9914.92 0.472294 0.236147 0.971717i \(-0.424115\pi\)
0.236147 + 0.971717i \(0.424115\pi\)
\(762\) −58.6156 −0.00278664
\(763\) −26202.4 −1.24324
\(764\) −6278.52 −0.297315
\(765\) −1953.80 −0.0923396
\(766\) 1998.82 0.0942825
\(767\) 0 0
\(768\) −1872.60 −0.0879838
\(769\) −33616.0 −1.57636 −0.788181 0.615443i \(-0.788977\pi\)
−0.788181 + 0.615443i \(0.788977\pi\)
\(770\) −946.661 −0.0443056
\(771\) 3078.21 0.143786
\(772\) −18829.4 −0.877828
\(773\) 5047.85 0.234875 0.117438 0.993080i \(-0.462532\pi\)
0.117438 + 0.993080i \(0.462532\pi\)
\(774\) −2946.62 −0.136840
\(775\) 2536.29 0.117557
\(776\) −5009.52 −0.231741
\(777\) 1101.16 0.0508417
\(778\) 3301.29 0.152130
\(779\) 1807.12 0.0831152
\(780\) 0 0
\(781\) 6098.62 0.279419
\(782\) 88.1032 0.00402885
\(783\) 3338.95 0.152394
\(784\) 3437.51 0.156592
\(785\) 10409.5 0.473288
\(786\) −158.185 −0.00717845
\(787\) 14751.4 0.668144 0.334072 0.942548i \(-0.391577\pi\)
0.334072 + 0.942548i \(0.391577\pi\)
\(788\) 34058.8 1.53971
\(789\) 2075.84 0.0936654
\(790\) 2111.07 0.0950740
\(791\) −21180.0 −0.952053
\(792\) 1726.11 0.0774427
\(793\) 0 0
\(794\) −2783.83 −0.124426
\(795\) −2455.98 −0.109566
\(796\) −38140.1 −1.69829
\(797\) −13011.7 −0.578293 −0.289146 0.957285i \(-0.593371\pi\)
−0.289146 + 0.957285i \(0.593371\pi\)
\(798\) −292.075 −0.0129566
\(799\) 2580.74 0.114268
\(800\) −695.556 −0.0307395
\(801\) 10587.3 0.467019
\(802\) 1491.53 0.0656707
\(803\) 4425.29 0.194477
\(804\) 1043.45 0.0457705
\(805\) 8769.19 0.383942
\(806\) 0 0
\(807\) 2650.46 0.115614
\(808\) 2434.21 0.105984
\(809\) −29356.1 −1.27578 −0.637891 0.770127i \(-0.720193\pi\)
−0.637891 + 0.770127i \(0.720193\pi\)
\(810\) −3033.72 −0.131598
\(811\) 26529.9 1.14869 0.574347 0.818612i \(-0.305256\pi\)
0.574347 + 0.818612i \(0.305256\pi\)
\(812\) 17802.5 0.769391
\(813\) 3219.22 0.138872
\(814\) 408.960 0.0176094
\(815\) 9776.99 0.420212
\(816\) −209.958 −0.00900734
\(817\) −21396.4 −0.916235
\(818\) 5078.94 0.217092
\(819\) 0 0
\(820\) −2298.38 −0.0978815
\(821\) 36143.0 1.53642 0.768210 0.640198i \(-0.221148\pi\)
0.768210 + 0.640198i \(0.221148\pi\)
\(822\) −302.948 −0.0128547
\(823\) −17671.9 −0.748484 −0.374242 0.927331i \(-0.622097\pi\)
−0.374242 + 0.927331i \(0.622097\pi\)
\(824\) −6430.83 −0.271879
\(825\) 60.4197 0.00254975
\(826\) 3085.08 0.129956
\(827\) 3830.34 0.161057 0.0805284 0.996752i \(-0.474339\pi\)
0.0805284 + 0.996752i \(0.474339\pi\)
\(828\) −7925.53 −0.332646
\(829\) −27299.5 −1.14373 −0.571863 0.820349i \(-0.693779\pi\)
−0.571863 + 0.820349i \(0.693779\pi\)
\(830\) 1266.08 0.0529473
\(831\) −2952.79 −0.123263
\(832\) 0 0
\(833\) 356.532 0.0148297
\(834\) 418.350 0.0173697
\(835\) 49453.7 2.04960
\(836\) 6212.67 0.257021
\(837\) 7472.87 0.308602
\(838\) 2530.83 0.104327
\(839\) −10105.9 −0.415845 −0.207922 0.978145i \(-0.566670\pi\)
−0.207922 + 0.978145i \(0.566670\pi\)
\(840\) 749.436 0.0307833
\(841\) −11560.3 −0.473997
\(842\) −5172.01 −0.211686
\(843\) 4273.84 0.174613
\(844\) −17389.0 −0.709186
\(845\) 0 0
\(846\) 4053.47 0.164730
\(847\) −2418.82 −0.0981246
\(848\) 23380.5 0.946806
\(849\) −3009.29 −0.121647
\(850\) −23.3483 −0.000942165 0
\(851\) −3788.31 −0.152599
\(852\) −2393.13 −0.0962294
\(853\) 1436.66 0.0576672 0.0288336 0.999584i \(-0.490821\pi\)
0.0288336 + 0.999584i \(0.490821\pi\)
\(854\) −3407.93 −0.136554
\(855\) −22283.2 −0.891309
\(856\) −5888.57 −0.235125
\(857\) −17076.2 −0.680645 −0.340323 0.940309i \(-0.610536\pi\)
−0.340323 + 0.940309i \(0.610536\pi\)
\(858\) 0 0
\(859\) −1750.31 −0.0695226 −0.0347613 0.999396i \(-0.511067\pi\)
−0.0347613 + 0.999396i \(0.511067\pi\)
\(860\) 27212.9 1.07901
\(861\) 276.087 0.0109280
\(862\) 817.571 0.0323046
\(863\) 43005.0 1.69630 0.848151 0.529755i \(-0.177716\pi\)
0.848151 + 0.529755i \(0.177716\pi\)
\(864\) −2049.37 −0.0806955
\(865\) 31004.8 1.21872
\(866\) −2926.24 −0.114824
\(867\) 2675.36 0.104798
\(868\) 39843.6 1.55804
\(869\) 5394.00 0.210562
\(870\) 267.689 0.0104316
\(871\) 0 0
\(872\) 7703.89 0.299182
\(873\) 22756.1 0.882220
\(874\) 1004.82 0.0388886
\(875\) 26709.8 1.03195
\(876\) −1736.51 −0.0669763
\(877\) 14133.5 0.544191 0.272095 0.962270i \(-0.412283\pi\)
0.272095 + 0.962270i \(0.412283\pi\)
\(878\) 782.226 0.0300670
\(879\) 3654.05 0.140214
\(880\) −7761.20 −0.297307
\(881\) −22316.1 −0.853405 −0.426703 0.904392i \(-0.640325\pi\)
−0.426703 + 0.904392i \(0.640325\pi\)
\(882\) 559.991 0.0213785
\(883\) 14579.8 0.555660 0.277830 0.960630i \(-0.410385\pi\)
0.277830 + 0.960630i \(0.410385\pi\)
\(884\) 0 0
\(885\) −2656.87 −0.100915
\(886\) 1846.66 0.0700222
\(887\) −18320.9 −0.693524 −0.346762 0.937953i \(-0.612719\pi\)
−0.346762 + 0.937953i \(0.612719\pi\)
\(888\) −323.758 −0.0122349
\(889\) 5760.58 0.217327
\(890\) 1707.18 0.0642975
\(891\) −7751.47 −0.291452
\(892\) 21498.3 0.806969
\(893\) 29433.5 1.10297
\(894\) −162.562 −0.00608153
\(895\) −51358.6 −1.91813
\(896\) −14524.9 −0.541566
\(897\) 0 0
\(898\) −4305.98 −0.160014
\(899\) 28711.8 1.06517
\(900\) 2100.35 0.0777908
\(901\) 2424.99 0.0896649
\(902\) 102.536 0.00378499
\(903\) −3268.88 −0.120467
\(904\) 6227.23 0.229109
\(905\) 4121.68 0.151391
\(906\) −521.077 −0.0191077
\(907\) 34884.3 1.27708 0.638541 0.769588i \(-0.279538\pi\)
0.638541 + 0.769588i \(0.279538\pi\)
\(908\) 21721.3 0.793884
\(909\) −11057.6 −0.403473
\(910\) 0 0
\(911\) −2978.83 −0.108335 −0.0541674 0.998532i \(-0.517250\pi\)
−0.0541674 + 0.998532i \(0.517250\pi\)
\(912\) −2394.58 −0.0869435
\(913\) 3234.96 0.117264
\(914\) 6373.21 0.230642
\(915\) 2934.91 0.106039
\(916\) 49551.0 1.78735
\(917\) 15546.0 0.559839
\(918\) −68.7929 −0.00247331
\(919\) −37880.6 −1.35970 −0.679850 0.733351i \(-0.737955\pi\)
−0.679850 + 0.733351i \(0.737955\pi\)
\(920\) −2578.27 −0.0923947
\(921\) 3721.34 0.133141
\(922\) 937.892 0.0335009
\(923\) 0 0
\(924\) 949.157 0.0337933
\(925\) 1003.94 0.0356859
\(926\) −6114.31 −0.216986
\(927\) 29212.6 1.03502
\(928\) −7873.95 −0.278529
\(929\) −9454.47 −0.333898 −0.166949 0.985966i \(-0.553391\pi\)
−0.166949 + 0.985966i \(0.553391\pi\)
\(930\) 599.113 0.0211244
\(931\) 4066.27 0.143144
\(932\) −3985.22 −0.140065
\(933\) −928.715 −0.0325882
\(934\) −4701.63 −0.164713
\(935\) −804.978 −0.0281557
\(936\) 0 0
\(937\) −5608.48 −0.195540 −0.0977701 0.995209i \(-0.531171\pi\)
−0.0977701 + 0.995209i \(0.531171\pi\)
\(938\) 1790.48 0.0623253
\(939\) −2322.68 −0.0807219
\(940\) −37434.9 −1.29893
\(941\) −44502.3 −1.54169 −0.770847 0.637020i \(-0.780167\pi\)
−0.770847 + 0.637020i \(0.780167\pi\)
\(942\) 182.230 0.00630293
\(943\) −949.818 −0.0327999
\(944\) 25293.0 0.872051
\(945\) −6847.17 −0.235702
\(946\) −1214.03 −0.0417246
\(947\) −44740.3 −1.53523 −0.767615 0.640911i \(-0.778557\pi\)
−0.767615 + 0.640911i \(0.778557\pi\)
\(948\) −2116.64 −0.0725159
\(949\) 0 0
\(950\) −266.289 −0.00909426
\(951\) 476.099 0.0162340
\(952\) −739.980 −0.0251921
\(953\) −10505.5 −0.357090 −0.178545 0.983932i \(-0.557139\pi\)
−0.178545 + 0.983932i \(0.557139\pi\)
\(954\) 3808.83 0.129262
\(955\) 9278.13 0.314380
\(956\) 4485.57 0.151751
\(957\) 683.973 0.0231032
\(958\) −319.147 −0.0107632
\(959\) 29772.9 1.00252
\(960\) 2934.41 0.0986539
\(961\) 34468.5 1.15701
\(962\) 0 0
\(963\) 26749.3 0.895103
\(964\) 40527.9 1.35406
\(965\) 27825.2 0.928212
\(966\) 153.514 0.00511308
\(967\) −41413.0 −1.37720 −0.688600 0.725141i \(-0.741775\pi\)
−0.688600 + 0.725141i \(0.741775\pi\)
\(968\) 711.167 0.0236134
\(969\) −248.362 −0.00823377
\(970\) 3669.39 0.121461
\(971\) 11424.5 0.377579 0.188789 0.982018i \(-0.439544\pi\)
0.188789 + 0.982018i \(0.439544\pi\)
\(972\) 9300.00 0.306891
\(973\) −41114.3 −1.35464
\(974\) 3986.47 0.131145
\(975\) 0 0
\(976\) −27939.9 −0.916327
\(977\) −56529.6 −1.85112 −0.925559 0.378603i \(-0.876405\pi\)
−0.925559 + 0.378603i \(0.876405\pi\)
\(978\) 171.157 0.00559611
\(979\) 4362.02 0.142401
\(980\) −5171.67 −0.168575
\(981\) −34995.5 −1.13896
\(982\) −6403.47 −0.208089
\(983\) 31465.5 1.02095 0.510474 0.859893i \(-0.329470\pi\)
0.510474 + 0.859893i \(0.329470\pi\)
\(984\) −81.1737 −0.00262980
\(985\) −50330.6 −1.62809
\(986\) −264.311 −0.00853691
\(987\) 4496.78 0.145019
\(988\) 0 0
\(989\) 11245.9 0.361576
\(990\) −1264.35 −0.0405894
\(991\) −18338.5 −0.587832 −0.293916 0.955831i \(-0.594959\pi\)
−0.293916 + 0.955831i \(0.594959\pi\)
\(992\) −17622.6 −0.564031
\(993\) 1999.69 0.0639055
\(994\) −4106.44 −0.131035
\(995\) 56361.7 1.79577
\(996\) −1269.42 −0.0403846
\(997\) 28193.3 0.895577 0.447789 0.894140i \(-0.352212\pi\)
0.447789 + 0.894140i \(0.352212\pi\)
\(998\) −98.4975 −0.00312413
\(999\) 2957.99 0.0936805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.j.1.10 18
13.5 odd 4 143.4.b.a.12.19 yes 36
13.8 odd 4 143.4.b.a.12.18 36
13.12 even 2 1859.4.a.k.1.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.b.a.12.18 36 13.8 odd 4
143.4.b.a.12.19 yes 36 13.5 odd 4
1859.4.a.j.1.10 18 1.1 even 1 trivial
1859.4.a.k.1.9 18 13.12 even 2