Properties

Label 1859.4.a.j.1.14
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-2.40428\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.40428 q^{2} +7.21858 q^{3} -2.21943 q^{4} +9.84845 q^{5} +17.3555 q^{6} +8.26104 q^{7} -24.5704 q^{8} +25.1078 q^{9} +23.6784 q^{10} -11.0000 q^{11} -16.0212 q^{12} +19.8618 q^{14} +71.0918 q^{15} -41.3186 q^{16} -113.178 q^{17} +60.3663 q^{18} -121.759 q^{19} -21.8580 q^{20} +59.6329 q^{21} -26.4471 q^{22} -69.3004 q^{23} -177.363 q^{24} -28.0079 q^{25} -13.6587 q^{27} -18.3348 q^{28} -209.888 q^{29} +170.925 q^{30} +18.1919 q^{31} +97.2215 q^{32} -79.4043 q^{33} -272.112 q^{34} +81.3584 q^{35} -55.7252 q^{36} -228.240 q^{37} -292.742 q^{38} -241.980 q^{40} -460.524 q^{41} +143.374 q^{42} +386.056 q^{43} +24.4138 q^{44} +247.273 q^{45} -166.618 q^{46} +322.380 q^{47} -298.262 q^{48} -274.755 q^{49} -67.3390 q^{50} -816.984 q^{51} +249.880 q^{53} -32.8393 q^{54} -108.333 q^{55} -202.977 q^{56} -878.923 q^{57} -504.629 q^{58} -56.7513 q^{59} -157.784 q^{60} +775.933 q^{61} +43.7384 q^{62} +207.417 q^{63} +564.297 q^{64} -190.910 q^{66} -387.156 q^{67} +251.191 q^{68} -500.250 q^{69} +195.609 q^{70} +116.894 q^{71} -616.909 q^{72} +1016.35 q^{73} -548.754 q^{74} -202.177 q^{75} +270.235 q^{76} -90.8714 q^{77} -429.294 q^{79} -406.925 q^{80} -776.508 q^{81} -1107.23 q^{82} +950.500 q^{83} -132.351 q^{84} -1114.63 q^{85} +928.187 q^{86} -1515.09 q^{87} +270.274 q^{88} +671.495 q^{89} +594.515 q^{90} +153.808 q^{92} +131.320 q^{93} +775.093 q^{94} -1199.13 q^{95} +701.801 q^{96} +968.442 q^{97} -660.589 q^{98} -276.186 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 76 q^{4} - 20 q^{5} - 49 q^{6} - 28 q^{7} + 12 q^{8} + 180 q^{9} + 56 q^{10} - 198 q^{11} + 54 q^{12} + 4 q^{14} - 60 q^{15} + 364 q^{16} - 138 q^{17} - 298 q^{18} - 24 q^{19} - 160 q^{20}+ \cdots - 1980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.40428 0.850042 0.425021 0.905184i \(-0.360267\pi\)
0.425021 + 0.905184i \(0.360267\pi\)
\(3\) 7.21858 1.38922 0.694608 0.719389i \(-0.255578\pi\)
0.694608 + 0.719389i \(0.255578\pi\)
\(4\) −2.21943 −0.277429
\(5\) 9.84845 0.880873 0.440436 0.897784i \(-0.354824\pi\)
0.440436 + 0.897784i \(0.354824\pi\)
\(6\) 17.3555 1.18089
\(7\) 8.26104 0.446054 0.223027 0.974812i \(-0.428406\pi\)
0.223027 + 0.974812i \(0.428406\pi\)
\(8\) −24.5704 −1.08587
\(9\) 25.1078 0.929920
\(10\) 23.6784 0.748778
\(11\) −11.0000 −0.301511
\(12\) −16.0212 −0.385409
\(13\) 0 0
\(14\) 19.8618 0.379164
\(15\) 71.0918 1.22372
\(16\) −41.3186 −0.645604
\(17\) −113.178 −1.61469 −0.807344 0.590082i \(-0.799096\pi\)
−0.807344 + 0.590082i \(0.799096\pi\)
\(18\) 60.3663 0.790471
\(19\) −121.759 −1.47017 −0.735087 0.677972i \(-0.762859\pi\)
−0.735087 + 0.677972i \(0.762859\pi\)
\(20\) −21.8580 −0.244380
\(21\) 59.6329 0.619665
\(22\) −26.4471 −0.256297
\(23\) −69.3004 −0.628266 −0.314133 0.949379i \(-0.601714\pi\)
−0.314133 + 0.949379i \(0.601714\pi\)
\(24\) −177.363 −1.50850
\(25\) −28.0079 −0.224064
\(26\) 0 0
\(27\) −13.6587 −0.0973561
\(28\) −18.3348 −0.123748
\(29\) −209.888 −1.34397 −0.671985 0.740564i \(-0.734558\pi\)
−0.671985 + 0.740564i \(0.734558\pi\)
\(30\) 170.925 1.04021
\(31\) 18.1919 0.105399 0.0526994 0.998610i \(-0.483217\pi\)
0.0526994 + 0.998610i \(0.483217\pi\)
\(32\) 97.2215 0.537078
\(33\) −79.4043 −0.418864
\(34\) −272.112 −1.37255
\(35\) 81.3584 0.392917
\(36\) −55.7252 −0.257987
\(37\) −228.240 −1.01412 −0.507060 0.861911i \(-0.669268\pi\)
−0.507060 + 0.861911i \(0.669268\pi\)
\(38\) −292.742 −1.24971
\(39\) 0 0
\(40\) −241.980 −0.956511
\(41\) −460.524 −1.75419 −0.877095 0.480317i \(-0.840522\pi\)
−0.877095 + 0.480317i \(0.840522\pi\)
\(42\) 143.374 0.526741
\(43\) 386.056 1.36914 0.684570 0.728947i \(-0.259990\pi\)
0.684570 + 0.728947i \(0.259990\pi\)
\(44\) 24.4138 0.0836481
\(45\) 247.273 0.819141
\(46\) −166.618 −0.534053
\(47\) 322.380 1.00051 0.500255 0.865878i \(-0.333239\pi\)
0.500255 + 0.865878i \(0.333239\pi\)
\(48\) −298.262 −0.896883
\(49\) −274.755 −0.801036
\(50\) −67.3390 −0.190463
\(51\) −816.984 −2.24315
\(52\) 0 0
\(53\) 249.880 0.647617 0.323809 0.946123i \(-0.395037\pi\)
0.323809 + 0.946123i \(0.395037\pi\)
\(54\) −32.8393 −0.0827568
\(55\) −108.333 −0.265593
\(56\) −202.977 −0.484356
\(57\) −878.923 −2.04239
\(58\) −504.629 −1.14243
\(59\) −56.7513 −0.125227 −0.0626135 0.998038i \(-0.519944\pi\)
−0.0626135 + 0.998038i \(0.519944\pi\)
\(60\) −157.784 −0.339496
\(61\) 775.933 1.62866 0.814328 0.580405i \(-0.197106\pi\)
0.814328 + 0.580405i \(0.197106\pi\)
\(62\) 43.7384 0.0895933
\(63\) 207.417 0.414795
\(64\) 564.297 1.10214
\(65\) 0 0
\(66\) −190.910 −0.356052
\(67\) −387.156 −0.705949 −0.352975 0.935633i \(-0.614830\pi\)
−0.352975 + 0.935633i \(0.614830\pi\)
\(68\) 251.191 0.447962
\(69\) −500.250 −0.872797
\(70\) 195.609 0.333996
\(71\) 116.894 0.195391 0.0976957 0.995216i \(-0.468853\pi\)
0.0976957 + 0.995216i \(0.468853\pi\)
\(72\) −616.909 −1.00977
\(73\) 1016.35 1.62952 0.814759 0.579800i \(-0.196869\pi\)
0.814759 + 0.579800i \(0.196869\pi\)
\(74\) −548.754 −0.862045
\(75\) −202.177 −0.311273
\(76\) 270.235 0.407870
\(77\) −90.8714 −0.134490
\(78\) 0 0
\(79\) −429.294 −0.611384 −0.305692 0.952131i \(-0.598888\pi\)
−0.305692 + 0.952131i \(0.598888\pi\)
\(80\) −406.925 −0.568695
\(81\) −776.508 −1.06517
\(82\) −1107.23 −1.49113
\(83\) 950.500 1.25700 0.628500 0.777810i \(-0.283669\pi\)
0.628500 + 0.777810i \(0.283669\pi\)
\(84\) −132.351 −0.171913
\(85\) −1114.63 −1.42233
\(86\) 928.187 1.16383
\(87\) −1515.09 −1.86706
\(88\) 270.274 0.327402
\(89\) 671.495 0.799757 0.399878 0.916568i \(-0.369052\pi\)
0.399878 + 0.916568i \(0.369052\pi\)
\(90\) 594.515 0.696304
\(91\) 0 0
\(92\) 153.808 0.174300
\(93\) 131.320 0.146422
\(94\) 775.093 0.850476
\(95\) −1199.13 −1.29504
\(96\) 701.801 0.746117
\(97\) 968.442 1.01371 0.506857 0.862030i \(-0.330807\pi\)
0.506857 + 0.862030i \(0.330807\pi\)
\(98\) −660.589 −0.680914
\(99\) −276.186 −0.280381
\(100\) 62.1618 0.0621618
\(101\) 498.778 0.491388 0.245694 0.969347i \(-0.420984\pi\)
0.245694 + 0.969347i \(0.420984\pi\)
\(102\) −1964.26 −1.90677
\(103\) 774.677 0.741079 0.370540 0.928817i \(-0.379173\pi\)
0.370540 + 0.928817i \(0.379173\pi\)
\(104\) 0 0
\(105\) 587.292 0.545846
\(106\) 600.782 0.550501
\(107\) −1370.11 −1.23788 −0.618940 0.785438i \(-0.712438\pi\)
−0.618940 + 0.785438i \(0.712438\pi\)
\(108\) 30.3146 0.0270094
\(109\) −845.710 −0.743159 −0.371579 0.928401i \(-0.621184\pi\)
−0.371579 + 0.928401i \(0.621184\pi\)
\(110\) −260.463 −0.225765
\(111\) −1647.57 −1.40883
\(112\) −341.335 −0.287974
\(113\) 1313.27 1.09330 0.546648 0.837362i \(-0.315904\pi\)
0.546648 + 0.837362i \(0.315904\pi\)
\(114\) −2113.18 −1.73612
\(115\) −682.502 −0.553423
\(116\) 465.832 0.372857
\(117\) 0 0
\(118\) −136.446 −0.106448
\(119\) −934.967 −0.720238
\(120\) −1746.75 −1.32880
\(121\) 121.000 0.0909091
\(122\) 1865.56 1.38442
\(123\) −3324.33 −2.43695
\(124\) −40.3757 −0.0292407
\(125\) −1506.89 −1.07824
\(126\) 498.688 0.352593
\(127\) 43.6232 0.0304798 0.0152399 0.999884i \(-0.495149\pi\)
0.0152399 + 0.999884i \(0.495149\pi\)
\(128\) 578.956 0.399789
\(129\) 2786.78 1.90203
\(130\) 0 0
\(131\) 728.367 0.485784 0.242892 0.970053i \(-0.421904\pi\)
0.242892 + 0.970053i \(0.421904\pi\)
\(132\) 176.233 0.116205
\(133\) −1005.85 −0.655777
\(134\) −930.831 −0.600086
\(135\) −134.517 −0.0857583
\(136\) 2780.83 1.75334
\(137\) 34.8683 0.0217445 0.0108723 0.999941i \(-0.496539\pi\)
0.0108723 + 0.999941i \(0.496539\pi\)
\(138\) −1202.74 −0.741914
\(139\) −298.899 −0.182391 −0.0911954 0.995833i \(-0.529069\pi\)
−0.0911954 + 0.995833i \(0.529069\pi\)
\(140\) −180.570 −0.109007
\(141\) 2327.13 1.38992
\(142\) 281.046 0.166091
\(143\) 0 0
\(144\) −1037.42 −0.600360
\(145\) −2067.07 −1.18387
\(146\) 2443.59 1.38516
\(147\) −1983.34 −1.11281
\(148\) 506.564 0.281347
\(149\) 58.7860 0.0323217 0.0161609 0.999869i \(-0.494856\pi\)
0.0161609 + 0.999869i \(0.494856\pi\)
\(150\) −486.091 −0.264595
\(151\) −2550.58 −1.37459 −0.687296 0.726378i \(-0.741202\pi\)
−0.687296 + 0.726378i \(0.741202\pi\)
\(152\) 2991.65 1.59642
\(153\) −2841.65 −1.50153
\(154\) −218.480 −0.114322
\(155\) 179.162 0.0928429
\(156\) 0 0
\(157\) −373.767 −0.189999 −0.0949995 0.995477i \(-0.530285\pi\)
−0.0949995 + 0.995477i \(0.530285\pi\)
\(158\) −1032.14 −0.519701
\(159\) 1803.78 0.899680
\(160\) 957.482 0.473097
\(161\) −572.493 −0.280241
\(162\) −1866.94 −0.905438
\(163\) −3013.03 −1.44784 −0.723922 0.689882i \(-0.757662\pi\)
−0.723922 + 0.689882i \(0.757662\pi\)
\(164\) 1022.10 0.486664
\(165\) −782.010 −0.368966
\(166\) 2285.27 1.06850
\(167\) −2373.33 −1.09972 −0.549861 0.835256i \(-0.685319\pi\)
−0.549861 + 0.835256i \(0.685319\pi\)
\(168\) −1465.20 −0.672875
\(169\) 0 0
\(170\) −2679.88 −1.20904
\(171\) −3057.09 −1.36714
\(172\) −856.826 −0.379839
\(173\) 913.000 0.401237 0.200619 0.979669i \(-0.435705\pi\)
0.200619 + 0.979669i \(0.435705\pi\)
\(174\) −3642.70 −1.58708
\(175\) −231.375 −0.0999444
\(176\) 454.505 0.194657
\(177\) −409.664 −0.173967
\(178\) 1614.46 0.679826
\(179\) 1911.51 0.798173 0.399086 0.916913i \(-0.369327\pi\)
0.399086 + 0.916913i \(0.369327\pi\)
\(180\) −548.807 −0.227254
\(181\) 3241.61 1.33120 0.665600 0.746308i \(-0.268176\pi\)
0.665600 + 0.746308i \(0.268176\pi\)
\(182\) 0 0
\(183\) 5601.13 2.26255
\(184\) 1702.74 0.682214
\(185\) −2247.81 −0.893311
\(186\) 315.729 0.124464
\(187\) 1244.96 0.486846
\(188\) −715.502 −0.277571
\(189\) −112.835 −0.0434261
\(190\) −2883.05 −1.10083
\(191\) 1252.48 0.474483 0.237242 0.971451i \(-0.423757\pi\)
0.237242 + 0.971451i \(0.423757\pi\)
\(192\) 4073.42 1.53111
\(193\) −617.618 −0.230348 −0.115174 0.993345i \(-0.536743\pi\)
−0.115174 + 0.993345i \(0.536743\pi\)
\(194\) 2328.41 0.861700
\(195\) 0 0
\(196\) 609.801 0.222231
\(197\) 2712.30 0.980930 0.490465 0.871461i \(-0.336827\pi\)
0.490465 + 0.871461i \(0.336827\pi\)
\(198\) −664.029 −0.238336
\(199\) 2309.96 0.822856 0.411428 0.911442i \(-0.365030\pi\)
0.411428 + 0.911442i \(0.365030\pi\)
\(200\) 688.166 0.243303
\(201\) −2794.71 −0.980716
\(202\) 1199.20 0.417701
\(203\) −1733.89 −0.599483
\(204\) 1813.24 0.622315
\(205\) −4535.45 −1.54522
\(206\) 1862.54 0.629948
\(207\) −1739.98 −0.584238
\(208\) 0 0
\(209\) 1339.34 0.443274
\(210\) 1412.01 0.463992
\(211\) −4349.05 −1.41896 −0.709481 0.704724i \(-0.751071\pi\)
−0.709481 + 0.704724i \(0.751071\pi\)
\(212\) −554.593 −0.179668
\(213\) 843.810 0.271441
\(214\) −3294.12 −1.05225
\(215\) 3802.06 1.20604
\(216\) 335.599 0.105716
\(217\) 150.284 0.0470135
\(218\) −2033.32 −0.631716
\(219\) 7336.60 2.26375
\(220\) 240.438 0.0736833
\(221\) 0 0
\(222\) −3961.22 −1.19757
\(223\) −1591.00 −0.477762 −0.238881 0.971049i \(-0.576781\pi\)
−0.238881 + 0.971049i \(0.576781\pi\)
\(224\) 803.150 0.239566
\(225\) −703.219 −0.208361
\(226\) 3157.48 0.929347
\(227\) −4976.41 −1.45505 −0.727524 0.686083i \(-0.759329\pi\)
−0.727524 + 0.686083i \(0.759329\pi\)
\(228\) 1950.71 0.566619
\(229\) −2216.11 −0.639495 −0.319748 0.947503i \(-0.603598\pi\)
−0.319748 + 0.947503i \(0.603598\pi\)
\(230\) −1640.93 −0.470432
\(231\) −655.962 −0.186836
\(232\) 5157.02 1.45937
\(233\) −64.8342 −0.0182293 −0.00911465 0.999958i \(-0.502901\pi\)
−0.00911465 + 0.999958i \(0.502901\pi\)
\(234\) 0 0
\(235\) 3174.95 0.881322
\(236\) 125.956 0.0347416
\(237\) −3098.89 −0.849344
\(238\) −2247.92 −0.612232
\(239\) −3858.71 −1.04435 −0.522174 0.852839i \(-0.674879\pi\)
−0.522174 + 0.852839i \(0.674879\pi\)
\(240\) −2937.42 −0.790039
\(241\) −6737.07 −1.80072 −0.900359 0.435148i \(-0.856696\pi\)
−0.900359 + 0.435148i \(0.856696\pi\)
\(242\) 290.918 0.0772765
\(243\) −5236.50 −1.38239
\(244\) −1722.13 −0.451837
\(245\) −2705.91 −0.705610
\(246\) −7992.62 −2.07151
\(247\) 0 0
\(248\) −446.982 −0.114449
\(249\) 6861.26 1.74624
\(250\) −3622.99 −0.916552
\(251\) 2556.90 0.642989 0.321495 0.946911i \(-0.395815\pi\)
0.321495 + 0.946911i \(0.395815\pi\)
\(252\) −460.348 −0.115076
\(253\) 762.304 0.189429
\(254\) 104.882 0.0259091
\(255\) −8046.03 −1.97593
\(256\) −3122.40 −0.762305
\(257\) −5227.70 −1.26885 −0.634426 0.772983i \(-0.718764\pi\)
−0.634426 + 0.772983i \(0.718764\pi\)
\(258\) 6700.19 1.61680
\(259\) −1885.50 −0.452353
\(260\) 0 0
\(261\) −5269.82 −1.24979
\(262\) 1751.20 0.412937
\(263\) 6104.51 1.43125 0.715627 0.698482i \(-0.246141\pi\)
0.715627 + 0.698482i \(0.246141\pi\)
\(264\) 1951.00 0.454831
\(265\) 2460.93 0.570468
\(266\) −2418.35 −0.557438
\(267\) 4847.24 1.11103
\(268\) 859.267 0.195851
\(269\) 6147.70 1.39343 0.696713 0.717350i \(-0.254645\pi\)
0.696713 + 0.717350i \(0.254645\pi\)
\(270\) −323.416 −0.0728982
\(271\) 3285.68 0.736498 0.368249 0.929727i \(-0.379957\pi\)
0.368249 + 0.929727i \(0.379957\pi\)
\(272\) 4676.36 1.04245
\(273\) 0 0
\(274\) 83.8332 0.0184838
\(275\) 308.087 0.0675577
\(276\) 1110.27 0.242140
\(277\) −750.813 −0.162859 −0.0814296 0.996679i \(-0.525949\pi\)
−0.0814296 + 0.996679i \(0.525949\pi\)
\(278\) −718.638 −0.155040
\(279\) 456.759 0.0980124
\(280\) −1999.01 −0.426656
\(281\) −7388.62 −1.56857 −0.784285 0.620400i \(-0.786970\pi\)
−0.784285 + 0.620400i \(0.786970\pi\)
\(282\) 5595.07 1.18149
\(283\) −2895.26 −0.608145 −0.304073 0.952649i \(-0.598347\pi\)
−0.304073 + 0.952649i \(0.598347\pi\)
\(284\) −259.439 −0.0542073
\(285\) −8656.03 −1.79908
\(286\) 0 0
\(287\) −3804.41 −0.782463
\(288\) 2441.02 0.499440
\(289\) 7896.25 1.60721
\(290\) −4969.81 −1.00634
\(291\) 6990.77 1.40827
\(292\) −2255.72 −0.452076
\(293\) −2565.06 −0.511441 −0.255720 0.966751i \(-0.582313\pi\)
−0.255720 + 0.966751i \(0.582313\pi\)
\(294\) −4768.51 −0.945936
\(295\) −558.913 −0.110309
\(296\) 5607.95 1.10120
\(297\) 150.246 0.0293540
\(298\) 141.338 0.0274748
\(299\) 0 0
\(300\) 448.720 0.0863561
\(301\) 3189.22 0.610710
\(302\) −6132.31 −1.16846
\(303\) 3600.46 0.682644
\(304\) 5030.90 0.949150
\(305\) 7641.74 1.43464
\(306\) −6832.13 −1.27636
\(307\) −5707.87 −1.06113 −0.530563 0.847646i \(-0.678019\pi\)
−0.530563 + 0.847646i \(0.678019\pi\)
\(308\) 201.683 0.0373116
\(309\) 5592.06 1.02952
\(310\) 430.756 0.0789203
\(311\) 1750.47 0.319165 0.159582 0.987185i \(-0.448985\pi\)
0.159582 + 0.987185i \(0.448985\pi\)
\(312\) 0 0
\(313\) −6425.08 −1.16028 −0.580139 0.814518i \(-0.697002\pi\)
−0.580139 + 0.814518i \(0.697002\pi\)
\(314\) −898.641 −0.161507
\(315\) 2042.73 0.365381
\(316\) 952.789 0.169616
\(317\) 9721.92 1.72252 0.861258 0.508168i \(-0.169677\pi\)
0.861258 + 0.508168i \(0.169677\pi\)
\(318\) 4336.79 0.764765
\(319\) 2308.76 0.405222
\(320\) 5557.45 0.970847
\(321\) −9890.22 −1.71968
\(322\) −1376.43 −0.238216
\(323\) 13780.4 2.37387
\(324\) 1723.41 0.295509
\(325\) 0 0
\(326\) −7244.16 −1.23073
\(327\) −6104.82 −1.03241
\(328\) 11315.3 1.90482
\(329\) 2663.20 0.446282
\(330\) −1880.17 −0.313636
\(331\) −4560.44 −0.757294 −0.378647 0.925541i \(-0.623611\pi\)
−0.378647 + 0.925541i \(0.623611\pi\)
\(332\) −2109.57 −0.348728
\(333\) −5730.62 −0.943051
\(334\) −5706.14 −0.934809
\(335\) −3812.89 −0.621851
\(336\) −2463.95 −0.400058
\(337\) −3870.54 −0.625643 −0.312822 0.949812i \(-0.601274\pi\)
−0.312822 + 0.949812i \(0.601274\pi\)
\(338\) 0 0
\(339\) 9479.97 1.51882
\(340\) 2473.84 0.394597
\(341\) −200.111 −0.0317789
\(342\) −7350.11 −1.16213
\(343\) −5103.30 −0.803359
\(344\) −9485.55 −1.48670
\(345\) −4926.69 −0.768823
\(346\) 2195.11 0.341068
\(347\) −2536.47 −0.392406 −0.196203 0.980563i \(-0.562861\pi\)
−0.196203 + 0.980563i \(0.562861\pi\)
\(348\) 3362.64 0.517979
\(349\) 450.127 0.0690394 0.0345197 0.999404i \(-0.489010\pi\)
0.0345197 + 0.999404i \(0.489010\pi\)
\(350\) −556.290 −0.0849569
\(351\) 0 0
\(352\) −1069.44 −0.161935
\(353\) −7860.81 −1.18524 −0.592619 0.805483i \(-0.701906\pi\)
−0.592619 + 0.805483i \(0.701906\pi\)
\(354\) −984.946 −0.147879
\(355\) 1151.23 0.172115
\(356\) −1490.34 −0.221876
\(357\) −6749.13 −1.00057
\(358\) 4595.81 0.678480
\(359\) −7509.91 −1.10406 −0.552030 0.833824i \(-0.686147\pi\)
−0.552030 + 0.833824i \(0.686147\pi\)
\(360\) −6075.60 −0.889479
\(361\) 7966.13 1.16141
\(362\) 7793.75 1.13158
\(363\) 873.448 0.126292
\(364\) 0 0
\(365\) 10009.5 1.43540
\(366\) 13466.7 1.92326
\(367\) 2168.03 0.308366 0.154183 0.988042i \(-0.450726\pi\)
0.154183 + 0.988042i \(0.450726\pi\)
\(368\) 2863.40 0.405611
\(369\) −11562.8 −1.63126
\(370\) −5404.38 −0.759352
\(371\) 2064.27 0.288872
\(372\) −291.455 −0.0406217
\(373\) −2525.90 −0.350633 −0.175317 0.984512i \(-0.556095\pi\)
−0.175317 + 0.984512i \(0.556095\pi\)
\(374\) 2993.23 0.413840
\(375\) −10877.6 −1.49791
\(376\) −7921.01 −1.08642
\(377\) 0 0
\(378\) −271.287 −0.0369140
\(379\) −12858.2 −1.74270 −0.871349 0.490663i \(-0.836755\pi\)
−0.871349 + 0.490663i \(0.836755\pi\)
\(380\) 2661.40 0.359281
\(381\) 314.897 0.0423430
\(382\) 3011.32 0.403331
\(383\) −6495.09 −0.866536 −0.433268 0.901265i \(-0.642640\pi\)
−0.433268 + 0.901265i \(0.642640\pi\)
\(384\) 4179.24 0.555393
\(385\) −894.943 −0.118469
\(386\) −1484.93 −0.195805
\(387\) 9693.03 1.27319
\(388\) −2149.39 −0.281234
\(389\) 10018.2 1.30577 0.652886 0.757456i \(-0.273558\pi\)
0.652886 + 0.757456i \(0.273558\pi\)
\(390\) 0 0
\(391\) 7843.27 1.01445
\(392\) 6750.84 0.869819
\(393\) 5257.77 0.674859
\(394\) 6521.12 0.833831
\(395\) −4227.88 −0.538551
\(396\) 612.977 0.0777860
\(397\) 5201.52 0.657574 0.328787 0.944404i \(-0.393360\pi\)
0.328787 + 0.944404i \(0.393360\pi\)
\(398\) 5553.78 0.699462
\(399\) −7260.82 −0.911016
\(400\) 1157.25 0.144656
\(401\) −3116.36 −0.388088 −0.194044 0.980993i \(-0.562161\pi\)
−0.194044 + 0.980993i \(0.562161\pi\)
\(402\) −6719.28 −0.833649
\(403\) 0 0
\(404\) −1107.00 −0.136326
\(405\) −7647.40 −0.938278
\(406\) −4168.76 −0.509586
\(407\) 2510.64 0.305769
\(408\) 20073.6 2.43576
\(409\) 7577.28 0.916070 0.458035 0.888934i \(-0.348553\pi\)
0.458035 + 0.888934i \(0.348553\pi\)
\(410\) −10904.5 −1.31350
\(411\) 251.700 0.0302078
\(412\) −1719.34 −0.205597
\(413\) −468.825 −0.0558580
\(414\) −4183.41 −0.496626
\(415\) 9360.96 1.10726
\(416\) 0 0
\(417\) −2157.63 −0.253380
\(418\) 3220.16 0.376802
\(419\) 1434.43 0.167247 0.0836234 0.996497i \(-0.473351\pi\)
0.0836234 + 0.996497i \(0.473351\pi\)
\(420\) −1303.46 −0.151434
\(421\) −84.9736 −0.00983696 −0.00491848 0.999988i \(-0.501566\pi\)
−0.00491848 + 0.999988i \(0.501566\pi\)
\(422\) −10456.3 −1.20618
\(423\) 8094.27 0.930395
\(424\) −6139.66 −0.703227
\(425\) 3169.88 0.361793
\(426\) 2028.76 0.230736
\(427\) 6410.01 0.726468
\(428\) 3040.86 0.343424
\(429\) 0 0
\(430\) 9141.21 1.02518
\(431\) 10844.3 1.21195 0.605974 0.795484i \(-0.292783\pi\)
0.605974 + 0.795484i \(0.292783\pi\)
\(432\) 564.358 0.0628535
\(433\) −4075.42 −0.452315 −0.226157 0.974091i \(-0.572616\pi\)
−0.226157 + 0.974091i \(0.572616\pi\)
\(434\) 361.325 0.0399635
\(435\) −14921.3 −1.64465
\(436\) 1877.00 0.206174
\(437\) 8437.91 0.923661
\(438\) 17639.3 1.92428
\(439\) 15183.4 1.65071 0.825356 0.564613i \(-0.190975\pi\)
0.825356 + 0.564613i \(0.190975\pi\)
\(440\) 2661.78 0.288399
\(441\) −6898.51 −0.744899
\(442\) 0 0
\(443\) −2203.06 −0.236276 −0.118138 0.992997i \(-0.537693\pi\)
−0.118138 + 0.992997i \(0.537693\pi\)
\(444\) 3656.67 0.390851
\(445\) 6613.19 0.704484
\(446\) −3825.20 −0.406118
\(447\) 424.351 0.0449018
\(448\) 4661.68 0.491615
\(449\) −2387.96 −0.250990 −0.125495 0.992094i \(-0.540052\pi\)
−0.125495 + 0.992094i \(0.540052\pi\)
\(450\) −1690.74 −0.177116
\(451\) 5065.77 0.528908
\(452\) −2914.73 −0.303312
\(453\) −18411.6 −1.90960
\(454\) −11964.7 −1.23685
\(455\) 0 0
\(456\) 21595.5 2.21777
\(457\) −13211.2 −1.35228 −0.676141 0.736772i \(-0.736349\pi\)
−0.676141 + 0.736772i \(0.736349\pi\)
\(458\) −5328.14 −0.543598
\(459\) 1545.86 0.157200
\(460\) 1514.77 0.153536
\(461\) 15369.8 1.55280 0.776400 0.630240i \(-0.217044\pi\)
0.776400 + 0.630240i \(0.217044\pi\)
\(462\) −1577.12 −0.158818
\(463\) 15981.6 1.60416 0.802081 0.597215i \(-0.203726\pi\)
0.802081 + 0.597215i \(0.203726\pi\)
\(464\) 8672.27 0.867672
\(465\) 1293.30 0.128979
\(466\) −155.880 −0.0154957
\(467\) −6285.94 −0.622867 −0.311433 0.950268i \(-0.600809\pi\)
−0.311433 + 0.950268i \(0.600809\pi\)
\(468\) 0 0
\(469\) −3198.31 −0.314892
\(470\) 7633.46 0.749161
\(471\) −2698.06 −0.263950
\(472\) 1394.40 0.135980
\(473\) −4246.62 −0.412811
\(474\) −7450.60 −0.721977
\(475\) 3410.21 0.329413
\(476\) 2075.10 0.199815
\(477\) 6273.96 0.602232
\(478\) −9277.41 −0.887739
\(479\) −2421.85 −0.231017 −0.115509 0.993306i \(-0.536850\pi\)
−0.115509 + 0.993306i \(0.536850\pi\)
\(480\) 6911.65 0.657234
\(481\) 0 0
\(482\) −16197.8 −1.53069
\(483\) −4132.58 −0.389315
\(484\) −268.552 −0.0252208
\(485\) 9537.65 0.892954
\(486\) −12590.0 −1.17509
\(487\) −2565.70 −0.238733 −0.119367 0.992850i \(-0.538086\pi\)
−0.119367 + 0.992850i \(0.538086\pi\)
\(488\) −19065.0 −1.76850
\(489\) −21749.8 −2.01137
\(490\) −6505.78 −0.599798
\(491\) −12252.8 −1.12619 −0.563097 0.826391i \(-0.690390\pi\)
−0.563097 + 0.826391i \(0.690390\pi\)
\(492\) 7378.13 0.676081
\(493\) 23754.6 2.17009
\(494\) 0 0
\(495\) −2720.01 −0.246980
\(496\) −751.665 −0.0680458
\(497\) 965.667 0.0871551
\(498\) 16496.4 1.48438
\(499\) −13403.0 −1.20241 −0.601203 0.799096i \(-0.705312\pi\)
−0.601203 + 0.799096i \(0.705312\pi\)
\(500\) 3344.45 0.299136
\(501\) −17132.0 −1.52775
\(502\) 6147.51 0.546567
\(503\) 12682.2 1.12420 0.562098 0.827070i \(-0.309994\pi\)
0.562098 + 0.827070i \(0.309994\pi\)
\(504\) −5096.31 −0.450412
\(505\) 4912.19 0.432851
\(506\) 1832.79 0.161023
\(507\) 0 0
\(508\) −96.8188 −0.00845599
\(509\) −12218.3 −1.06399 −0.531993 0.846749i \(-0.678557\pi\)
−0.531993 + 0.846749i \(0.678557\pi\)
\(510\) −19344.9 −1.67962
\(511\) 8396.11 0.726853
\(512\) −12138.8 −1.04778
\(513\) 1663.06 0.143131
\(514\) −12568.9 −1.07858
\(515\) 7629.37 0.652796
\(516\) −6185.06 −0.527679
\(517\) −3546.18 −0.301665
\(518\) −4533.27 −0.384519
\(519\) 6590.56 0.557405
\(520\) 0 0
\(521\) −2805.00 −0.235872 −0.117936 0.993021i \(-0.537628\pi\)
−0.117936 + 0.993021i \(0.537628\pi\)
\(522\) −12670.1 −1.06237
\(523\) 749.381 0.0626542 0.0313271 0.999509i \(-0.490027\pi\)
0.0313271 + 0.999509i \(0.490027\pi\)
\(524\) −1616.56 −0.134771
\(525\) −1670.20 −0.138844
\(526\) 14676.9 1.21663
\(527\) −2058.92 −0.170186
\(528\) 3280.88 0.270420
\(529\) −7364.46 −0.605281
\(530\) 5916.78 0.484922
\(531\) −1424.90 −0.116451
\(532\) 2232.42 0.181932
\(533\) 0 0
\(534\) 11654.1 0.944425
\(535\) −13493.4 −1.09042
\(536\) 9512.57 0.766568
\(537\) 13798.4 1.10883
\(538\) 14780.8 1.18447
\(539\) 3022.31 0.241521
\(540\) 298.552 0.0237919
\(541\) −8234.62 −0.654407 −0.327203 0.944954i \(-0.606106\pi\)
−0.327203 + 0.944954i \(0.606106\pi\)
\(542\) 7899.70 0.626054
\(543\) 23399.8 1.84932
\(544\) −11003.3 −0.867213
\(545\) −8328.94 −0.654628
\(546\) 0 0
\(547\) −9637.00 −0.753288 −0.376644 0.926358i \(-0.622922\pi\)
−0.376644 + 0.926358i \(0.622922\pi\)
\(548\) −77.3879 −0.00603257
\(549\) 19482.0 1.51452
\(550\) 740.729 0.0574269
\(551\) 25555.6 1.97587
\(552\) 12291.3 0.947743
\(553\) −3546.41 −0.272710
\(554\) −1805.16 −0.138437
\(555\) −16226.0 −1.24100
\(556\) 663.388 0.0506005
\(557\) 11704.8 0.890388 0.445194 0.895434i \(-0.353135\pi\)
0.445194 + 0.895434i \(0.353135\pi\)
\(558\) 1098.18 0.0833147
\(559\) 0 0
\(560\) −3361.62 −0.253668
\(561\) 8986.82 0.676335
\(562\) −17764.3 −1.33335
\(563\) −14175.9 −1.06118 −0.530590 0.847628i \(-0.678030\pi\)
−0.530590 + 0.847628i \(0.678030\pi\)
\(564\) −5164.91 −0.385606
\(565\) 12933.7 0.963055
\(566\) −6961.01 −0.516949
\(567\) −6414.76 −0.475123
\(568\) −2872.14 −0.212169
\(569\) −19427.1 −1.43133 −0.715665 0.698443i \(-0.753876\pi\)
−0.715665 + 0.698443i \(0.753876\pi\)
\(570\) −20811.5 −1.52930
\(571\) −18855.7 −1.38194 −0.690968 0.722886i \(-0.742815\pi\)
−0.690968 + 0.722886i \(0.742815\pi\)
\(572\) 0 0
\(573\) 9041.13 0.659160
\(574\) −9146.86 −0.665126
\(575\) 1940.96 0.140772
\(576\) 14168.3 1.02490
\(577\) 2869.39 0.207026 0.103513 0.994628i \(-0.466992\pi\)
0.103513 + 0.994628i \(0.466992\pi\)
\(578\) 18984.8 1.36620
\(579\) −4458.32 −0.320003
\(580\) 4587.72 0.328439
\(581\) 7852.11 0.560689
\(582\) 16807.8 1.19709
\(583\) −2748.68 −0.195264
\(584\) −24972.1 −1.76944
\(585\) 0 0
\(586\) −6167.11 −0.434746
\(587\) 15021.8 1.05625 0.528123 0.849168i \(-0.322896\pi\)
0.528123 + 0.849168i \(0.322896\pi\)
\(588\) 4401.90 0.308727
\(589\) −2215.02 −0.154955
\(590\) −1343.78 −0.0937672
\(591\) 19578.9 1.36272
\(592\) 9430.58 0.654720
\(593\) 8072.54 0.559021 0.279511 0.960143i \(-0.409828\pi\)
0.279511 + 0.960143i \(0.409828\pi\)
\(594\) 361.232 0.0249521
\(595\) −9207.98 −0.634438
\(596\) −130.472 −0.00896699
\(597\) 16674.6 1.14313
\(598\) 0 0
\(599\) −5732.54 −0.391027 −0.195514 0.980701i \(-0.562637\pi\)
−0.195514 + 0.980701i \(0.562637\pi\)
\(600\) 4967.58 0.338001
\(601\) 2207.06 0.149796 0.0748982 0.997191i \(-0.476137\pi\)
0.0748982 + 0.997191i \(0.476137\pi\)
\(602\) 7667.79 0.519129
\(603\) −9720.65 −0.656476
\(604\) 5660.85 0.381352
\(605\) 1191.66 0.0800793
\(606\) 8656.53 0.580276
\(607\) 12291.7 0.821919 0.410959 0.911654i \(-0.365194\pi\)
0.410959 + 0.911654i \(0.365194\pi\)
\(608\) −11837.5 −0.789599
\(609\) −12516.2 −0.832812
\(610\) 18372.9 1.21950
\(611\) 0 0
\(612\) 6306.86 0.416568
\(613\) −22390.4 −1.47527 −0.737634 0.675201i \(-0.764057\pi\)
−0.737634 + 0.675201i \(0.764057\pi\)
\(614\) −13723.3 −0.902001
\(615\) −32739.5 −2.14664
\(616\) 2232.75 0.146039
\(617\) −28056.9 −1.83068 −0.915340 0.402683i \(-0.868078\pi\)
−0.915340 + 0.402683i \(0.868078\pi\)
\(618\) 13444.9 0.875134
\(619\) 17407.7 1.13033 0.565166 0.824977i \(-0.308812\pi\)
0.565166 + 0.824977i \(0.308812\pi\)
\(620\) −397.639 −0.0257573
\(621\) 946.552 0.0611656
\(622\) 4208.63 0.271303
\(623\) 5547.25 0.356735
\(624\) 0 0
\(625\) −11339.6 −0.725732
\(626\) −15447.7 −0.986284
\(627\) 9668.15 0.615804
\(628\) 829.551 0.0527113
\(629\) 25831.8 1.63749
\(630\) 4911.31 0.310589
\(631\) −23766.3 −1.49940 −0.749699 0.661779i \(-0.769802\pi\)
−0.749699 + 0.661779i \(0.769802\pi\)
\(632\) 10547.9 0.663882
\(633\) −31394.0 −1.97124
\(634\) 23374.2 1.46421
\(635\) 429.621 0.0268488
\(636\) −4003.37 −0.249598
\(637\) 0 0
\(638\) 5550.92 0.344456
\(639\) 2934.96 0.181698
\(640\) 5701.82 0.352163
\(641\) −6864.68 −0.422993 −0.211497 0.977379i \(-0.567834\pi\)
−0.211497 + 0.977379i \(0.567834\pi\)
\(642\) −23778.9 −1.46180
\(643\) −25251.4 −1.54871 −0.774354 0.632752i \(-0.781925\pi\)
−0.774354 + 0.632752i \(0.781925\pi\)
\(644\) 1270.61 0.0777470
\(645\) 27445.4 1.67545
\(646\) 33131.9 2.01789
\(647\) −28831.7 −1.75192 −0.875960 0.482384i \(-0.839771\pi\)
−0.875960 + 0.482384i \(0.839771\pi\)
\(648\) 19079.1 1.15663
\(649\) 624.264 0.0377574
\(650\) 0 0
\(651\) 1084.84 0.0653120
\(652\) 6687.22 0.401674
\(653\) 21931.3 1.31430 0.657150 0.753760i \(-0.271762\pi\)
0.657150 + 0.753760i \(0.271762\pi\)
\(654\) −14677.7 −0.877590
\(655\) 7173.29 0.427914
\(656\) 19028.2 1.13251
\(657\) 25518.4 1.51532
\(658\) 6403.07 0.379358
\(659\) −9007.44 −0.532443 −0.266222 0.963912i \(-0.585775\pi\)
−0.266222 + 0.963912i \(0.585775\pi\)
\(660\) 1735.62 0.102362
\(661\) −15820.6 −0.930937 −0.465469 0.885064i \(-0.654114\pi\)
−0.465469 + 0.885064i \(0.654114\pi\)
\(662\) −10964.6 −0.643731
\(663\) 0 0
\(664\) −23354.2 −1.36494
\(665\) −9906.08 −0.577656
\(666\) −13778.0 −0.801633
\(667\) 14545.3 0.844372
\(668\) 5267.44 0.305095
\(669\) −11484.7 −0.663715
\(670\) −9167.25 −0.528600
\(671\) −8535.26 −0.491058
\(672\) 5797.60 0.332809
\(673\) −4378.50 −0.250786 −0.125393 0.992107i \(-0.540019\pi\)
−0.125393 + 0.992107i \(0.540019\pi\)
\(674\) −9305.86 −0.531823
\(675\) 382.552 0.0218140
\(676\) 0 0
\(677\) −20157.2 −1.14432 −0.572159 0.820142i \(-0.693894\pi\)
−0.572159 + 0.820142i \(0.693894\pi\)
\(678\) 22792.5 1.29106
\(679\) 8000.33 0.452172
\(680\) 27386.8 1.54447
\(681\) −35922.6 −2.02137
\(682\) −481.123 −0.0270134
\(683\) −5932.96 −0.332384 −0.166192 0.986093i \(-0.553147\pi\)
−0.166192 + 0.986093i \(0.553147\pi\)
\(684\) 6785.02 0.379286
\(685\) 343.399 0.0191542
\(686\) −12269.8 −0.682889
\(687\) −15997.1 −0.888397
\(688\) −15951.3 −0.883921
\(689\) 0 0
\(690\) −11845.1 −0.653532
\(691\) −1087.33 −0.0598613 −0.0299307 0.999552i \(-0.509529\pi\)
−0.0299307 + 0.999552i \(0.509529\pi\)
\(692\) −2026.34 −0.111315
\(693\) −2281.58 −0.125065
\(694\) −6098.39 −0.333562
\(695\) −2943.70 −0.160663
\(696\) 37226.3 2.02739
\(697\) 52121.2 2.83247
\(698\) 1082.23 0.0586864
\(699\) −468.010 −0.0253244
\(700\) 513.521 0.0277275
\(701\) −22965.0 −1.23734 −0.618671 0.785650i \(-0.712329\pi\)
−0.618671 + 0.785650i \(0.712329\pi\)
\(702\) 0 0
\(703\) 27790.2 1.49093
\(704\) −6207.27 −0.332308
\(705\) 22918.6 1.22435
\(706\) −18899.6 −1.00750
\(707\) 4120.42 0.219186
\(708\) 909.222 0.0482636
\(709\) 17234.7 0.912923 0.456461 0.889743i \(-0.349117\pi\)
0.456461 + 0.889743i \(0.349117\pi\)
\(710\) 2767.87 0.146305
\(711\) −10778.6 −0.568538
\(712\) −16498.9 −0.868430
\(713\) −1260.71 −0.0662185
\(714\) −16226.8 −0.850522
\(715\) 0 0
\(716\) −4242.47 −0.221437
\(717\) −27854.4 −1.45082
\(718\) −18055.9 −0.938497
\(719\) −8404.20 −0.435916 −0.217958 0.975958i \(-0.569940\pi\)
−0.217958 + 0.975958i \(0.569940\pi\)
\(720\) −10217.0 −0.528840
\(721\) 6399.63 0.330561
\(722\) 19152.8 0.987250
\(723\) −48632.1 −2.50159
\(724\) −7194.55 −0.369314
\(725\) 5878.52 0.301135
\(726\) 2100.01 0.107354
\(727\) 31053.6 1.58420 0.792101 0.610390i \(-0.208987\pi\)
0.792101 + 0.610390i \(0.208987\pi\)
\(728\) 0 0
\(729\) −16834.3 −0.855273
\(730\) 24065.6 1.22015
\(731\) −43693.0 −2.21073
\(732\) −12431.3 −0.627699
\(733\) 4116.72 0.207441 0.103721 0.994606i \(-0.466925\pi\)
0.103721 + 0.994606i \(0.466925\pi\)
\(734\) 5212.55 0.262124
\(735\) −19532.9 −0.980245
\(736\) −6737.49 −0.337428
\(737\) 4258.71 0.212852
\(738\) −27800.1 −1.38664
\(739\) 32205.9 1.60313 0.801565 0.597908i \(-0.204001\pi\)
0.801565 + 0.597908i \(0.204001\pi\)
\(740\) 4988.88 0.247831
\(741\) 0 0
\(742\) 4963.09 0.245553
\(743\) −7624.80 −0.376483 −0.188241 0.982123i \(-0.560279\pi\)
−0.188241 + 0.982123i \(0.560279\pi\)
\(744\) −3226.57 −0.158995
\(745\) 578.951 0.0284713
\(746\) −6072.98 −0.298053
\(747\) 23865.0 1.16891
\(748\) −2763.10 −0.135065
\(749\) −11318.5 −0.552162
\(750\) −26152.8 −1.27329
\(751\) 16416.1 0.797644 0.398822 0.917028i \(-0.369419\pi\)
0.398822 + 0.917028i \(0.369419\pi\)
\(752\) −13320.3 −0.645933
\(753\) 18457.2 0.893250
\(754\) 0 0
\(755\) −25119.3 −1.21084
\(756\) 250.430 0.0120477
\(757\) 18466.2 0.886610 0.443305 0.896371i \(-0.353806\pi\)
0.443305 + 0.896371i \(0.353806\pi\)
\(758\) −30914.8 −1.48137
\(759\) 5502.75 0.263158
\(760\) 29463.2 1.40624
\(761\) 35699.7 1.70054 0.850270 0.526346i \(-0.176438\pi\)
0.850270 + 0.526346i \(0.176438\pi\)
\(762\) 757.102 0.0359933
\(763\) −6986.44 −0.331489
\(764\) −2779.80 −0.131636
\(765\) −27985.9 −1.32266
\(766\) −15616.0 −0.736592
\(767\) 0 0
\(768\) −22539.3 −1.05901
\(769\) 17150.4 0.804237 0.402119 0.915588i \(-0.368274\pi\)
0.402119 + 0.915588i \(0.368274\pi\)
\(770\) −2151.69 −0.100703
\(771\) −37736.6 −1.76271
\(772\) 1370.76 0.0639052
\(773\) −12687.9 −0.590365 −0.295182 0.955441i \(-0.595380\pi\)
−0.295182 + 0.955441i \(0.595380\pi\)
\(774\) 23304.8 1.08226
\(775\) −509.518 −0.0236160
\(776\) −23795.0 −1.10076
\(777\) −13610.6 −0.628415
\(778\) 24086.7 1.10996
\(779\) 56072.7 2.57897
\(780\) 0 0
\(781\) −1285.84 −0.0589127
\(782\) 18857.4 0.862328
\(783\) 2866.79 0.130844
\(784\) 11352.5 0.517152
\(785\) −3681.03 −0.167365
\(786\) 12641.2 0.573658
\(787\) 8986.98 0.407053 0.203527 0.979069i \(-0.434760\pi\)
0.203527 + 0.979069i \(0.434760\pi\)
\(788\) −6019.76 −0.272139
\(789\) 44065.8 1.98832
\(790\) −10165.0 −0.457791
\(791\) 10849.0 0.487669
\(792\) 6786.00 0.304457
\(793\) 0 0
\(794\) 12505.9 0.558965
\(795\) 17764.4 0.792503
\(796\) −5126.80 −0.228285
\(797\) 13773.0 0.612127 0.306064 0.952011i \(-0.400988\pi\)
0.306064 + 0.952011i \(0.400988\pi\)
\(798\) −17457.0 −0.774402
\(799\) −36486.3 −1.61551
\(800\) −2722.97 −0.120340
\(801\) 16859.8 0.743710
\(802\) −7492.60 −0.329891
\(803\) −11179.9 −0.491318
\(804\) 6202.68 0.272079
\(805\) −5638.17 −0.246856
\(806\) 0 0
\(807\) 44377.6 1.93577
\(808\) −12255.2 −0.533583
\(809\) −32953.4 −1.43211 −0.716057 0.698041i \(-0.754055\pi\)
−0.716057 + 0.698041i \(0.754055\pi\)
\(810\) −18386.5 −0.797575
\(811\) −2030.80 −0.0879299 −0.0439649 0.999033i \(-0.513999\pi\)
−0.0439649 + 0.999033i \(0.513999\pi\)
\(812\) 3848.25 0.166314
\(813\) 23717.9 1.02315
\(814\) 6036.29 0.259916
\(815\) −29673.7 −1.27537
\(816\) 33756.6 1.44818
\(817\) −47005.6 −2.01287
\(818\) 18217.9 0.778698
\(819\) 0 0
\(820\) 10066.1 0.428689
\(821\) 29724.1 1.26355 0.631777 0.775150i \(-0.282326\pi\)
0.631777 + 0.775150i \(0.282326\pi\)
\(822\) 605.156 0.0256779
\(823\) −8511.11 −0.360485 −0.180242 0.983622i \(-0.557688\pi\)
−0.180242 + 0.983622i \(0.557688\pi\)
\(824\) −19034.1 −0.804714
\(825\) 2223.95 0.0938522
\(826\) −1127.19 −0.0474816
\(827\) −8120.27 −0.341438 −0.170719 0.985320i \(-0.554609\pi\)
−0.170719 + 0.985320i \(0.554609\pi\)
\(828\) 3861.78 0.162085
\(829\) 1460.74 0.0611986 0.0305993 0.999532i \(-0.490258\pi\)
0.0305993 + 0.999532i \(0.490258\pi\)
\(830\) 22506.4 0.941214
\(831\) −5419.80 −0.226246
\(832\) 0 0
\(833\) 31096.2 1.29342
\(834\) −5187.54 −0.215384
\(835\) −23373.6 −0.968715
\(836\) −2972.59 −0.122977
\(837\) −248.477 −0.0102612
\(838\) 3448.77 0.142167
\(839\) −8636.35 −0.355376 −0.177688 0.984087i \(-0.556862\pi\)
−0.177688 + 0.984087i \(0.556862\pi\)
\(840\) −14430.0 −0.592717
\(841\) 19663.8 0.806257
\(842\) −204.300 −0.00836182
\(843\) −53335.3 −2.17908
\(844\) 9652.43 0.393662
\(845\) 0 0
\(846\) 19460.9 0.790874
\(847\) 999.585 0.0405504
\(848\) −10324.7 −0.418104
\(849\) −20899.6 −0.844845
\(850\) 7621.28 0.307539
\(851\) 15817.1 0.637138
\(852\) −1872.78 −0.0753056
\(853\) 13608.2 0.546232 0.273116 0.961981i \(-0.411946\pi\)
0.273116 + 0.961981i \(0.411946\pi\)
\(854\) 15411.5 0.617528
\(855\) −30107.6 −1.20428
\(856\) 33664.1 1.34418
\(857\) −42926.8 −1.71103 −0.855514 0.517780i \(-0.826759\pi\)
−0.855514 + 0.517780i \(0.826759\pi\)
\(858\) 0 0
\(859\) 46779.1 1.85807 0.929035 0.369993i \(-0.120640\pi\)
0.929035 + 0.369993i \(0.120640\pi\)
\(860\) −8438.41 −0.334590
\(861\) −27462.4 −1.08701
\(862\) 26072.7 1.03021
\(863\) −14603.1 −0.576008 −0.288004 0.957629i \(-0.592992\pi\)
−0.288004 + 0.957629i \(0.592992\pi\)
\(864\) −1327.92 −0.0522878
\(865\) 8991.63 0.353439
\(866\) −9798.46 −0.384486
\(867\) 56999.6 2.23277
\(868\) −333.545 −0.0130429
\(869\) 4722.23 0.184339
\(870\) −35875.0 −1.39802
\(871\) 0 0
\(872\) 20779.4 0.806973
\(873\) 24315.5 0.942674
\(874\) 20287.1 0.785150
\(875\) −12448.5 −0.480955
\(876\) −16283.1 −0.628031
\(877\) 11327.6 0.436152 0.218076 0.975932i \(-0.430022\pi\)
0.218076 + 0.975932i \(0.430022\pi\)
\(878\) 36505.1 1.40317
\(879\) −18516.1 −0.710502
\(880\) 4476.17 0.171468
\(881\) 49324.6 1.88625 0.943126 0.332435i \(-0.107870\pi\)
0.943126 + 0.332435i \(0.107870\pi\)
\(882\) −16586.0 −0.633195
\(883\) −471.552 −0.0179717 −0.00898584 0.999960i \(-0.502860\pi\)
−0.00898584 + 0.999960i \(0.502860\pi\)
\(884\) 0 0
\(885\) −4034.55 −0.153243
\(886\) −5296.77 −0.200845
\(887\) 6113.72 0.231430 0.115715 0.993282i \(-0.463084\pi\)
0.115715 + 0.993282i \(0.463084\pi\)
\(888\) 40481.4 1.52981
\(889\) 360.373 0.0135956
\(890\) 15900.0 0.598840
\(891\) 8541.59 0.321160
\(892\) 3531.11 0.132545
\(893\) −39252.5 −1.47093
\(894\) 1020.26 0.0381684
\(895\) 18825.4 0.703089
\(896\) 4782.78 0.178327
\(897\) 0 0
\(898\) −5741.32 −0.213352
\(899\) −3818.25 −0.141653
\(900\) 1560.75 0.0578055
\(901\) −28280.9 −1.04570
\(902\) 12179.5 0.449594
\(903\) 23021.6 0.848408
\(904\) −32267.7 −1.18718
\(905\) 31924.9 1.17262
\(906\) −44266.6 −1.62324
\(907\) 40444.5 1.48064 0.740319 0.672256i \(-0.234674\pi\)
0.740319 + 0.672256i \(0.234674\pi\)
\(908\) 11044.8 0.403673
\(909\) 12523.2 0.456952
\(910\) 0 0
\(911\) −11594.1 −0.421657 −0.210829 0.977523i \(-0.567616\pi\)
−0.210829 + 0.977523i \(0.567616\pi\)
\(912\) 36315.9 1.31857
\(913\) −10455.5 −0.378999
\(914\) −31763.4 −1.14950
\(915\) 55162.5 1.99302
\(916\) 4918.50 0.177415
\(917\) 6017.07 0.216686
\(918\) 3716.69 0.133626
\(919\) 29311.0 1.05210 0.526050 0.850454i \(-0.323673\pi\)
0.526050 + 0.850454i \(0.323673\pi\)
\(920\) 16769.3 0.600944
\(921\) −41202.7 −1.47413
\(922\) 36953.2 1.31995
\(923\) 0 0
\(924\) 1455.86 0.0518338
\(925\) 6392.54 0.227228
\(926\) 38424.2 1.36360
\(927\) 19450.5 0.689145
\(928\) −20405.6 −0.721817
\(929\) 49127.2 1.73500 0.867498 0.497441i \(-0.165727\pi\)
0.867498 + 0.497441i \(0.165727\pi\)
\(930\) 3109.45 0.109637
\(931\) 33453.8 1.17766
\(932\) 143.895 0.00505734
\(933\) 12635.9 0.443389
\(934\) −15113.2 −0.529463
\(935\) 12260.9 0.428850
\(936\) 0 0
\(937\) 39342.0 1.37166 0.685831 0.727761i \(-0.259439\pi\)
0.685831 + 0.727761i \(0.259439\pi\)
\(938\) −7689.63 −0.267671
\(939\) −46379.9 −1.61188
\(940\) −7046.59 −0.244505
\(941\) 13059.3 0.452413 0.226207 0.974079i \(-0.427368\pi\)
0.226207 + 0.974079i \(0.427368\pi\)
\(942\) −6486.90 −0.224368
\(943\) 31914.5 1.10210
\(944\) 2344.89 0.0808470
\(945\) −1111.25 −0.0382529
\(946\) −10210.1 −0.350907
\(947\) 7521.97 0.258111 0.129055 0.991637i \(-0.458805\pi\)
0.129055 + 0.991637i \(0.458805\pi\)
\(948\) 6877.78 0.235633
\(949\) 0 0
\(950\) 8199.09 0.280014
\(951\) 70178.4 2.39295
\(952\) 22972.5 0.782083
\(953\) 50289.9 1.70939 0.854696 0.519129i \(-0.173744\pi\)
0.854696 + 0.519129i \(0.173744\pi\)
\(954\) 15084.4 0.511922
\(955\) 12335.0 0.417959
\(956\) 8564.15 0.289733
\(957\) 16666.0 0.562941
\(958\) −5822.82 −0.196374
\(959\) 288.048 0.00969924
\(960\) 40116.9 1.34872
\(961\) −29460.1 −0.988891
\(962\) 0 0
\(963\) −34400.4 −1.15113
\(964\) 14952.5 0.499572
\(965\) −6082.58 −0.202907
\(966\) −9935.89 −0.330934
\(967\) 41353.9 1.37524 0.687618 0.726073i \(-0.258657\pi\)
0.687618 + 0.726073i \(0.258657\pi\)
\(968\) −2973.02 −0.0987153
\(969\) 99474.7 3.29782
\(970\) 22931.2 0.759048
\(971\) 22813.7 0.753992 0.376996 0.926215i \(-0.376957\pi\)
0.376996 + 0.926215i \(0.376957\pi\)
\(972\) 11622.1 0.383516
\(973\) −2469.22 −0.0813561
\(974\) −6168.66 −0.202933
\(975\) 0 0
\(976\) −32060.5 −1.05147
\(977\) 40607.9 1.32975 0.664873 0.746956i \(-0.268486\pi\)
0.664873 + 0.746956i \(0.268486\pi\)
\(978\) −52292.6 −1.70975
\(979\) −7386.45 −0.241136
\(980\) 6005.60 0.195757
\(981\) −21234.0 −0.691078
\(982\) −29459.2 −0.957311
\(983\) 3870.30 0.125578 0.0627891 0.998027i \(-0.480000\pi\)
0.0627891 + 0.998027i \(0.480000\pi\)
\(984\) 81680.0 2.64620
\(985\) 26711.9 0.864074
\(986\) 57112.8 1.84467
\(987\) 19224.5 0.619982
\(988\) 0 0
\(989\) −26753.8 −0.860184
\(990\) −6539.66 −0.209944
\(991\) 16961.5 0.543692 0.271846 0.962341i \(-0.412366\pi\)
0.271846 + 0.962341i \(0.412366\pi\)
\(992\) 1768.64 0.0566074
\(993\) −32919.9 −1.05204
\(994\) 2321.74 0.0740855
\(995\) 22749.5 0.724832
\(996\) −15228.1 −0.484459
\(997\) −19436.4 −0.617409 −0.308704 0.951158i \(-0.599895\pi\)
−0.308704 + 0.951158i \(0.599895\pi\)
\(998\) −32224.6 −1.02210
\(999\) 3117.46 0.0987309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.j.1.14 18
13.5 odd 4 143.4.b.a.12.10 36
13.8 odd 4 143.4.b.a.12.27 yes 36
13.12 even 2 1859.4.a.k.1.5 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.b.a.12.10 36 13.5 odd 4
143.4.b.a.12.27 yes 36 13.8 odd 4
1859.4.a.j.1.14 18 1.1 even 1 trivial
1859.4.a.k.1.5 18 13.12 even 2