Properties

Label 1859.4.a.j.1.17
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Root \(-4.98751\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.98751 q^{2} -4.47034 q^{3} +16.8752 q^{4} +20.1605 q^{5} -22.2959 q^{6} -23.8481 q^{7} +44.2654 q^{8} -7.01607 q^{9} +100.551 q^{10} -11.0000 q^{11} -75.4381 q^{12} -118.943 q^{14} -90.1244 q^{15} +85.7719 q^{16} -111.997 q^{17} -34.9927 q^{18} +3.85957 q^{19} +340.214 q^{20} +106.609 q^{21} -54.8626 q^{22} -76.9220 q^{23} -197.881 q^{24} +281.447 q^{25} +152.063 q^{27} -402.443 q^{28} -85.3018 q^{29} -449.496 q^{30} +244.686 q^{31} +73.6653 q^{32} +49.1737 q^{33} -558.588 q^{34} -480.790 q^{35} -118.398 q^{36} -180.288 q^{37} +19.2496 q^{38} +892.413 q^{40} -470.715 q^{41} +531.714 q^{42} -194.463 q^{43} -185.628 q^{44} -141.448 q^{45} -383.649 q^{46} -287.601 q^{47} -383.430 q^{48} +225.732 q^{49} +1403.72 q^{50} +500.666 q^{51} -564.081 q^{53} +758.417 q^{54} -221.766 q^{55} -1055.65 q^{56} -17.2536 q^{57} -425.444 q^{58} +50.4331 q^{59} -1520.87 q^{60} +334.404 q^{61} +1220.37 q^{62} +167.320 q^{63} -318.769 q^{64} +245.254 q^{66} -199.275 q^{67} -1889.98 q^{68} +343.868 q^{69} -2397.95 q^{70} +152.078 q^{71} -310.569 q^{72} +245.095 q^{73} -899.188 q^{74} -1258.16 q^{75} +65.1311 q^{76} +262.329 q^{77} -281.145 q^{79} +1729.21 q^{80} -490.341 q^{81} -2347.69 q^{82} +434.099 q^{83} +1799.06 q^{84} -2257.92 q^{85} -969.884 q^{86} +381.328 q^{87} -486.919 q^{88} +1032.68 q^{89} -705.472 q^{90} -1298.08 q^{92} -1093.83 q^{93} -1434.41 q^{94} +77.8109 q^{95} -329.309 q^{96} +802.898 q^{97} +1125.84 q^{98} +77.1768 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 76 q^{4} - 20 q^{5} - 49 q^{6} - 28 q^{7} + 12 q^{8} + 180 q^{9} + 56 q^{10} - 198 q^{11} + 54 q^{12} + 4 q^{14} - 60 q^{15} + 364 q^{16} - 138 q^{17} - 298 q^{18} - 24 q^{19} - 160 q^{20}+ \cdots - 1980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.98751 1.76335 0.881675 0.471857i \(-0.156416\pi\)
0.881675 + 0.471857i \(0.156416\pi\)
\(3\) −4.47034 −0.860317 −0.430159 0.902753i \(-0.641542\pi\)
−0.430159 + 0.902753i \(0.641542\pi\)
\(4\) 16.8752 2.10941
\(5\) 20.1605 1.80321 0.901606 0.432558i \(-0.142389\pi\)
0.901606 + 0.432558i \(0.142389\pi\)
\(6\) −22.2959 −1.51704
\(7\) −23.8481 −1.28768 −0.643839 0.765161i \(-0.722659\pi\)
−0.643839 + 0.765161i \(0.722659\pi\)
\(8\) 44.2654 1.95627
\(9\) −7.01607 −0.259855
\(10\) 100.551 3.17969
\(11\) −11.0000 −0.301511
\(12\) −75.4381 −1.81476
\(13\) 0 0
\(14\) −118.943 −2.27063
\(15\) −90.1244 −1.55133
\(16\) 85.7719 1.34019
\(17\) −111.997 −1.59784 −0.798922 0.601435i \(-0.794596\pi\)
−0.798922 + 0.601435i \(0.794596\pi\)
\(18\) −34.9927 −0.458215
\(19\) 3.85957 0.0466024 0.0233012 0.999728i \(-0.492582\pi\)
0.0233012 + 0.999728i \(0.492582\pi\)
\(20\) 340.214 3.80371
\(21\) 106.609 1.10781
\(22\) −54.8626 −0.531670
\(23\) −76.9220 −0.697363 −0.348682 0.937241i \(-0.613371\pi\)
−0.348682 + 0.937241i \(0.613371\pi\)
\(24\) −197.881 −1.68301
\(25\) 281.447 2.25157
\(26\) 0 0
\(27\) 152.063 1.08387
\(28\) −402.443 −2.71623
\(29\) −85.3018 −0.546212 −0.273106 0.961984i \(-0.588051\pi\)
−0.273106 + 0.961984i \(0.588051\pi\)
\(30\) −449.496 −2.73555
\(31\) 244.686 1.41764 0.708821 0.705388i \(-0.249227\pi\)
0.708821 + 0.705388i \(0.249227\pi\)
\(32\) 73.6653 0.406947
\(33\) 49.1737 0.259395
\(34\) −558.588 −2.81756
\(35\) −480.790 −2.32195
\(36\) −118.398 −0.548139
\(37\) −180.288 −0.801058 −0.400529 0.916284i \(-0.631174\pi\)
−0.400529 + 0.916284i \(0.631174\pi\)
\(38\) 19.2496 0.0821763
\(39\) 0 0
\(40\) 892.413 3.52757
\(41\) −470.715 −1.79301 −0.896503 0.443037i \(-0.853901\pi\)
−0.896503 + 0.443037i \(0.853901\pi\)
\(42\) 531.714 1.95346
\(43\) −194.463 −0.689658 −0.344829 0.938666i \(-0.612063\pi\)
−0.344829 + 0.938666i \(0.612063\pi\)
\(44\) −185.628 −0.636010
\(45\) −141.448 −0.468573
\(46\) −383.649 −1.22970
\(47\) −287.601 −0.892572 −0.446286 0.894890i \(-0.647254\pi\)
−0.446286 + 0.894890i \(0.647254\pi\)
\(48\) −383.430 −1.15299
\(49\) 225.732 0.658112
\(50\) 1403.72 3.97031
\(51\) 500.666 1.37465
\(52\) 0 0
\(53\) −564.081 −1.46193 −0.730966 0.682414i \(-0.760930\pi\)
−0.730966 + 0.682414i \(0.760930\pi\)
\(54\) 758.417 1.91125
\(55\) −221.766 −0.543689
\(56\) −1055.65 −2.51905
\(57\) −17.2536 −0.0400928
\(58\) −425.444 −0.963164
\(59\) 50.4331 0.111285 0.0556426 0.998451i \(-0.482279\pi\)
0.0556426 + 0.998451i \(0.482279\pi\)
\(60\) −1520.87 −3.27239
\(61\) 334.404 0.701902 0.350951 0.936394i \(-0.385858\pi\)
0.350951 + 0.936394i \(0.385858\pi\)
\(62\) 1220.37 2.49980
\(63\) 167.320 0.334609
\(64\) −318.769 −0.622595
\(65\) 0 0
\(66\) 245.254 0.457405
\(67\) −199.275 −0.363363 −0.181681 0.983357i \(-0.558154\pi\)
−0.181681 + 0.983357i \(0.558154\pi\)
\(68\) −1889.98 −3.37050
\(69\) 343.868 0.599954
\(70\) −2397.95 −4.09442
\(71\) 152.078 0.254202 0.127101 0.991890i \(-0.459433\pi\)
0.127101 + 0.991890i \(0.459433\pi\)
\(72\) −310.569 −0.508346
\(73\) 245.095 0.392961 0.196480 0.980508i \(-0.437049\pi\)
0.196480 + 0.980508i \(0.437049\pi\)
\(74\) −899.188 −1.41255
\(75\) −1258.16 −1.93707
\(76\) 65.1311 0.0983033
\(77\) 262.329 0.388249
\(78\) 0 0
\(79\) −281.145 −0.400396 −0.200198 0.979756i \(-0.564158\pi\)
−0.200198 + 0.979756i \(0.564158\pi\)
\(80\) 1729.21 2.41664
\(81\) −490.341 −0.672621
\(82\) −2347.69 −3.16170
\(83\) 434.099 0.574080 0.287040 0.957919i \(-0.407329\pi\)
0.287040 + 0.957919i \(0.407329\pi\)
\(84\) 1799.06 2.33682
\(85\) −2257.92 −2.88125
\(86\) −969.884 −1.21611
\(87\) 381.328 0.469916
\(88\) −486.919 −0.589838
\(89\) 1032.68 1.22993 0.614964 0.788555i \(-0.289171\pi\)
0.614964 + 0.788555i \(0.289171\pi\)
\(90\) −705.472 −0.826258
\(91\) 0 0
\(92\) −1298.08 −1.47102
\(93\) −1093.83 −1.21962
\(94\) −1434.41 −1.57392
\(95\) 77.8109 0.0840339
\(96\) −329.309 −0.350104
\(97\) 802.898 0.840432 0.420216 0.907424i \(-0.361954\pi\)
0.420216 + 0.907424i \(0.361954\pi\)
\(98\) 1125.84 1.16048
\(99\) 77.1768 0.0783491
\(100\) 4749.48 4.74948
\(101\) −1228.44 −1.21024 −0.605118 0.796136i \(-0.706874\pi\)
−0.605118 + 0.796136i \(0.706874\pi\)
\(102\) 2497.08 2.42399
\(103\) −334.122 −0.319632 −0.159816 0.987147i \(-0.551090\pi\)
−0.159816 + 0.987147i \(0.551090\pi\)
\(104\) 0 0
\(105\) 2149.30 1.99762
\(106\) −2813.36 −2.57790
\(107\) 1230.22 1.11149 0.555747 0.831351i \(-0.312432\pi\)
0.555747 + 0.831351i \(0.312432\pi\)
\(108\) 2566.11 2.28633
\(109\) −333.762 −0.293290 −0.146645 0.989189i \(-0.546847\pi\)
−0.146645 + 0.989189i \(0.546847\pi\)
\(110\) −1106.06 −0.958714
\(111\) 805.948 0.689164
\(112\) −2045.50 −1.72573
\(113\) −1369.00 −1.13969 −0.569843 0.821753i \(-0.692996\pi\)
−0.569843 + 0.821753i \(0.692996\pi\)
\(114\) −86.0523 −0.0706977
\(115\) −1550.79 −1.25749
\(116\) −1439.49 −1.15218
\(117\) 0 0
\(118\) 251.535 0.196235
\(119\) 2670.92 2.05751
\(120\) −3989.39 −3.03483
\(121\) 121.000 0.0909091
\(122\) 1667.84 1.23770
\(123\) 2104.25 1.54255
\(124\) 4129.14 2.99038
\(125\) 3154.05 2.25685
\(126\) 834.510 0.590032
\(127\) 500.653 0.349809 0.174904 0.984585i \(-0.444038\pi\)
0.174904 + 0.984585i \(0.444038\pi\)
\(128\) −2179.19 −1.50480
\(129\) 869.314 0.593324
\(130\) 0 0
\(131\) 205.190 0.136851 0.0684256 0.997656i \(-0.478202\pi\)
0.0684256 + 0.997656i \(0.478202\pi\)
\(132\) 829.819 0.547170
\(133\) −92.0433 −0.0600088
\(134\) −993.886 −0.640736
\(135\) 3065.68 1.95446
\(136\) −4957.60 −3.12581
\(137\) 2302.23 1.43571 0.717856 0.696192i \(-0.245124\pi\)
0.717856 + 0.696192i \(0.245124\pi\)
\(138\) 1715.04 1.05793
\(139\) −469.268 −0.286351 −0.143175 0.989697i \(-0.545731\pi\)
−0.143175 + 0.989697i \(0.545731\pi\)
\(140\) −8113.46 −4.89794
\(141\) 1285.67 0.767895
\(142\) 758.491 0.448248
\(143\) 0 0
\(144\) −601.782 −0.348253
\(145\) −1719.73 −0.984936
\(146\) 1222.41 0.692928
\(147\) −1009.10 −0.566185
\(148\) −3042.40 −1.68976
\(149\) −749.151 −0.411898 −0.205949 0.978563i \(-0.566028\pi\)
−0.205949 + 0.978563i \(0.566028\pi\)
\(150\) −6275.09 −3.41573
\(151\) −2358.29 −1.27096 −0.635480 0.772117i \(-0.719198\pi\)
−0.635480 + 0.772117i \(0.719198\pi\)
\(152\) 170.845 0.0911669
\(153\) 785.781 0.415207
\(154\) 1308.37 0.684620
\(155\) 4933.00 2.55631
\(156\) 0 0
\(157\) −1366.74 −0.694764 −0.347382 0.937724i \(-0.612929\pi\)
−0.347382 + 0.937724i \(0.612929\pi\)
\(158\) −1402.21 −0.706038
\(159\) 2521.63 1.25773
\(160\) 1485.13 0.733812
\(161\) 1834.45 0.897979
\(162\) −2445.58 −1.18607
\(163\) 2841.66 1.36550 0.682749 0.730653i \(-0.260784\pi\)
0.682749 + 0.730653i \(0.260784\pi\)
\(164\) −7943.42 −3.78218
\(165\) 991.368 0.467745
\(166\) 2165.07 1.01230
\(167\) 526.823 0.244113 0.122056 0.992523i \(-0.461051\pi\)
0.122056 + 0.992523i \(0.461051\pi\)
\(168\) 4719.09 2.16718
\(169\) 0 0
\(170\) −11261.4 −5.08065
\(171\) −27.0790 −0.0121098
\(172\) −3281.60 −1.45477
\(173\) −1622.90 −0.713219 −0.356610 0.934254i \(-0.616067\pi\)
−0.356610 + 0.934254i \(0.616067\pi\)
\(174\) 1901.88 0.828626
\(175\) −6711.97 −2.89930
\(176\) −943.491 −0.404081
\(177\) −225.453 −0.0957406
\(178\) 5150.49 2.16879
\(179\) −3536.08 −1.47653 −0.738265 0.674510i \(-0.764355\pi\)
−0.738265 + 0.674510i \(0.764355\pi\)
\(180\) −2386.96 −0.988410
\(181\) −3338.97 −1.37118 −0.685590 0.727988i \(-0.740456\pi\)
−0.685590 + 0.727988i \(0.740456\pi\)
\(182\) 0 0
\(183\) −1494.90 −0.603858
\(184\) −3404.98 −1.36423
\(185\) −3634.70 −1.44448
\(186\) −5455.48 −2.15062
\(187\) 1231.97 0.481768
\(188\) −4853.33 −1.88280
\(189\) −3626.42 −1.39568
\(190\) 388.082 0.148181
\(191\) −1085.16 −0.411096 −0.205548 0.978647i \(-0.565898\pi\)
−0.205548 + 0.978647i \(0.565898\pi\)
\(192\) 1425.00 0.535629
\(193\) 1802.02 0.672085 0.336042 0.941847i \(-0.390911\pi\)
0.336042 + 0.941847i \(0.390911\pi\)
\(194\) 4004.46 1.48198
\(195\) 0 0
\(196\) 3809.29 1.38823
\(197\) 2704.82 0.978225 0.489112 0.872221i \(-0.337321\pi\)
0.489112 + 0.872221i \(0.337321\pi\)
\(198\) 384.920 0.138157
\(199\) −759.103 −0.270409 −0.135204 0.990818i \(-0.543169\pi\)
−0.135204 + 0.990818i \(0.543169\pi\)
\(200\) 12458.3 4.40469
\(201\) 890.827 0.312607
\(202\) −6126.83 −2.13407
\(203\) 2034.29 0.703345
\(204\) 8448.86 2.89970
\(205\) −9489.85 −3.23317
\(206\) −1666.44 −0.563622
\(207\) 539.691 0.181213
\(208\) 0 0
\(209\) −42.4552 −0.0140511
\(210\) 10719.6 3.52250
\(211\) −3908.28 −1.27515 −0.637577 0.770387i \(-0.720063\pi\)
−0.637577 + 0.770387i \(0.720063\pi\)
\(212\) −9519.00 −3.08381
\(213\) −679.841 −0.218694
\(214\) 6135.74 1.95995
\(215\) −3920.47 −1.24360
\(216\) 6731.14 2.12035
\(217\) −5835.30 −1.82547
\(218\) −1664.64 −0.517173
\(219\) −1095.66 −0.338071
\(220\) −3742.35 −1.14686
\(221\) 0 0
\(222\) 4019.67 1.21524
\(223\) 4141.64 1.24370 0.621848 0.783138i \(-0.286382\pi\)
0.621848 + 0.783138i \(0.286382\pi\)
\(224\) −1756.78 −0.524017
\(225\) −1974.65 −0.585081
\(226\) −6827.89 −2.00967
\(227\) −2515.57 −0.735524 −0.367762 0.929920i \(-0.619876\pi\)
−0.367762 + 0.929920i \(0.619876\pi\)
\(228\) −291.158 −0.0845720
\(229\) −2143.71 −0.618605 −0.309302 0.950964i \(-0.600095\pi\)
−0.309302 + 0.950964i \(0.600095\pi\)
\(230\) −7734.57 −2.21740
\(231\) −1172.70 −0.334017
\(232\) −3775.92 −1.06854
\(233\) 1945.07 0.546893 0.273447 0.961887i \(-0.411836\pi\)
0.273447 + 0.961887i \(0.411836\pi\)
\(234\) 0 0
\(235\) −5798.18 −1.60950
\(236\) 851.071 0.234746
\(237\) 1256.81 0.344467
\(238\) 13321.3 3.62810
\(239\) 5694.26 1.54114 0.770568 0.637358i \(-0.219973\pi\)
0.770568 + 0.637358i \(0.219973\pi\)
\(240\) −7730.14 −2.07908
\(241\) 2009.60 0.537137 0.268568 0.963261i \(-0.413449\pi\)
0.268568 + 0.963261i \(0.413449\pi\)
\(242\) 603.489 0.160305
\(243\) −1913.72 −0.505207
\(244\) 5643.15 1.48060
\(245\) 4550.88 1.18672
\(246\) 10495.0 2.72006
\(247\) 0 0
\(248\) 10831.1 2.77329
\(249\) −1940.57 −0.493890
\(250\) 15730.8 3.97962
\(251\) 5321.13 1.33812 0.669058 0.743210i \(-0.266698\pi\)
0.669058 + 0.743210i \(0.266698\pi\)
\(252\) 2823.57 0.705825
\(253\) 846.143 0.210263
\(254\) 2497.01 0.616836
\(255\) 10093.7 2.47879
\(256\) −8318.55 −2.03090
\(257\) 3786.94 0.919156 0.459578 0.888138i \(-0.348001\pi\)
0.459578 + 0.888138i \(0.348001\pi\)
\(258\) 4335.71 1.04624
\(259\) 4299.53 1.03150
\(260\) 0 0
\(261\) 598.484 0.141936
\(262\) 1023.39 0.241317
\(263\) −1430.47 −0.335385 −0.167693 0.985839i \(-0.553632\pi\)
−0.167693 + 0.985839i \(0.553632\pi\)
\(264\) 2176.69 0.507448
\(265\) −11372.2 −2.63617
\(266\) −459.067 −0.105817
\(267\) −4616.42 −1.05813
\(268\) −3362.81 −0.766480
\(269\) −3302.24 −0.748481 −0.374240 0.927332i \(-0.622096\pi\)
−0.374240 + 0.927332i \(0.622096\pi\)
\(270\) 15290.1 3.44639
\(271\) −8402.73 −1.88350 −0.941752 0.336308i \(-0.890822\pi\)
−0.941752 + 0.336308i \(0.890822\pi\)
\(272\) −9606.22 −2.14141
\(273\) 0 0
\(274\) 11482.4 2.53166
\(275\) −3095.91 −0.678875
\(276\) 5802.85 1.26555
\(277\) −5501.14 −1.19326 −0.596628 0.802518i \(-0.703493\pi\)
−0.596628 + 0.802518i \(0.703493\pi\)
\(278\) −2340.48 −0.504937
\(279\) −1716.73 −0.368381
\(280\) −21282.4 −4.54237
\(281\) −3082.87 −0.654478 −0.327239 0.944942i \(-0.606118\pi\)
−0.327239 + 0.944942i \(0.606118\pi\)
\(282\) 6412.31 1.35407
\(283\) 6542.77 1.37430 0.687151 0.726515i \(-0.258861\pi\)
0.687151 + 0.726515i \(0.258861\pi\)
\(284\) 2566.36 0.536215
\(285\) −347.841 −0.0722958
\(286\) 0 0
\(287\) 11225.7 2.30881
\(288\) −516.841 −0.105747
\(289\) 7630.39 1.55310
\(290\) −8577.17 −1.73679
\(291\) −3589.22 −0.723038
\(292\) 4136.03 0.828914
\(293\) 5546.77 1.10596 0.552980 0.833195i \(-0.313491\pi\)
0.552980 + 0.833195i \(0.313491\pi\)
\(294\) −5032.90 −0.998383
\(295\) 1016.76 0.200671
\(296\) −7980.51 −1.56709
\(297\) −1672.70 −0.326800
\(298\) −3736.40 −0.726321
\(299\) 0 0
\(300\) −21231.8 −4.08606
\(301\) 4637.57 0.888056
\(302\) −11762.0 −2.24115
\(303\) 5491.52 1.04119
\(304\) 331.042 0.0624559
\(305\) 6741.75 1.26568
\(306\) 3919.09 0.732155
\(307\) 372.191 0.0691923 0.0345962 0.999401i \(-0.488985\pi\)
0.0345962 + 0.999401i \(0.488985\pi\)
\(308\) 4426.87 0.818975
\(309\) 1493.64 0.274984
\(310\) 24603.4 4.50767
\(311\) 7890.69 1.43871 0.719357 0.694640i \(-0.244436\pi\)
0.719357 + 0.694640i \(0.244436\pi\)
\(312\) 0 0
\(313\) 348.406 0.0629171 0.0314586 0.999505i \(-0.489985\pi\)
0.0314586 + 0.999505i \(0.489985\pi\)
\(314\) −6816.64 −1.22511
\(315\) 3373.26 0.603370
\(316\) −4744.39 −0.844597
\(317\) −6274.13 −1.11164 −0.555820 0.831302i \(-0.687596\pi\)
−0.555820 + 0.831302i \(0.687596\pi\)
\(318\) 12576.7 2.21781
\(319\) 938.320 0.164689
\(320\) −6426.55 −1.12267
\(321\) −5499.50 −0.956238
\(322\) 9149.31 1.58345
\(323\) −432.261 −0.0744633
\(324\) −8274.62 −1.41883
\(325\) 0 0
\(326\) 14172.8 2.40785
\(327\) 1492.03 0.252322
\(328\) −20836.4 −3.50761
\(329\) 6858.74 1.14934
\(330\) 4944.46 0.824798
\(331\) 3876.67 0.643749 0.321875 0.946782i \(-0.395687\pi\)
0.321875 + 0.946782i \(0.395687\pi\)
\(332\) 7325.53 1.21097
\(333\) 1264.91 0.208159
\(334\) 2627.54 0.430456
\(335\) −4017.49 −0.655220
\(336\) 9144.07 1.48467
\(337\) −5219.32 −0.843663 −0.421831 0.906674i \(-0.638613\pi\)
−0.421831 + 0.906674i \(0.638613\pi\)
\(338\) 0 0
\(339\) 6119.89 0.980492
\(340\) −38103.0 −6.07772
\(341\) −2691.55 −0.427435
\(342\) −135.057 −0.0213539
\(343\) 2796.61 0.440241
\(344\) −8607.96 −1.34916
\(345\) 6932.55 1.08184
\(346\) −8094.23 −1.25766
\(347\) 7654.63 1.18421 0.592107 0.805859i \(-0.298296\pi\)
0.592107 + 0.805859i \(0.298296\pi\)
\(348\) 6435.00 0.991243
\(349\) −6159.99 −0.944804 −0.472402 0.881383i \(-0.656613\pi\)
−0.472402 + 0.881383i \(0.656613\pi\)
\(350\) −33476.0 −5.11248
\(351\) 0 0
\(352\) −810.319 −0.122699
\(353\) 11219.6 1.69167 0.845835 0.533445i \(-0.179103\pi\)
0.845835 + 0.533445i \(0.179103\pi\)
\(354\) −1124.45 −0.168824
\(355\) 3065.97 0.458380
\(356\) 17426.7 2.59442
\(357\) −11939.9 −1.77011
\(358\) −17636.2 −2.60364
\(359\) −7715.95 −1.13435 −0.567176 0.823597i \(-0.691964\pi\)
−0.567176 + 0.823597i \(0.691964\pi\)
\(360\) −6261.23 −0.916655
\(361\) −6844.10 −0.997828
\(362\) −16653.1 −2.41787
\(363\) −540.911 −0.0782106
\(364\) 0 0
\(365\) 4941.23 0.708592
\(366\) −7455.82 −1.06481
\(367\) 5740.64 0.816509 0.408255 0.912868i \(-0.366138\pi\)
0.408255 + 0.912868i \(0.366138\pi\)
\(368\) −6597.75 −0.934597
\(369\) 3302.57 0.465921
\(370\) −18128.1 −2.54712
\(371\) 13452.3 1.88250
\(372\) −18458.6 −2.57268
\(373\) −1439.07 −0.199764 −0.0998820 0.994999i \(-0.531847\pi\)
−0.0998820 + 0.994999i \(0.531847\pi\)
\(374\) 6144.46 0.849526
\(375\) −14099.7 −1.94161
\(376\) −12730.8 −1.74611
\(377\) 0 0
\(378\) −18086.8 −2.46107
\(379\) −5751.71 −0.779540 −0.389770 0.920912i \(-0.627445\pi\)
−0.389770 + 0.920912i \(0.627445\pi\)
\(380\) 1313.08 0.177262
\(381\) −2238.09 −0.300947
\(382\) −5412.24 −0.724906
\(383\) 801.732 0.106962 0.0534812 0.998569i \(-0.482968\pi\)
0.0534812 + 0.998569i \(0.482968\pi\)
\(384\) 9741.70 1.29461
\(385\) 5288.69 0.700096
\(386\) 8987.60 1.18512
\(387\) 1364.36 0.179211
\(388\) 13549.1 1.77281
\(389\) −12980.3 −1.69184 −0.845922 0.533307i \(-0.820949\pi\)
−0.845922 + 0.533307i \(0.820949\pi\)
\(390\) 0 0
\(391\) 8615.06 1.11428
\(392\) 9992.13 1.28745
\(393\) −917.268 −0.117735
\(394\) 13490.3 1.72495
\(395\) −5668.02 −0.721998
\(396\) 1302.38 0.165270
\(397\) −3492.52 −0.441523 −0.220762 0.975328i \(-0.570854\pi\)
−0.220762 + 0.975328i \(0.570854\pi\)
\(398\) −3786.03 −0.476826
\(399\) 411.465 0.0516266
\(400\) 24140.2 3.01753
\(401\) 981.877 0.122276 0.0611379 0.998129i \(-0.480527\pi\)
0.0611379 + 0.998129i \(0.480527\pi\)
\(402\) 4443.01 0.551236
\(403\) 0 0
\(404\) −20730.2 −2.55288
\(405\) −9885.53 −1.21288
\(406\) 10146.0 1.24024
\(407\) 1983.17 0.241528
\(408\) 22162.2 2.68919
\(409\) −9119.89 −1.10257 −0.551283 0.834318i \(-0.685862\pi\)
−0.551283 + 0.834318i \(0.685862\pi\)
\(410\) −47330.7 −5.70121
\(411\) −10291.7 −1.23517
\(412\) −5638.40 −0.674232
\(413\) −1202.73 −0.143299
\(414\) 2691.71 0.319542
\(415\) 8751.67 1.03519
\(416\) 0 0
\(417\) 2097.79 0.246353
\(418\) −211.746 −0.0247771
\(419\) 11055.6 1.28902 0.644512 0.764594i \(-0.277061\pi\)
0.644512 + 0.764594i \(0.277061\pi\)
\(420\) 36269.9 4.21378
\(421\) 2544.11 0.294519 0.147259 0.989098i \(-0.452955\pi\)
0.147259 + 0.989098i \(0.452955\pi\)
\(422\) −19492.6 −2.24854
\(423\) 2017.83 0.231939
\(424\) −24969.2 −2.85994
\(425\) −31521.3 −3.59766
\(426\) −3390.71 −0.385635
\(427\) −7974.90 −0.903823
\(428\) 20760.3 2.34459
\(429\) 0 0
\(430\) −19553.4 −2.19290
\(431\) −10692.7 −1.19501 −0.597505 0.801865i \(-0.703841\pi\)
−0.597505 + 0.801865i \(0.703841\pi\)
\(432\) 13042.8 1.45259
\(433\) 2822.50 0.313258 0.156629 0.987658i \(-0.449937\pi\)
0.156629 + 0.987658i \(0.449937\pi\)
\(434\) −29103.6 −3.21894
\(435\) 7687.77 0.847357
\(436\) −5632.31 −0.618667
\(437\) −296.886 −0.0324988
\(438\) −5464.59 −0.596138
\(439\) 3685.12 0.400640 0.200320 0.979730i \(-0.435802\pi\)
0.200320 + 0.979730i \(0.435802\pi\)
\(440\) −9816.54 −1.06360
\(441\) −1583.76 −0.171013
\(442\) 0 0
\(443\) 5031.25 0.539598 0.269799 0.962917i \(-0.413043\pi\)
0.269799 + 0.962917i \(0.413043\pi\)
\(444\) 13600.6 1.45373
\(445\) 20819.3 2.21782
\(446\) 20656.4 2.19307
\(447\) 3348.96 0.354363
\(448\) 7602.04 0.801702
\(449\) 6659.34 0.699942 0.349971 0.936761i \(-0.386191\pi\)
0.349971 + 0.936761i \(0.386191\pi\)
\(450\) −9848.58 −1.03170
\(451\) 5177.86 0.540612
\(452\) −23102.2 −2.40406
\(453\) 10542.4 1.09343
\(454\) −12546.4 −1.29699
\(455\) 0 0
\(456\) −763.735 −0.0784324
\(457\) 12776.1 1.30775 0.653873 0.756604i \(-0.273143\pi\)
0.653873 + 0.756604i \(0.273143\pi\)
\(458\) −10691.8 −1.09082
\(459\) −17030.7 −1.73186
\(460\) −26169.9 −2.65256
\(461\) −9355.38 −0.945171 −0.472585 0.881285i \(-0.656679\pi\)
−0.472585 + 0.881285i \(0.656679\pi\)
\(462\) −5848.85 −0.588990
\(463\) 5632.94 0.565410 0.282705 0.959207i \(-0.408768\pi\)
0.282705 + 0.959207i \(0.408768\pi\)
\(464\) −7316.50 −0.732026
\(465\) −22052.2 −2.19924
\(466\) 9701.08 0.964364
\(467\) 7557.42 0.748856 0.374428 0.927256i \(-0.377839\pi\)
0.374428 + 0.927256i \(0.377839\pi\)
\(468\) 0 0
\(469\) 4752.33 0.467894
\(470\) −28918.5 −2.83811
\(471\) 6109.81 0.597718
\(472\) 2232.44 0.217704
\(473\) 2139.09 0.207940
\(474\) 6268.36 0.607416
\(475\) 1086.26 0.104929
\(476\) 45072.5 4.34011
\(477\) 3957.63 0.379890
\(478\) 28400.2 2.71756
\(479\) −461.346 −0.0440072 −0.0220036 0.999758i \(-0.507005\pi\)
−0.0220036 + 0.999758i \(0.507005\pi\)
\(480\) −6639.04 −0.631311
\(481\) 0 0
\(482\) 10022.9 0.947161
\(483\) −8200.59 −0.772546
\(484\) 2041.90 0.191764
\(485\) 16186.8 1.51548
\(486\) −9544.70 −0.890857
\(487\) 8771.88 0.816205 0.408102 0.912936i \(-0.366191\pi\)
0.408102 + 0.912936i \(0.366191\pi\)
\(488\) 14802.5 1.37311
\(489\) −12703.2 −1.17476
\(490\) 22697.6 2.09260
\(491\) 6631.14 0.609489 0.304745 0.952434i \(-0.401429\pi\)
0.304745 + 0.952434i \(0.401429\pi\)
\(492\) 35509.8 3.25387
\(493\) 9553.57 0.872761
\(494\) 0 0
\(495\) 1555.92 0.141280
\(496\) 20987.2 1.89990
\(497\) −3626.78 −0.327330
\(498\) −9678.62 −0.870902
\(499\) 419.630 0.0376458 0.0188229 0.999823i \(-0.494008\pi\)
0.0188229 + 0.999823i \(0.494008\pi\)
\(500\) 53225.3 4.76062
\(501\) −2355.08 −0.210014
\(502\) 26539.2 2.35957
\(503\) 1162.41 0.103041 0.0515203 0.998672i \(-0.483593\pi\)
0.0515203 + 0.998672i \(0.483593\pi\)
\(504\) 7406.48 0.654585
\(505\) −24765.9 −2.18231
\(506\) 4220.14 0.370767
\(507\) 0 0
\(508\) 8448.64 0.737889
\(509\) −9192.32 −0.800476 −0.400238 0.916411i \(-0.631073\pi\)
−0.400238 + 0.916411i \(0.631073\pi\)
\(510\) 50342.3 4.37097
\(511\) −5845.04 −0.506007
\(512\) −24055.4 −2.07638
\(513\) 586.898 0.0505111
\(514\) 18887.4 1.62079
\(515\) −6736.08 −0.576363
\(516\) 14669.9 1.25156
\(517\) 3163.61 0.269121
\(518\) 21443.9 1.81890
\(519\) 7254.92 0.613594
\(520\) 0 0
\(521\) −14292.0 −1.20181 −0.600905 0.799320i \(-0.705193\pi\)
−0.600905 + 0.799320i \(0.705193\pi\)
\(522\) 2984.94 0.250282
\(523\) 19647.2 1.64266 0.821329 0.570455i \(-0.193233\pi\)
0.821329 + 0.570455i \(0.193233\pi\)
\(524\) 3462.63 0.288675
\(525\) 30004.8 2.49432
\(526\) −7134.46 −0.591402
\(527\) −27404.2 −2.26517
\(528\) 4217.73 0.347638
\(529\) −6250.00 −0.513684
\(530\) −56718.7 −4.64850
\(531\) −353.842 −0.0289180
\(532\) −1553.25 −0.126583
\(533\) 0 0
\(534\) −23024.4 −1.86585
\(535\) 24801.9 2.00426
\(536\) −8820.98 −0.710836
\(537\) 15807.5 1.27028
\(538\) −16470.0 −1.31983
\(539\) −2483.06 −0.198428
\(540\) 51734.0 4.12274
\(541\) −3805.59 −0.302431 −0.151216 0.988501i \(-0.548319\pi\)
−0.151216 + 0.988501i \(0.548319\pi\)
\(542\) −41908.7 −3.32128
\(543\) 14926.3 1.17965
\(544\) −8250.32 −0.650238
\(545\) −6728.82 −0.528864
\(546\) 0 0
\(547\) 4264.30 0.333324 0.166662 0.986014i \(-0.446701\pi\)
0.166662 + 0.986014i \(0.446701\pi\)
\(548\) 38850.6 3.02850
\(549\) −2346.20 −0.182392
\(550\) −15440.9 −1.19709
\(551\) −329.228 −0.0254548
\(552\) 15221.4 1.17367
\(553\) 6704.77 0.515580
\(554\) −27437.0 −2.10413
\(555\) 16248.3 1.24271
\(556\) −7919.01 −0.604030
\(557\) 21947.0 1.66952 0.834761 0.550612i \(-0.185606\pi\)
0.834761 + 0.550612i \(0.185606\pi\)
\(558\) −8562.23 −0.649584
\(559\) 0 0
\(560\) −41238.3 −3.11185
\(561\) −5507.32 −0.414473
\(562\) −15375.8 −1.15408
\(563\) −24846.0 −1.85992 −0.929960 0.367660i \(-0.880159\pi\)
−0.929960 + 0.367660i \(0.880159\pi\)
\(564\) 21696.0 1.61980
\(565\) −27599.7 −2.05510
\(566\) 32632.1 2.42338
\(567\) 11693.7 0.866119
\(568\) 6731.79 0.497288
\(569\) 8838.72 0.651210 0.325605 0.945506i \(-0.394432\pi\)
0.325605 + 0.945506i \(0.394432\pi\)
\(570\) −1734.86 −0.127483
\(571\) 5535.21 0.405677 0.202838 0.979212i \(-0.434983\pi\)
0.202838 + 0.979212i \(0.434983\pi\)
\(572\) 0 0
\(573\) 4851.03 0.353673
\(574\) 55988.0 4.07125
\(575\) −21649.5 −1.57016
\(576\) 2236.51 0.161784
\(577\) 7216.86 0.520696 0.260348 0.965515i \(-0.416163\pi\)
0.260348 + 0.965515i \(0.416163\pi\)
\(578\) 38056.7 2.73866
\(579\) −8055.65 −0.578206
\(580\) −29020.9 −2.07763
\(581\) −10352.5 −0.739229
\(582\) −17901.3 −1.27497
\(583\) 6204.89 0.440789
\(584\) 10849.2 0.768738
\(585\) 0 0
\(586\) 27664.6 1.95019
\(587\) −22137.4 −1.55657 −0.778286 0.627910i \(-0.783910\pi\)
−0.778286 + 0.627910i \(0.783910\pi\)
\(588\) −17028.8 −1.19431
\(589\) 944.382 0.0660655
\(590\) 5071.09 0.353853
\(591\) −12091.4 −0.841583
\(592\) −15463.6 −1.07357
\(593\) 2759.66 0.191106 0.0955529 0.995424i \(-0.469538\pi\)
0.0955529 + 0.995424i \(0.469538\pi\)
\(594\) −8342.59 −0.576264
\(595\) 53847.2 3.71012
\(596\) −12642.1 −0.868860
\(597\) 3393.45 0.232637
\(598\) 0 0
\(599\) 8461.04 0.577143 0.288572 0.957458i \(-0.406820\pi\)
0.288572 + 0.957458i \(0.406820\pi\)
\(600\) −55693.0 −3.78943
\(601\) 4257.10 0.288936 0.144468 0.989509i \(-0.453853\pi\)
0.144468 + 0.989509i \(0.453853\pi\)
\(602\) 23129.9 1.56595
\(603\) 1398.13 0.0944215
\(604\) −39796.7 −2.68097
\(605\) 2439.42 0.163928
\(606\) 27389.0 1.83598
\(607\) −25271.1 −1.68982 −0.844912 0.534906i \(-0.820347\pi\)
−0.844912 + 0.534906i \(0.820347\pi\)
\(608\) 284.316 0.0189647
\(609\) −9093.95 −0.605100
\(610\) 33624.6 2.23183
\(611\) 0 0
\(612\) 13260.2 0.875839
\(613\) 10020.4 0.660226 0.330113 0.943941i \(-0.392913\pi\)
0.330113 + 0.943941i \(0.392913\pi\)
\(614\) 1856.30 0.122010
\(615\) 42422.9 2.78155
\(616\) 11612.1 0.759521
\(617\) 3621.59 0.236304 0.118152 0.992996i \(-0.462303\pi\)
0.118152 + 0.992996i \(0.462303\pi\)
\(618\) 7449.54 0.484894
\(619\) 15993.1 1.03847 0.519237 0.854630i \(-0.326216\pi\)
0.519237 + 0.854630i \(0.326216\pi\)
\(620\) 83245.5 5.39229
\(621\) −11697.0 −0.755854
\(622\) 39354.9 2.53696
\(623\) −24627.4 −1.58375
\(624\) 0 0
\(625\) 28406.4 1.81801
\(626\) 1737.68 0.110945
\(627\) 189.789 0.0120884
\(628\) −23064.1 −1.46554
\(629\) 20191.8 1.27997
\(630\) 16824.2 1.06395
\(631\) −11906.1 −0.751148 −0.375574 0.926792i \(-0.622554\pi\)
−0.375574 + 0.926792i \(0.622554\pi\)
\(632\) −12445.0 −0.783282
\(633\) 17471.4 1.09704
\(634\) −31292.3 −1.96021
\(635\) 10093.4 0.630780
\(636\) 42553.1 2.65305
\(637\) 0 0
\(638\) 4679.88 0.290405
\(639\) −1066.99 −0.0660556
\(640\) −43933.5 −2.71348
\(641\) 5547.76 0.341846 0.170923 0.985284i \(-0.445325\pi\)
0.170923 + 0.985284i \(0.445325\pi\)
\(642\) −27428.8 −1.68618
\(643\) 8383.25 0.514158 0.257079 0.966390i \(-0.417240\pi\)
0.257079 + 0.966390i \(0.417240\pi\)
\(644\) 30956.7 1.89420
\(645\) 17525.8 1.06989
\(646\) −2155.90 −0.131305
\(647\) 26350.5 1.60115 0.800575 0.599233i \(-0.204528\pi\)
0.800575 + 0.599233i \(0.204528\pi\)
\(648\) −21705.1 −1.31583
\(649\) −554.764 −0.0335538
\(650\) 0 0
\(651\) 26085.8 1.57048
\(652\) 47953.7 2.88039
\(653\) 22098.6 1.32433 0.662164 0.749359i \(-0.269638\pi\)
0.662164 + 0.749359i \(0.269638\pi\)
\(654\) 7441.51 0.444933
\(655\) 4136.73 0.246772
\(656\) −40374.1 −2.40296
\(657\) −1719.60 −0.102113
\(658\) 34208.0 2.02670
\(659\) 5272.65 0.311674 0.155837 0.987783i \(-0.450192\pi\)
0.155837 + 0.987783i \(0.450192\pi\)
\(660\) 16729.6 0.986663
\(661\) −19249.3 −1.13270 −0.566348 0.824166i \(-0.691644\pi\)
−0.566348 + 0.824166i \(0.691644\pi\)
\(662\) 19334.9 1.13516
\(663\) 0 0
\(664\) 19215.6 1.12306
\(665\) −1855.64 −0.108209
\(666\) 6308.77 0.367057
\(667\) 6561.59 0.380908
\(668\) 8890.27 0.514933
\(669\) −18514.5 −1.06997
\(670\) −20037.3 −1.15538
\(671\) −3678.44 −0.211631
\(672\) 7853.40 0.450821
\(673\) −32955.4 −1.88757 −0.943787 0.330553i \(-0.892765\pi\)
−0.943787 + 0.330553i \(0.892765\pi\)
\(674\) −26031.4 −1.48767
\(675\) 42797.7 2.44042
\(676\) 0 0
\(677\) −24793.6 −1.40753 −0.703763 0.710435i \(-0.748498\pi\)
−0.703763 + 0.710435i \(0.748498\pi\)
\(678\) 30523.0 1.72895
\(679\) −19147.6 −1.08221
\(680\) −99947.8 −5.63651
\(681\) 11245.4 0.632784
\(682\) −13424.1 −0.753718
\(683\) 20604.3 1.15432 0.577161 0.816630i \(-0.304160\pi\)
0.577161 + 0.816630i \(0.304160\pi\)
\(684\) −456.965 −0.0255446
\(685\) 46414.1 2.58889
\(686\) 13948.1 0.776300
\(687\) 9583.12 0.532196
\(688\) −16679.4 −0.924270
\(689\) 0 0
\(690\) 34576.2 1.90767
\(691\) 1561.14 0.0859458 0.0429729 0.999076i \(-0.486317\pi\)
0.0429729 + 0.999076i \(0.486317\pi\)
\(692\) −27386.9 −1.50447
\(693\) −1840.52 −0.100888
\(694\) 38177.5 2.08818
\(695\) −9460.68 −0.516351
\(696\) 16879.6 0.919282
\(697\) 52718.8 2.86494
\(698\) −30723.0 −1.66602
\(699\) −8695.14 −0.470502
\(700\) −113266. −6.11580
\(701\) 30999.8 1.67025 0.835125 0.550060i \(-0.185395\pi\)
0.835125 + 0.550060i \(0.185395\pi\)
\(702\) 0 0
\(703\) −695.833 −0.0373312
\(704\) 3506.46 0.187720
\(705\) 25919.8 1.38468
\(706\) 55957.9 2.98301
\(707\) 29295.9 1.55839
\(708\) −3804.57 −0.201956
\(709\) −36499.5 −1.93338 −0.966690 0.255950i \(-0.917612\pi\)
−0.966690 + 0.255950i \(0.917612\pi\)
\(710\) 15291.6 0.808285
\(711\) 1972.53 0.104045
\(712\) 45711.8 2.40607
\(713\) −18821.7 −0.988612
\(714\) −59550.5 −3.12132
\(715\) 0 0
\(716\) −59672.2 −3.11460
\(717\) −25455.3 −1.32586
\(718\) −38483.4 −2.00026
\(719\) −38007.8 −1.97142 −0.985710 0.168453i \(-0.946123\pi\)
−0.985710 + 0.168453i \(0.946123\pi\)
\(720\) −12132.2 −0.627975
\(721\) 7968.19 0.411582
\(722\) −34135.0 −1.75952
\(723\) −8983.61 −0.462108
\(724\) −56345.9 −2.89237
\(725\) −24007.9 −1.22984
\(726\) −2697.80 −0.137913
\(727\) −20144.5 −1.02768 −0.513838 0.857887i \(-0.671777\pi\)
−0.513838 + 0.857887i \(0.671777\pi\)
\(728\) 0 0
\(729\) 21794.2 1.10726
\(730\) 24644.4 1.24950
\(731\) 21779.3 1.10196
\(732\) −25226.8 −1.27378
\(733\) −13433.0 −0.676889 −0.338444 0.940986i \(-0.609901\pi\)
−0.338444 + 0.940986i \(0.609901\pi\)
\(734\) 28631.5 1.43979
\(735\) −20344.0 −1.02095
\(736\) −5666.49 −0.283790
\(737\) 2192.02 0.109558
\(738\) 16471.6 0.821582
\(739\) 15113.2 0.752300 0.376150 0.926559i \(-0.377248\pi\)
0.376150 + 0.926559i \(0.377248\pi\)
\(740\) −61336.5 −3.04699
\(741\) 0 0
\(742\) 67093.2 3.31950
\(743\) −10764.4 −0.531504 −0.265752 0.964041i \(-0.585620\pi\)
−0.265752 + 0.964041i \(0.585620\pi\)
\(744\) −48418.7 −2.38591
\(745\) −15103.3 −0.742739
\(746\) −7177.35 −0.352254
\(747\) −3045.67 −0.149177
\(748\) 20789.8 1.01624
\(749\) −29338.4 −1.43125
\(750\) −70322.2 −3.42374
\(751\) 724.420 0.0351990 0.0175995 0.999845i \(-0.494398\pi\)
0.0175995 + 0.999845i \(0.494398\pi\)
\(752\) −24668.1 −1.19621
\(753\) −23787.3 −1.15120
\(754\) 0 0
\(755\) −47544.4 −2.29181
\(756\) −61196.8 −2.94406
\(757\) −2475.45 −0.118853 −0.0594265 0.998233i \(-0.518927\pi\)
−0.0594265 + 0.998233i \(0.518927\pi\)
\(758\) −28686.7 −1.37460
\(759\) −3782.54 −0.180893
\(760\) 3444.33 0.164393
\(761\) 12024.6 0.572786 0.286393 0.958112i \(-0.407544\pi\)
0.286393 + 0.958112i \(0.407544\pi\)
\(762\) −11162.5 −0.530674
\(763\) 7959.59 0.377663
\(764\) −18312.3 −0.867168
\(765\) 15841.8 0.748706
\(766\) 3998.65 0.188612
\(767\) 0 0
\(768\) 37186.8 1.74722
\(769\) 4428.79 0.207681 0.103840 0.994594i \(-0.466887\pi\)
0.103840 + 0.994594i \(0.466887\pi\)
\(770\) 26377.4 1.23451
\(771\) −16928.9 −0.790765
\(772\) 30409.6 1.41770
\(773\) −24842.8 −1.15593 −0.577964 0.816062i \(-0.696153\pi\)
−0.577964 + 0.816062i \(0.696153\pi\)
\(774\) 6804.78 0.316011
\(775\) 68866.1 3.19192
\(776\) 35540.6 1.64411
\(777\) −19220.3 −0.887421
\(778\) −64739.3 −2.98331
\(779\) −1816.75 −0.0835583
\(780\) 0 0
\(781\) −1672.86 −0.0766448
\(782\) 42967.7 1.96486
\(783\) −12971.3 −0.592025
\(784\) 19361.5 0.881993
\(785\) −27554.3 −1.25281
\(786\) −4574.88 −0.207609
\(787\) 41041.0 1.85890 0.929449 0.368951i \(-0.120283\pi\)
0.929449 + 0.368951i \(0.120283\pi\)
\(788\) 45644.5 2.06347
\(789\) 6394.67 0.288538
\(790\) −28269.3 −1.27314
\(791\) 32648.0 1.46755
\(792\) 3416.26 0.153272
\(793\) 0 0
\(794\) −17419.0 −0.778561
\(795\) 50837.4 2.26795
\(796\) −12810.0 −0.570402
\(797\) 30301.7 1.34673 0.673364 0.739312i \(-0.264849\pi\)
0.673364 + 0.739312i \(0.264849\pi\)
\(798\) 2052.18 0.0910358
\(799\) 32210.5 1.42619
\(800\) 20732.9 0.916272
\(801\) −7245.34 −0.319602
\(802\) 4897.12 0.215615
\(803\) −2696.04 −0.118482
\(804\) 15032.9 0.659416
\(805\) 36983.4 1.61925
\(806\) 0 0
\(807\) 14762.1 0.643931
\(808\) −54377.1 −2.36755
\(809\) 182.919 0.00794944 0.00397472 0.999992i \(-0.498735\pi\)
0.00397472 + 0.999992i \(0.498735\pi\)
\(810\) −49304.1 −2.13873
\(811\) −18134.4 −0.785186 −0.392593 0.919712i \(-0.628422\pi\)
−0.392593 + 0.919712i \(0.628422\pi\)
\(812\) 34329.1 1.48364
\(813\) 37563.1 1.62041
\(814\) 9891.07 0.425899
\(815\) 57289.4 2.46228
\(816\) 42943.1 1.84229
\(817\) −750.541 −0.0321397
\(818\) −45485.5 −1.94421
\(819\) 0 0
\(820\) −160144. −6.82007
\(821\) −24718.5 −1.05077 −0.525385 0.850865i \(-0.676079\pi\)
−0.525385 + 0.850865i \(0.676079\pi\)
\(822\) −51330.1 −2.17803
\(823\) −13607.1 −0.576322 −0.288161 0.957582i \(-0.593044\pi\)
−0.288161 + 0.957582i \(0.593044\pi\)
\(824\) −14790.0 −0.625286
\(825\) 13839.8 0.584048
\(826\) −5998.65 −0.252687
\(827\) −22725.4 −0.955549 −0.477774 0.878483i \(-0.658556\pi\)
−0.477774 + 0.878483i \(0.658556\pi\)
\(828\) 9107.41 0.382252
\(829\) 17207.3 0.720910 0.360455 0.932777i \(-0.382622\pi\)
0.360455 + 0.932777i \(0.382622\pi\)
\(830\) 43649.0 1.82540
\(831\) 24592.0 1.02658
\(832\) 0 0
\(833\) −25281.4 −1.05156
\(834\) 10462.7 0.434406
\(835\) 10621.0 0.440187
\(836\) −716.442 −0.0296396
\(837\) 37207.8 1.53655
\(838\) 55139.9 2.27300
\(839\) 22709.3 0.934460 0.467230 0.884136i \(-0.345252\pi\)
0.467230 + 0.884136i \(0.345252\pi\)
\(840\) 95139.4 3.90788
\(841\) −17112.6 −0.701652
\(842\) 12688.8 0.519339
\(843\) 13781.5 0.563059
\(844\) −65953.2 −2.68982
\(845\) 0 0
\(846\) 10063.9 0.408990
\(847\) −2885.62 −0.117062
\(848\) −48382.3 −1.95926
\(849\) −29248.4 −1.18234
\(850\) −157213. −6.34394
\(851\) 13868.1 0.558629
\(852\) −11472.5 −0.461315
\(853\) −38029.5 −1.52650 −0.763250 0.646103i \(-0.776398\pi\)
−0.763250 + 0.646103i \(0.776398\pi\)
\(854\) −39774.9 −1.59376
\(855\) −545.927 −0.0218366
\(856\) 54456.2 2.17438
\(857\) −4498.91 −0.179323 −0.0896616 0.995972i \(-0.528579\pi\)
−0.0896616 + 0.995972i \(0.528579\pi\)
\(858\) 0 0
\(859\) 13450.9 0.534271 0.267135 0.963659i \(-0.413923\pi\)
0.267135 + 0.963659i \(0.413923\pi\)
\(860\) −66158.9 −2.62325
\(861\) −50182.5 −1.98631
\(862\) −53330.0 −2.10722
\(863\) −4350.45 −0.171600 −0.0858002 0.996312i \(-0.527345\pi\)
−0.0858002 + 0.996312i \(0.527345\pi\)
\(864\) 11201.8 0.441080
\(865\) −32718.5 −1.28609
\(866\) 14077.2 0.552384
\(867\) −34110.4 −1.33616
\(868\) −98472.1 −3.85065
\(869\) 3092.59 0.120724
\(870\) 38342.8 1.49419
\(871\) 0 0
\(872\) −14774.1 −0.573754
\(873\) −5633.19 −0.218390
\(874\) −1480.72 −0.0573067
\(875\) −75218.0 −2.90610
\(876\) −18489.5 −0.713129
\(877\) 1982.86 0.0763471 0.0381735 0.999271i \(-0.487846\pi\)
0.0381735 + 0.999271i \(0.487846\pi\)
\(878\) 18379.6 0.706469
\(879\) −24796.0 −0.951475
\(880\) −19021.3 −0.728644
\(881\) −39887.8 −1.52537 −0.762687 0.646768i \(-0.776120\pi\)
−0.762687 + 0.646768i \(0.776120\pi\)
\(882\) −7898.99 −0.301557
\(883\) 9886.90 0.376807 0.188404 0.982092i \(-0.439669\pi\)
0.188404 + 0.982092i \(0.439669\pi\)
\(884\) 0 0
\(885\) −4545.25 −0.172641
\(886\) 25093.4 0.951500
\(887\) 25867.4 0.979189 0.489595 0.871950i \(-0.337145\pi\)
0.489595 + 0.871950i \(0.337145\pi\)
\(888\) 35675.6 1.34819
\(889\) −11939.6 −0.450441
\(890\) 103836. 3.91079
\(891\) 5393.75 0.202803
\(892\) 69891.1 2.62346
\(893\) −1110.01 −0.0415960
\(894\) 16703.0 0.624866
\(895\) −71289.2 −2.66250
\(896\) 51969.5 1.93770
\(897\) 0 0
\(898\) 33213.5 1.23424
\(899\) −20872.2 −0.774333
\(900\) −33322.7 −1.23417
\(901\) 63175.5 2.33594
\(902\) 25824.6 0.953288
\(903\) −20731.5 −0.764010
\(904\) −60599.2 −2.22954
\(905\) −67315.4 −2.47253
\(906\) 52580.1 1.92810
\(907\) 2520.36 0.0922681 0.0461340 0.998935i \(-0.485310\pi\)
0.0461340 + 0.998935i \(0.485310\pi\)
\(908\) −42450.8 −1.55152
\(909\) 8618.79 0.314485
\(910\) 0 0
\(911\) 7964.68 0.289662 0.144831 0.989456i \(-0.453736\pi\)
0.144831 + 0.989456i \(0.453736\pi\)
\(912\) −1479.87 −0.0537318
\(913\) −4775.09 −0.173092
\(914\) 63720.8 2.30601
\(915\) −30137.9 −1.08888
\(916\) −36175.7 −1.30489
\(917\) −4893.39 −0.176220
\(918\) −84940.7 −3.05388
\(919\) −17048.0 −0.611929 −0.305965 0.952043i \(-0.598979\pi\)
−0.305965 + 0.952043i \(0.598979\pi\)
\(920\) −68646.2 −2.46000
\(921\) −1663.82 −0.0595274
\(922\) −46660.1 −1.66667
\(923\) 0 0
\(924\) −19789.6 −0.704578
\(925\) −50741.5 −1.80364
\(926\) 28094.3 0.997016
\(927\) 2344.23 0.0830577
\(928\) −6283.79 −0.222280
\(929\) 28183.3 0.995334 0.497667 0.867368i \(-0.334190\pi\)
0.497667 + 0.867368i \(0.334190\pi\)
\(930\) −109985. −3.87802
\(931\) 871.229 0.0306696
\(932\) 32823.6 1.15362
\(933\) −35274.1 −1.23775
\(934\) 37692.7 1.32050
\(935\) 24837.2 0.868730
\(936\) 0 0
\(937\) −31323.9 −1.09211 −0.546055 0.837750i \(-0.683871\pi\)
−0.546055 + 0.837750i \(0.683871\pi\)
\(938\) 23702.3 0.825061
\(939\) −1557.49 −0.0541287
\(940\) −97845.8 −3.39508
\(941\) −36257.9 −1.25608 −0.628041 0.778181i \(-0.716143\pi\)
−0.628041 + 0.778181i \(0.716143\pi\)
\(942\) 30472.7 1.05399
\(943\) 36208.3 1.25038
\(944\) 4325.74 0.149143
\(945\) −73110.6 −2.51671
\(946\) 10668.7 0.366670
\(947\) 51372.2 1.76280 0.881401 0.472369i \(-0.156601\pi\)
0.881401 + 0.472369i \(0.156601\pi\)
\(948\) 21209.0 0.726621
\(949\) 0 0
\(950\) 5417.74 0.185026
\(951\) 28047.5 0.956363
\(952\) 118229. 4.02504
\(953\) −31677.7 −1.07675 −0.538374 0.842706i \(-0.680961\pi\)
−0.538374 + 0.842706i \(0.680961\pi\)
\(954\) 19738.7 0.669879
\(955\) −21877.4 −0.741293
\(956\) 96092.1 3.25088
\(957\) −4194.61 −0.141685
\(958\) −2300.97 −0.0776001
\(959\) −54903.7 −1.84873
\(960\) 28728.8 0.965853
\(961\) 30080.2 1.00971
\(962\) 0 0
\(963\) −8631.32 −0.288827
\(964\) 33912.6 1.13304
\(965\) 36329.7 1.21191
\(966\) −40900.5 −1.36227
\(967\) 5938.19 0.197476 0.0987381 0.995113i \(-0.468519\pi\)
0.0987381 + 0.995113i \(0.468519\pi\)
\(968\) 5356.11 0.177843
\(969\) 1932.35 0.0640620
\(970\) 80732.0 2.67232
\(971\) 55548.7 1.83588 0.917941 0.396717i \(-0.129851\pi\)
0.917941 + 0.396717i \(0.129851\pi\)
\(972\) −32294.5 −1.06569
\(973\) 11191.2 0.368727
\(974\) 43749.8 1.43926
\(975\) 0 0
\(976\) 28682.5 0.940679
\(977\) −12029.0 −0.393901 −0.196951 0.980413i \(-0.563104\pi\)
−0.196951 + 0.980413i \(0.563104\pi\)
\(978\) −63357.2 −2.07151
\(979\) −11359.4 −0.370837
\(980\) 76797.3 2.50326
\(981\) 2341.70 0.0762127
\(982\) 33072.9 1.07474
\(983\) 3362.61 0.109106 0.0545528 0.998511i \(-0.482627\pi\)
0.0545528 + 0.998511i \(0.482627\pi\)
\(984\) 93145.5 3.01765
\(985\) 54530.5 1.76395
\(986\) 47648.5 1.53898
\(987\) −30660.9 −0.988801
\(988\) 0 0
\(989\) 14958.5 0.480942
\(990\) 7760.19 0.249126
\(991\) 52987.7 1.69850 0.849248 0.527994i \(-0.177056\pi\)
0.849248 + 0.527994i \(0.177056\pi\)
\(992\) 18024.9 0.576906
\(993\) −17330.0 −0.553828
\(994\) −18088.6 −0.577198
\(995\) −15303.9 −0.487605
\(996\) −32747.6 −1.04182
\(997\) −44929.5 −1.42721 −0.713606 0.700547i \(-0.752939\pi\)
−0.713606 + 0.700547i \(0.752939\pi\)
\(998\) 2092.91 0.0663827
\(999\) −27415.2 −0.868247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.j.1.17 18
13.5 odd 4 143.4.b.a.12.3 36
13.8 odd 4 143.4.b.a.12.34 yes 36
13.12 even 2 1859.4.a.k.1.2 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.b.a.12.3 36 13.5 odd 4
143.4.b.a.12.34 yes 36 13.8 odd 4
1859.4.a.j.1.17 18 1.1 even 1 trivial
1859.4.a.k.1.2 18 13.12 even 2