Properties

Label 1872.4.a.e
Level 18721872
Weight 44
Character orbit 1872.a
Self dual yes
Analytic conductor 110.452110.452
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1872=243213 1872 = 2^{4} \cdot 3^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 110.451575531110.451575531
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q6q520q7+24q11+13q13+30q17+16q1972q2389q25+282q29164q31+120q35+110q37+126q41164q43204q47+57q49+738q53+1726q97+O(q100) q - 6 q^{5} - 20 q^{7} + 24 q^{11} + 13 q^{13} + 30 q^{17} + 16 q^{19} - 72 q^{23} - 89 q^{25} + 282 q^{29} - 164 q^{31} + 120 q^{35} + 110 q^{37} + 126 q^{41} - 164 q^{43} - 204 q^{47} + 57 q^{49} + 738 q^{53}+ \cdots - 1726 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 −6.00000 0 −20.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.4.a.e 1
3.b odd 2 1 624.4.a.i 1
4.b odd 2 1 234.4.a.b 1
12.b even 2 1 78.4.a.e 1
24.f even 2 1 2496.4.a.k 1
24.h odd 2 1 2496.4.a.b 1
60.h even 2 1 1950.4.a.c 1
156.h even 2 1 1014.4.a.b 1
156.l odd 4 2 1014.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.e 1 12.b even 2 1
234.4.a.b 1 4.b odd 2 1
624.4.a.i 1 3.b odd 2 1
1014.4.a.b 1 156.h even 2 1
1014.4.b.c 2 156.l odd 4 2
1872.4.a.e 1 1.a even 1 1 trivial
1950.4.a.c 1 60.h even 2 1
2496.4.a.b 1 24.h odd 2 1
2496.4.a.k 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1872))S_{4}^{\mathrm{new}}(\Gamma_0(1872)):

T5+6 T_{5} + 6 Copy content Toggle raw display
T7+20 T_{7} + 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+6 T + 6 Copy content Toggle raw display
77 T+20 T + 20 Copy content Toggle raw display
1111 T24 T - 24 Copy content Toggle raw display
1313 T13 T - 13 Copy content Toggle raw display
1717 T30 T - 30 Copy content Toggle raw display
1919 T16 T - 16 Copy content Toggle raw display
2323 T+72 T + 72 Copy content Toggle raw display
2929 T282 T - 282 Copy content Toggle raw display
3131 T+164 T + 164 Copy content Toggle raw display
3737 T110 T - 110 Copy content Toggle raw display
4141 T126 T - 126 Copy content Toggle raw display
4343 T+164 T + 164 Copy content Toggle raw display
4747 T+204 T + 204 Copy content Toggle raw display
5353 T738 T - 738 Copy content Toggle raw display
5959 T120 T - 120 Copy content Toggle raw display
6161 T614 T - 614 Copy content Toggle raw display
6767 T+848 T + 848 Copy content Toggle raw display
7171 T132 T - 132 Copy content Toggle raw display
7373 T218 T - 218 Copy content Toggle raw display
7979 T1096 T - 1096 Copy content Toggle raw display
8383 T552 T - 552 Copy content Toggle raw display
8989 T+210 T + 210 Copy content Toggle raw display
9797 T+1726 T + 1726 Copy content Toggle raw display
show more
show less