Properties

Label 1881.2.h.g.208.3
Level $1881$
Weight $2$
Character 1881.208
Analytic conductor $15.020$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(208,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.208");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 627)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.3
Character \(\chi\) \(=\) 1881.208
Dual form 1881.2.h.g.208.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.29042 q^{2} +3.24604 q^{4} -2.24604 q^{5} -2.78846i q^{7} -2.85397 q^{8} +5.14439 q^{10} +(3.31640 - 0.0382776i) q^{11} +6.74367 q^{13} +6.38676i q^{14} +0.0447120 q^{16} -6.10357i q^{17} +(-0.994366 - 4.24396i) q^{19} -7.29076 q^{20} +(-7.59597 + 0.0876720i) q^{22} +5.56652 q^{23} +0.0447120 q^{25} -15.4459 q^{26} -9.05147i q^{28} +3.42856 q^{29} +6.66253i q^{31} +5.60553 q^{32} +13.9798i q^{34} +6.26301i q^{35} -1.10091i q^{37} +(2.27752 + 9.72048i) q^{38} +6.41014 q^{40} -4.69431 q^{41} +7.61378i q^{43} +(10.7652 - 0.124251i) q^{44} -12.7497 q^{46} +5.34205 q^{47} -0.775527 q^{49} -0.102409 q^{50} +21.8902 q^{52} +11.4877i q^{53} +(-7.44879 + 0.0859732i) q^{55} +7.95819i q^{56} -7.85286 q^{58} -11.9423i q^{59} -9.96124i q^{61} -15.2600i q^{62} -12.9285 q^{64} -15.1466 q^{65} -6.39166i q^{67} -19.8124i q^{68} -14.3450i q^{70} +5.29076i q^{71} -2.27029i q^{73} +2.52154i q^{74} +(-3.22776 - 13.7761i) q^{76} +(-0.106736 - 9.24767i) q^{77} +7.84997 q^{79} -0.100425 q^{80} +10.7520 q^{82} +15.4616i q^{83} +13.7089i q^{85} -17.4388i q^{86} +(-9.46491 + 0.109243i) q^{88} +4.77843i q^{89} -18.8045i q^{91} +18.0692 q^{92} -12.2356 q^{94} +(2.23339 + 9.53213i) q^{95} +14.8414i q^{97} +1.77629 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 10 q^{11} - 16 q^{16} - 104 q^{20} + 20 q^{23} - 16 q^{25} + 32 q^{26} + 4 q^{38} + 36 q^{44} + 20 q^{47} - 24 q^{49} - 46 q^{55} + 60 q^{58} - 68 q^{64} + 22 q^{77} - 12 q^{80} + 56 q^{82}+ \cdots + 120 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1881\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(496\) \(1046\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.29042 −1.61957 −0.809787 0.586724i \(-0.800418\pi\)
−0.809787 + 0.586724i \(0.800418\pi\)
\(3\) 0 0
\(4\) 3.24604 1.62302
\(5\) −2.24604 −1.00446 −0.502231 0.864734i \(-0.667487\pi\)
−0.502231 + 0.864734i \(0.667487\pi\)
\(6\) 0 0
\(7\) 2.78846i 1.05394i −0.849884 0.526970i \(-0.823328\pi\)
0.849884 0.526970i \(-0.176672\pi\)
\(8\) −2.85397 −1.00903
\(9\) 0 0
\(10\) 5.14439 1.62680
\(11\) 3.31640 0.0382776i 0.999933 0.0115411i
\(12\) 0 0
\(13\) 6.74367 1.87036 0.935178 0.354177i \(-0.115239\pi\)
0.935178 + 0.354177i \(0.115239\pi\)
\(14\) 6.38676i 1.70693i
\(15\) 0 0
\(16\) 0.0447120 0.0111780
\(17\) 6.10357i 1.48033i −0.672424 0.740166i \(-0.734747\pi\)
0.672424 0.740166i \(-0.265253\pi\)
\(18\) 0 0
\(19\) −0.994366 4.24396i −0.228123 0.973632i
\(20\) −7.29076 −1.63026
\(21\) 0 0
\(22\) −7.59597 + 0.0876720i −1.61947 + 0.0186917i
\(23\) 5.56652 1.16070 0.580350 0.814367i \(-0.302916\pi\)
0.580350 + 0.814367i \(0.302916\pi\)
\(24\) 0 0
\(25\) 0.0447120 0.00894240
\(26\) −15.4459 −3.02918
\(27\) 0 0
\(28\) 9.05147i 1.71057i
\(29\) 3.42856 0.636668 0.318334 0.947979i \(-0.396877\pi\)
0.318334 + 0.947979i \(0.396877\pi\)
\(30\) 0 0
\(31\) 6.66253i 1.19663i 0.801262 + 0.598313i \(0.204162\pi\)
−0.801262 + 0.598313i \(0.795838\pi\)
\(32\) 5.60553 0.990927
\(33\) 0 0
\(34\) 13.9798i 2.39751i
\(35\) 6.26301i 1.05864i
\(36\) 0 0
\(37\) 1.10091i 0.180988i −0.995897 0.0904940i \(-0.971155\pi\)
0.995897 0.0904940i \(-0.0288446\pi\)
\(38\) 2.27752 + 9.72048i 0.369463 + 1.57687i
\(39\) 0 0
\(40\) 6.41014 1.01353
\(41\) −4.69431 −0.733128 −0.366564 0.930393i \(-0.619466\pi\)
−0.366564 + 0.930393i \(0.619466\pi\)
\(42\) 0 0
\(43\) 7.61378i 1.16109i 0.814228 + 0.580545i \(0.197161\pi\)
−0.814228 + 0.580545i \(0.802839\pi\)
\(44\) 10.7652 0.124251i 1.62291 0.0187315i
\(45\) 0 0
\(46\) −12.7497 −1.87984
\(47\) 5.34205 0.779218 0.389609 0.920980i \(-0.372610\pi\)
0.389609 + 0.920980i \(0.372610\pi\)
\(48\) 0 0
\(49\) −0.775527 −0.110790
\(50\) −0.102409 −0.0144829
\(51\) 0 0
\(52\) 21.8902 3.03563
\(53\) 11.4877i 1.57795i 0.614423 + 0.788976i \(0.289389\pi\)
−0.614423 + 0.788976i \(0.710611\pi\)
\(54\) 0 0
\(55\) −7.44879 + 0.0859732i −1.00439 + 0.0115926i
\(56\) 7.95819i 1.06346i
\(57\) 0 0
\(58\) −7.85286 −1.03113
\(59\) 11.9423i 1.55475i −0.629035 0.777377i \(-0.716550\pi\)
0.629035 0.777377i \(-0.283450\pi\)
\(60\) 0 0
\(61\) 9.96124i 1.27541i −0.770282 0.637703i \(-0.779885\pi\)
0.770282 0.637703i \(-0.220115\pi\)
\(62\) 15.2600i 1.93803i
\(63\) 0 0
\(64\) −12.9285 −1.61606
\(65\) −15.1466 −1.87870
\(66\) 0 0
\(67\) 6.39166i 0.780866i −0.920631 0.390433i \(-0.872325\pi\)
0.920631 0.390433i \(-0.127675\pi\)
\(68\) 19.8124i 2.40261i
\(69\) 0 0
\(70\) 14.3450i 1.71455i
\(71\) 5.29076i 0.627897i 0.949440 + 0.313949i \(0.101652\pi\)
−0.949440 + 0.313949i \(0.898348\pi\)
\(72\) 0 0
\(73\) 2.27029i 0.265718i −0.991135 0.132859i \(-0.957584\pi\)
0.991135 0.132859i \(-0.0424157\pi\)
\(74\) 2.52154i 0.293123i
\(75\) 0 0
\(76\) −3.22776 13.7761i −0.370249 1.58023i
\(77\) −0.106736 9.24767i −0.0121637 1.05387i
\(78\) 0 0
\(79\) 7.84997 0.883190 0.441595 0.897214i \(-0.354413\pi\)
0.441595 + 0.897214i \(0.354413\pi\)
\(80\) −0.100425 −0.0112279
\(81\) 0 0
\(82\) 10.7520 1.18736
\(83\) 15.4616i 1.69713i 0.529089 + 0.848566i \(0.322534\pi\)
−0.529089 + 0.848566i \(0.677466\pi\)
\(84\) 0 0
\(85\) 13.7089i 1.48694i
\(86\) 17.4388i 1.88047i
\(87\) 0 0
\(88\) −9.46491 + 0.109243i −1.00896 + 0.0116454i
\(89\) 4.77843i 0.506512i 0.967399 + 0.253256i \(0.0815015\pi\)
−0.967399 + 0.253256i \(0.918498\pi\)
\(90\) 0 0
\(91\) 18.8045i 1.97124i
\(92\) 18.0692 1.88384
\(93\) 0 0
\(94\) −12.2356 −1.26200
\(95\) 2.23339 + 9.53213i 0.229141 + 0.977976i
\(96\) 0 0
\(97\) 14.8414i 1.50691i 0.657497 + 0.753457i \(0.271615\pi\)
−0.657497 + 0.753457i \(0.728385\pi\)
\(98\) 1.77629 0.179432
\(99\) 0 0
\(100\) 0.145137 0.0145137
\(101\) 1.53119i 0.152359i −0.997094 0.0761795i \(-0.975728\pi\)
0.997094 0.0761795i \(-0.0242722\pi\)
\(102\) 0 0
\(103\) 7.21190i 0.710610i −0.934750 0.355305i \(-0.884377\pi\)
0.934750 0.355305i \(-0.115623\pi\)
\(104\) −19.2462 −1.88725
\(105\) 0 0
\(106\) 26.3116i 2.55561i
\(107\) −3.70799 −0.358465 −0.179232 0.983807i \(-0.557361\pi\)
−0.179232 + 0.983807i \(0.557361\pi\)
\(108\) 0 0
\(109\) 9.13650 0.875118 0.437559 0.899190i \(-0.355843\pi\)
0.437559 + 0.899190i \(0.355843\pi\)
\(110\) 17.0609 0.196915i 1.62669 0.0187751i
\(111\) 0 0
\(112\) 0.124678i 0.0117809i
\(113\) 17.5728i 1.65311i −0.562859 0.826553i \(-0.690299\pi\)
0.562859 0.826553i \(-0.309701\pi\)
\(114\) 0 0
\(115\) −12.5027 −1.16588
\(116\) 11.1293 1.03333
\(117\) 0 0
\(118\) 27.3529i 2.51804i
\(119\) −17.0196 −1.56018
\(120\) 0 0
\(121\) 10.9971 0.253888i 0.999734 0.0230807i
\(122\) 22.8155i 2.06562i
\(123\) 0 0
\(124\) 21.6269i 1.94215i
\(125\) 11.1298 0.995479
\(126\) 0 0
\(127\) −11.1998 −0.993825 −0.496912 0.867801i \(-0.665533\pi\)
−0.496912 + 0.867801i \(0.665533\pi\)
\(128\) 18.4006 1.62640
\(129\) 0 0
\(130\) 34.6921 3.04270
\(131\) 13.4846i 1.17815i −0.808077 0.589077i \(-0.799492\pi\)
0.808077 0.589077i \(-0.200508\pi\)
\(132\) 0 0
\(133\) −11.8341 + 2.77275i −1.02615 + 0.240428i
\(134\) 14.6396i 1.26467i
\(135\) 0 0
\(136\) 17.4194i 1.49370i
\(137\) 5.49582 0.469540 0.234770 0.972051i \(-0.424566\pi\)
0.234770 + 0.972051i \(0.424566\pi\)
\(138\) 0 0
\(139\) 5.91569i 0.501762i −0.968018 0.250881i \(-0.919280\pi\)
0.968018 0.250881i \(-0.0807203\pi\)
\(140\) 20.3300i 1.71820i
\(141\) 0 0
\(142\) 12.1181i 1.01693i
\(143\) 22.3647 0.258131i 1.87023 0.0215860i
\(144\) 0 0
\(145\) −7.70070 −0.639508
\(146\) 5.19994i 0.430350i
\(147\) 0 0
\(148\) 3.57359i 0.293747i
\(149\) 4.03938i 0.330919i 0.986217 + 0.165459i \(0.0529106\pi\)
−0.986217 + 0.165459i \(0.947089\pi\)
\(150\) 0 0
\(151\) −11.3133 −0.920663 −0.460332 0.887747i \(-0.652269\pi\)
−0.460332 + 0.887747i \(0.652269\pi\)
\(152\) 2.83789 + 12.1121i 0.230183 + 0.982424i
\(153\) 0 0
\(154\) 0.244470 + 21.1811i 0.0197000 + 1.70682i
\(155\) 14.9643i 1.20196i
\(156\) 0 0
\(157\) −19.3141 −1.54143 −0.770715 0.637180i \(-0.780101\pi\)
−0.770715 + 0.637180i \(0.780101\pi\)
\(158\) −17.9798 −1.43039
\(159\) 0 0
\(160\) −12.5903 −0.995347
\(161\) 15.5220i 1.22331i
\(162\) 0 0
\(163\) 20.5468 1.60935 0.804673 0.593718i \(-0.202340\pi\)
0.804673 + 0.593718i \(0.202340\pi\)
\(164\) −15.2379 −1.18988
\(165\) 0 0
\(166\) 35.4137i 2.74863i
\(167\) −7.67550 −0.593948 −0.296974 0.954886i \(-0.595978\pi\)
−0.296974 + 0.954886i \(0.595978\pi\)
\(168\) 0 0
\(169\) 32.4770 2.49823
\(170\) 31.3991i 2.40820i
\(171\) 0 0
\(172\) 24.7147i 1.88448i
\(173\) −7.53723 −0.573045 −0.286522 0.958074i \(-0.592499\pi\)
−0.286522 + 0.958074i \(0.592499\pi\)
\(174\) 0 0
\(175\) 0.124678i 0.00942475i
\(176\) 0.148283 0.00171147i 0.0111773 0.000129007i
\(177\) 0 0
\(178\) 10.9446i 0.820334i
\(179\) 19.6996i 1.47242i −0.676753 0.736210i \(-0.736613\pi\)
0.676753 0.736210i \(-0.263387\pi\)
\(180\) 0 0
\(181\) 12.1898i 0.906064i −0.891494 0.453032i \(-0.850342\pi\)
0.891494 0.453032i \(-0.149658\pi\)
\(182\) 43.0702i 3.19258i
\(183\) 0 0
\(184\) −15.8867 −1.17118
\(185\) 2.47268i 0.181795i
\(186\) 0 0
\(187\) −0.233630 20.2419i −0.0170847 1.48023i
\(188\) 17.3405 1.26469
\(189\) 0 0
\(190\) −5.11541 21.8326i −0.371111 1.58390i
\(191\) 2.09150 0.151335 0.0756677 0.997133i \(-0.475891\pi\)
0.0756677 + 0.997133i \(0.475891\pi\)
\(192\) 0 0
\(193\) 10.9658 0.789335 0.394667 0.918824i \(-0.370860\pi\)
0.394667 + 0.918824i \(0.370860\pi\)
\(194\) 33.9931i 2.44056i
\(195\) 0 0
\(196\) −2.51740 −0.179814
\(197\) 7.66190i 0.545888i −0.962030 0.272944i \(-0.912003\pi\)
0.962030 0.272944i \(-0.0879974\pi\)
\(198\) 0 0
\(199\) 14.7703 1.04704 0.523518 0.852014i \(-0.324619\pi\)
0.523518 + 0.852014i \(0.324619\pi\)
\(200\) −0.127607 −0.00902315
\(201\) 0 0
\(202\) 3.50707i 0.246757i
\(203\) 9.56042i 0.671010i
\(204\) 0 0
\(205\) 10.5436 0.736398
\(206\) 16.5183i 1.15089i
\(207\) 0 0
\(208\) 0.301523 0.0209068
\(209\) −3.46017 14.0366i −0.239345 0.970935i
\(210\) 0 0
\(211\) 3.83576 0.264065 0.132032 0.991245i \(-0.457850\pi\)
0.132032 + 0.991245i \(0.457850\pi\)
\(212\) 37.2895i 2.56105i
\(213\) 0 0
\(214\) 8.49286 0.580560
\(215\) 17.1009i 1.16627i
\(216\) 0 0
\(217\) 18.5782 1.26117
\(218\) −20.9265 −1.41732
\(219\) 0 0
\(220\) −24.1791 + 0.279073i −1.63015 + 0.0188151i
\(221\) 41.1604i 2.76875i
\(222\) 0 0
\(223\) 6.51940i 0.436571i 0.975885 + 0.218285i \(0.0700464\pi\)
−0.975885 + 0.218285i \(0.929954\pi\)
\(224\) 15.6308i 1.04438i
\(225\) 0 0
\(226\) 40.2491i 2.67733i
\(227\) −27.5168 −1.82635 −0.913176 0.407566i \(-0.866378\pi\)
−0.913176 + 0.407566i \(0.866378\pi\)
\(228\) 0 0
\(229\) −5.10277 −0.337200 −0.168600 0.985685i \(-0.553925\pi\)
−0.168600 + 0.985685i \(0.553925\pi\)
\(230\) 28.6364 1.88823
\(231\) 0 0
\(232\) −9.78501 −0.642417
\(233\) 2.48713i 0.162937i −0.996676 0.0814686i \(-0.974039\pi\)
0.996676 0.0814686i \(-0.0259610\pi\)
\(234\) 0 0
\(235\) −11.9985 −0.782695
\(236\) 38.7652i 2.52340i
\(237\) 0 0
\(238\) 38.9820 2.52683
\(239\) 9.51458i 0.615447i 0.951476 + 0.307723i \(0.0995672\pi\)
−0.951476 + 0.307723i \(0.900433\pi\)
\(240\) 0 0
\(241\) 12.4989 0.805125 0.402562 0.915393i \(-0.368120\pi\)
0.402562 + 0.915393i \(0.368120\pi\)
\(242\) −25.1880 + 0.581511i −1.61914 + 0.0373810i
\(243\) 0 0
\(244\) 32.3346i 2.07001i
\(245\) 1.74187 0.111284
\(246\) 0 0
\(247\) −6.70568 28.6199i −0.426672 1.82104i
\(248\) 19.0147i 1.20743i
\(249\) 0 0
\(250\) −25.4919 −1.61225
\(251\) −11.3958 −0.719294 −0.359647 0.933088i \(-0.617103\pi\)
−0.359647 + 0.933088i \(0.617103\pi\)
\(252\) 0 0
\(253\) 18.4608 0.213073i 1.16062 0.0133958i
\(254\) 25.6524 1.60957
\(255\) 0 0
\(256\) −16.2883 −1.01802
\(257\) 15.1013i 0.941992i −0.882135 0.470996i \(-0.843895\pi\)
0.882135 0.470996i \(-0.156105\pi\)
\(258\) 0 0
\(259\) −3.06984 −0.190750
\(260\) −49.1664 −3.04917
\(261\) 0 0
\(262\) 30.8854i 1.90811i
\(263\) 16.7210i 1.03106i 0.856871 + 0.515530i \(0.172405\pi\)
−0.856871 + 0.515530i \(0.827595\pi\)
\(264\) 0 0
\(265\) 25.8018i 1.58499i
\(266\) 27.1052 6.35078i 1.66193 0.389392i
\(267\) 0 0
\(268\) 20.7476i 1.26736i
\(269\) 3.18586i 0.194246i −0.995272 0.0971228i \(-0.969036\pi\)
0.995272 0.0971228i \(-0.0309639\pi\)
\(270\) 0 0
\(271\) 31.9237i 1.93922i −0.244646 0.969612i \(-0.578672\pi\)
0.244646 0.969612i \(-0.421328\pi\)
\(272\) 0.272903i 0.0165472i
\(273\) 0 0
\(274\) −12.5878 −0.760455
\(275\) 0.148283 0.00171147i 0.00894180 0.000103205i
\(276\) 0 0
\(277\) 9.26180i 0.556488i −0.960510 0.278244i \(-0.910248\pi\)
0.960510 0.278244i \(-0.0897523\pi\)
\(278\) 13.5494i 0.812642i
\(279\) 0 0
\(280\) 17.8744i 1.06820i
\(281\) 6.24478 0.372533 0.186266 0.982499i \(-0.440361\pi\)
0.186266 + 0.982499i \(0.440361\pi\)
\(282\) 0 0
\(283\) 13.5842i 0.807497i 0.914870 + 0.403748i \(0.132293\pi\)
−0.914870 + 0.403748i \(0.867707\pi\)
\(284\) 17.1740i 1.01909i
\(285\) 0 0
\(286\) −51.2247 + 0.591230i −3.02898 + 0.0349602i
\(287\) 13.0899i 0.772673i
\(288\) 0 0
\(289\) −20.2535 −1.19138
\(290\) 17.6379 1.03573
\(291\) 0 0
\(292\) 7.36947i 0.431266i
\(293\) 16.8099 0.982045 0.491022 0.871147i \(-0.336623\pi\)
0.491022 + 0.871147i \(0.336623\pi\)
\(294\) 0 0
\(295\) 26.8229i 1.56169i
\(296\) 3.14195i 0.182622i
\(297\) 0 0
\(298\) 9.25188i 0.535947i
\(299\) 37.5388 2.17092
\(300\) 0 0
\(301\) 21.2308 1.22372
\(302\) 25.9122 1.49108
\(303\) 0 0
\(304\) −0.0444601 0.189756i −0.00254996 0.0108833i
\(305\) 22.3734i 1.28110i
\(306\) 0 0
\(307\) −3.49914 −0.199706 −0.0998531 0.995002i \(-0.531837\pi\)
−0.0998531 + 0.995002i \(0.531837\pi\)
\(308\) −0.346469 30.0183i −0.0197419 1.71045i
\(309\) 0 0
\(310\) 34.2747i 1.94667i
\(311\) 17.5166 0.993273 0.496636 0.867959i \(-0.334568\pi\)
0.496636 + 0.867959i \(0.334568\pi\)
\(312\) 0 0
\(313\) 9.66162 0.546107 0.273054 0.961999i \(-0.411966\pi\)
0.273054 + 0.961999i \(0.411966\pi\)
\(314\) 44.2374 2.49646
\(315\) 0 0
\(316\) 25.4813 1.43344
\(317\) 10.6406i 0.597633i 0.954311 + 0.298816i \(0.0965918\pi\)
−0.954311 + 0.298816i \(0.903408\pi\)
\(318\) 0 0
\(319\) 11.3705 0.131237i 0.636626 0.00734787i
\(320\) 29.0379 1.62327
\(321\) 0 0
\(322\) 35.5521i 1.98124i
\(323\) −25.9033 + 6.06918i −1.44130 + 0.337698i
\(324\) 0 0
\(325\) 0.301523 0.0167255
\(326\) −47.0608 −2.60646
\(327\) 0 0
\(328\) 13.3974 0.739748
\(329\) 14.8961i 0.821249i
\(330\) 0 0
\(331\) 8.17528i 0.449354i 0.974433 + 0.224677i \(0.0721327\pi\)
−0.974433 + 0.224677i \(0.927867\pi\)
\(332\) 50.1891i 2.75448i
\(333\) 0 0
\(334\) 17.5802 0.961944
\(335\) 14.3560i 0.784349i
\(336\) 0 0
\(337\) −8.84553 −0.481847 −0.240923 0.970544i \(-0.577450\pi\)
−0.240923 + 0.970544i \(0.577450\pi\)
\(338\) −74.3862 −4.04608
\(339\) 0 0
\(340\) 44.4996i 2.41333i
\(341\) 0.255026 + 22.0957i 0.0138104 + 1.19655i
\(342\) 0 0
\(343\) 17.3567i 0.937174i
\(344\) 21.7295i 1.17158i
\(345\) 0 0
\(346\) 17.2634 0.928089
\(347\) 9.42824i 0.506134i −0.967449 0.253067i \(-0.918561\pi\)
0.967449 0.253067i \(-0.0814394\pi\)
\(348\) 0 0
\(349\) 0.0334811i 0.00179220i 1.00000 0.000896102i \(0.000285238\pi\)
−1.00000 0.000896102i \(0.999715\pi\)
\(350\) 0.285565i 0.0152641i
\(351\) 0 0
\(352\) 18.5902 0.214566i 0.990861 0.0114364i
\(353\) −24.6956 −1.31442 −0.657208 0.753709i \(-0.728263\pi\)
−0.657208 + 0.753709i \(0.728263\pi\)
\(354\) 0 0
\(355\) 11.8833i 0.630698i
\(356\) 15.5110i 0.822080i
\(357\) 0 0
\(358\) 45.1205i 2.38470i
\(359\) 34.3641i 1.81367i −0.421488 0.906834i \(-0.638492\pi\)
0.421488 0.906834i \(-0.361508\pi\)
\(360\) 0 0
\(361\) −17.0225 + 8.44011i −0.895920 + 0.444216i
\(362\) 27.9199i 1.46744i
\(363\) 0 0
\(364\) 61.0401i 3.19937i
\(365\) 5.09918i 0.266903i
\(366\) 0 0
\(367\) −10.6023 −0.553436 −0.276718 0.960951i \(-0.589247\pi\)
−0.276718 + 0.960951i \(0.589247\pi\)
\(368\) 0.248890 0.0129743
\(369\) 0 0
\(370\) 5.66350i 0.294431i
\(371\) 32.0329 1.66307
\(372\) 0 0
\(373\) −15.7101 −0.813439 −0.406719 0.913553i \(-0.633327\pi\)
−0.406719 + 0.913553i \(0.633327\pi\)
\(374\) 0.535112 + 46.3625i 0.0276700 + 2.39735i
\(375\) 0 0
\(376\) −15.2460 −0.786255
\(377\) 23.1211 1.19080
\(378\) 0 0
\(379\) 14.6023i 0.750070i 0.927011 + 0.375035i \(0.122369\pi\)
−0.927011 + 0.375035i \(0.877631\pi\)
\(380\) 7.24968 + 30.9417i 0.371901 + 1.58728i
\(381\) 0 0
\(382\) −4.79042 −0.245099
\(383\) 5.90623i 0.301794i −0.988549 0.150897i \(-0.951784\pi\)
0.988549 0.150897i \(-0.0482162\pi\)
\(384\) 0 0
\(385\) 0.239733 + 20.7707i 0.0122179 + 1.05857i
\(386\) −25.1163 −1.27839
\(387\) 0 0
\(388\) 48.1758i 2.44575i
\(389\) −10.5114 −0.532947 −0.266474 0.963842i \(-0.585859\pi\)
−0.266474 + 0.963842i \(0.585859\pi\)
\(390\) 0 0
\(391\) 33.9757i 1.71822i
\(392\) 2.21333 0.111790
\(393\) 0 0
\(394\) 17.5490i 0.884106i
\(395\) −17.6314 −0.887131
\(396\) 0 0
\(397\) 3.57328 0.179338 0.0896690 0.995972i \(-0.471419\pi\)
0.0896690 + 0.995972i \(0.471419\pi\)
\(398\) −33.8302 −1.69575
\(399\) 0 0
\(400\) 0.00199916 9.99582e−5
\(401\) 7.63438i 0.381243i 0.981664 + 0.190621i \(0.0610503\pi\)
−0.981664 + 0.190621i \(0.938950\pi\)
\(402\) 0 0
\(403\) 44.9299i 2.23812i
\(404\) 4.97031i 0.247282i
\(405\) 0 0
\(406\) 21.8974i 1.08675i
\(407\) −0.0421401 3.65105i −0.00208881 0.180976i
\(408\) 0 0
\(409\) −6.26937 −0.310000 −0.155000 0.987914i \(-0.549538\pi\)
−0.155000 + 0.987914i \(0.549538\pi\)
\(410\) −24.1494 −1.19265
\(411\) 0 0
\(412\) 23.4101i 1.15334i
\(413\) −33.3006 −1.63862
\(414\) 0 0
\(415\) 34.7275i 1.70470i
\(416\) 37.8018 1.85339
\(417\) 0 0
\(418\) 7.92526 + 32.1499i 0.387637 + 1.57250i
\(419\) −34.3573 −1.67846 −0.839232 0.543774i \(-0.816995\pi\)
−0.839232 + 0.543774i \(0.816995\pi\)
\(420\) 0 0
\(421\) 23.3758i 1.13927i 0.821898 + 0.569634i \(0.192915\pi\)
−0.821898 + 0.569634i \(0.807085\pi\)
\(422\) −8.78552 −0.427672
\(423\) 0 0
\(424\) 32.7855i 1.59220i
\(425\) 0.272903i 0.0132377i
\(426\) 0 0
\(427\) −27.7766 −1.34420
\(428\) −12.0363 −0.581796
\(429\) 0 0
\(430\) 39.1683i 1.88886i
\(431\) 0.830910 0.0400235 0.0200118 0.999800i \(-0.493630\pi\)
0.0200118 + 0.999800i \(0.493630\pi\)
\(432\) 0 0
\(433\) 16.4190i 0.789048i 0.918886 + 0.394524i \(0.129091\pi\)
−0.918886 + 0.394524i \(0.870909\pi\)
\(434\) −42.5520 −2.04256
\(435\) 0 0
\(436\) 29.6575 1.42034
\(437\) −5.53517 23.6241i −0.264783 1.13010i
\(438\) 0 0
\(439\) −11.0019 −0.525091 −0.262545 0.964920i \(-0.584562\pi\)
−0.262545 + 0.964920i \(0.584562\pi\)
\(440\) 21.2586 0.245365i 1.01346 0.0116973i
\(441\) 0 0
\(442\) 94.2748i 4.48420i
\(443\) 12.7663 0.606547 0.303274 0.952904i \(-0.401920\pi\)
0.303274 + 0.952904i \(0.401920\pi\)
\(444\) 0 0
\(445\) 10.7326i 0.508772i
\(446\) 14.9322i 0.707059i
\(447\) 0 0
\(448\) 36.0505i 1.70323i
\(449\) 14.1682i 0.668639i 0.942460 + 0.334320i \(0.108507\pi\)
−0.942460 + 0.334320i \(0.891493\pi\)
\(450\) 0 0
\(451\) −15.5682 + 0.179687i −0.733079 + 0.00846112i
\(452\) 57.0419i 2.68303i
\(453\) 0 0
\(454\) 63.0251 2.95791
\(455\) 42.2357i 1.98004i
\(456\) 0 0
\(457\) 2.00949i 0.0940000i −0.998895 0.0470000i \(-0.985034\pi\)
0.998895 0.0470000i \(-0.0149661\pi\)
\(458\) 11.6875 0.546121
\(459\) 0 0
\(460\) −40.5842 −1.89225
\(461\) 12.8744i 0.599618i −0.953999 0.299809i \(-0.903077\pi\)
0.953999 0.299809i \(-0.0969230\pi\)
\(462\) 0 0
\(463\) 40.1121 1.86417 0.932085 0.362241i \(-0.117988\pi\)
0.932085 + 0.362241i \(0.117988\pi\)
\(464\) 0.153298 0.00711668
\(465\) 0 0
\(466\) 5.69658i 0.263889i
\(467\) 37.6605 1.74272 0.871359 0.490645i \(-0.163239\pi\)
0.871359 + 0.490645i \(0.163239\pi\)
\(468\) 0 0
\(469\) −17.8229 −0.822986
\(470\) 27.4816 1.26763
\(471\) 0 0
\(472\) 34.0829i 1.56879i
\(473\) 0.291437 + 25.2504i 0.0134003 + 1.16101i
\(474\) 0 0
\(475\) −0.0444601 0.189756i −0.00203997 0.00870661i
\(476\) −55.2463 −2.53221
\(477\) 0 0
\(478\) 21.7924i 0.996762i
\(479\) 14.1961i 0.648638i −0.945948 0.324319i \(-0.894865\pi\)
0.945948 0.324319i \(-0.105135\pi\)
\(480\) 0 0
\(481\) 7.42415i 0.338512i
\(482\) −28.6278 −1.30396
\(483\) 0 0
\(484\) 35.6970 0.824132i 1.62259 0.0374605i
\(485\) 33.3344i 1.51364i
\(486\) 0 0
\(487\) 10.8842i 0.493209i −0.969116 0.246605i \(-0.920685\pi\)
0.969116 0.246605i \(-0.0793149\pi\)
\(488\) 28.4291i 1.28692i
\(489\) 0 0
\(490\) −3.98962 −0.180233
\(491\) 16.6282i 0.750418i 0.926940 + 0.375209i \(0.122429\pi\)
−0.926940 + 0.375209i \(0.877571\pi\)
\(492\) 0 0
\(493\) 20.9265i 0.942480i
\(494\) 15.3588 + 65.5517i 0.691027 + 2.94931i
\(495\) 0 0
\(496\) 0.297895i 0.0133759i
\(497\) 14.7531 0.661766
\(498\) 0 0
\(499\) −6.85347 −0.306803 −0.153402 0.988164i \(-0.549023\pi\)
−0.153402 + 0.988164i \(0.549023\pi\)
\(500\) 36.1278 1.61568
\(501\) 0 0
\(502\) 26.1011 1.16495
\(503\) 21.7210i 0.968493i 0.874932 + 0.484247i \(0.160906\pi\)
−0.874932 + 0.484247i \(0.839094\pi\)
\(504\) 0 0
\(505\) 3.43912i 0.153039i
\(506\) −42.2832 + 0.488028i −1.87972 + 0.0216955i
\(507\) 0 0
\(508\) −36.3552 −1.61300
\(509\) 11.6075i 0.514493i 0.966346 + 0.257247i \(0.0828153\pi\)
−0.966346 + 0.257247i \(0.917185\pi\)
\(510\) 0 0
\(511\) −6.33063 −0.280051
\(512\) 0.505848 0.0223555
\(513\) 0 0
\(514\) 34.5883i 1.52563i
\(515\) 16.1982i 0.713780i
\(516\) 0 0
\(517\) 17.7164 0.204481i 0.779166 0.00899306i
\(518\) 7.03123 0.308935
\(519\) 0 0
\(520\) 43.2278 1.89567
\(521\) 3.15874i 0.138387i 0.997603 + 0.0691936i \(0.0220426\pi\)
−0.997603 + 0.0691936i \(0.977957\pi\)
\(522\) 0 0
\(523\) 1.71142 0.0748352 0.0374176 0.999300i \(-0.488087\pi\)
0.0374176 + 0.999300i \(0.488087\pi\)
\(524\) 43.7716i 1.91217i
\(525\) 0 0
\(526\) 38.2982i 1.66988i
\(527\) 40.6652 1.77140
\(528\) 0 0
\(529\) 7.98620 0.347226
\(530\) 59.0971i 2.56701i
\(531\) 0 0
\(532\) −38.4141 + 9.00048i −1.66546 + 0.390220i
\(533\) −31.6568 −1.37121
\(534\) 0 0
\(535\) 8.32830 0.360064
\(536\) 18.2416i 0.787917i
\(537\) 0 0
\(538\) 7.29698i 0.314595i
\(539\) −2.57196 + 0.0296853i −0.110782 + 0.00127864i
\(540\) 0 0
\(541\) 3.60070i 0.154806i 0.997000 + 0.0774030i \(0.0246628\pi\)
−0.997000 + 0.0774030i \(0.975337\pi\)
\(542\) 73.1188i 3.14072i
\(543\) 0 0
\(544\) 34.2137i 1.46690i
\(545\) −20.5210 −0.879022
\(546\) 0 0
\(547\) −16.1074 −0.688701 −0.344351 0.938841i \(-0.611901\pi\)
−0.344351 + 0.938841i \(0.611901\pi\)
\(548\) 17.8397 0.762074
\(549\) 0 0
\(550\) −0.339631 + 0.00391999i −0.0144819 + 0.000167149i
\(551\) −3.40925 14.5507i −0.145239 0.619881i
\(552\) 0 0
\(553\) 21.8893i 0.930830i
\(554\) 21.2135i 0.901273i
\(555\) 0 0
\(556\) 19.2026i 0.814371i
\(557\) 16.4237i 0.695897i 0.937514 + 0.347948i \(0.113122\pi\)
−0.937514 + 0.347948i \(0.886878\pi\)
\(558\) 0 0
\(559\) 51.3448i 2.17165i
\(560\) 0.280032i 0.0118335i
\(561\) 0 0
\(562\) −14.3032 −0.603344
\(563\) −22.1550 −0.933723 −0.466861 0.884331i \(-0.654615\pi\)
−0.466861 + 0.884331i \(0.654615\pi\)
\(564\) 0 0
\(565\) 39.4692i 1.66048i
\(566\) 31.1136i 1.30780i
\(567\) 0 0
\(568\) 15.0997i 0.633567i
\(569\) 16.1998 0.679131 0.339566 0.940582i \(-0.389720\pi\)
0.339566 + 0.940582i \(0.389720\pi\)
\(570\) 0 0
\(571\) 29.8989i 1.25123i −0.780132 0.625615i \(-0.784848\pi\)
0.780132 0.625615i \(-0.215152\pi\)
\(572\) 72.5969 0.837906i 3.03543 0.0350346i
\(573\) 0 0
\(574\) 29.9814i 1.25140i
\(575\) 0.248890 0.0103794
\(576\) 0 0
\(577\) −13.7060 −0.570590 −0.285295 0.958440i \(-0.592092\pi\)
−0.285295 + 0.958440i \(0.592092\pi\)
\(578\) 46.3892 1.92954
\(579\) 0 0
\(580\) −24.9968 −1.03794
\(581\) 43.1141 1.78868
\(582\) 0 0
\(583\) 0.439721 + 38.0978i 0.0182114 + 1.57785i
\(584\) 6.47935i 0.268117i
\(585\) 0 0
\(586\) −38.5018 −1.59049
\(587\) −20.5883 −0.849769 −0.424884 0.905248i \(-0.639685\pi\)
−0.424884 + 0.905248i \(0.639685\pi\)
\(588\) 0 0
\(589\) 28.2756 6.62500i 1.16507 0.272978i
\(590\) 61.4358i 2.52927i
\(591\) 0 0
\(592\) 0.0492237i 0.00202308i
\(593\) 15.0049i 0.616176i 0.951358 + 0.308088i \(0.0996891\pi\)
−0.951358 + 0.308088i \(0.900311\pi\)
\(594\) 0 0
\(595\) 38.2267 1.56714
\(596\) 13.1120i 0.537088i
\(597\) 0 0
\(598\) −85.9797 −3.51597
\(599\) 23.3878i 0.955600i 0.878469 + 0.477800i \(0.158566\pi\)
−0.878469 + 0.477800i \(0.841434\pi\)
\(600\) 0 0
\(601\) −15.3685 −0.626895 −0.313447 0.949606i \(-0.601484\pi\)
−0.313447 + 0.949606i \(0.601484\pi\)
\(602\) −48.6274 −1.98191
\(603\) 0 0
\(604\) −36.7235 −1.49426
\(605\) −24.6999 + 0.570244i −1.00419 + 0.0231837i
\(606\) 0 0
\(607\) −35.3215 −1.43366 −0.716829 0.697249i \(-0.754407\pi\)
−0.716829 + 0.697249i \(0.754407\pi\)
\(608\) −5.57395 23.7897i −0.226053 0.964798i
\(609\) 0 0
\(610\) 51.2445i 2.07483i
\(611\) 36.0250 1.45742
\(612\) 0 0
\(613\) 0.965128i 0.0389812i −0.999810 0.0194906i \(-0.993796\pi\)
0.999810 0.0194906i \(-0.00620444\pi\)
\(614\) 8.01451 0.323439
\(615\) 0 0
\(616\) 0.304620 + 26.3926i 0.0122735 + 1.06339i
\(617\) 2.95486 0.118958 0.0594791 0.998230i \(-0.481056\pi\)
0.0594791 + 0.998230i \(0.481056\pi\)
\(618\) 0 0
\(619\) −30.5865 −1.22938 −0.614688 0.788770i \(-0.710718\pi\)
−0.614688 + 0.788770i \(0.710718\pi\)
\(620\) 48.5749i 1.95081i
\(621\) 0 0
\(622\) −40.1203 −1.60868
\(623\) 13.3245 0.533833
\(624\) 0 0
\(625\) −25.2216 −1.00886
\(626\) −22.1292 −0.884461
\(627\) 0 0
\(628\) −62.6943 −2.50177
\(629\) −6.71946 −0.267922
\(630\) 0 0
\(631\) −23.0028 −0.915728 −0.457864 0.889022i \(-0.651385\pi\)
−0.457864 + 0.889022i \(0.651385\pi\)
\(632\) −22.4036 −0.891166
\(633\) 0 0
\(634\) 24.3714i 0.967911i
\(635\) 25.1553 0.998259
\(636\) 0 0
\(637\) −5.22990 −0.207216
\(638\) −26.0433 + 0.300589i −1.03106 + 0.0119004i
\(639\) 0 0
\(640\) −41.3286 −1.63366
\(641\) 30.2737i 1.19574i 0.801594 + 0.597869i \(0.203986\pi\)
−0.801594 + 0.597869i \(0.796014\pi\)
\(642\) 0 0
\(643\) 35.7411 1.40949 0.704746 0.709460i \(-0.251061\pi\)
0.704746 + 0.709460i \(0.251061\pi\)
\(644\) 50.3853i 1.98546i
\(645\) 0 0
\(646\) 59.3296 13.9010i 2.33429 0.546928i
\(647\) 20.8668 0.820357 0.410179 0.912005i \(-0.365466\pi\)
0.410179 + 0.912005i \(0.365466\pi\)
\(648\) 0 0
\(649\) −0.457122 39.6054i −0.0179436 1.55465i
\(650\) −0.690615 −0.0270882
\(651\) 0 0
\(652\) 66.6957 2.61200
\(653\) 41.7945 1.63554 0.817772 0.575542i \(-0.195209\pi\)
0.817772 + 0.575542i \(0.195209\pi\)
\(654\) 0 0
\(655\) 30.2870i 1.18341i
\(656\) −0.209892 −0.00819490
\(657\) 0 0
\(658\) 34.1184i 1.33007i
\(659\) −7.91237 −0.308222 −0.154111 0.988054i \(-0.549251\pi\)
−0.154111 + 0.988054i \(0.549251\pi\)
\(660\) 0 0
\(661\) 7.10506i 0.276355i 0.990407 + 0.138177i \(0.0441244\pi\)
−0.990407 + 0.138177i \(0.955876\pi\)
\(662\) 18.7249i 0.727762i
\(663\) 0 0
\(664\) 44.1270i 1.71246i
\(665\) 26.5800 6.22773i 1.03073 0.241501i
\(666\) 0 0
\(667\) 19.0852 0.738981
\(668\) −24.9150 −0.963991
\(669\) 0 0
\(670\) 32.8812i 1.27031i
\(671\) −0.381292 33.0355i −0.0147196 1.27532i
\(672\) 0 0
\(673\) 13.0813 0.504247 0.252124 0.967695i \(-0.418871\pi\)
0.252124 + 0.967695i \(0.418871\pi\)
\(674\) 20.2600 0.780387
\(675\) 0 0
\(676\) 105.422 4.05469
\(677\) −36.6921 −1.41019 −0.705096 0.709112i \(-0.749096\pi\)
−0.705096 + 0.709112i \(0.749096\pi\)
\(678\) 0 0
\(679\) 41.3846 1.58820
\(680\) 39.1247i 1.50036i
\(681\) 0 0
\(682\) −0.584117 50.6084i −0.0223670 1.93790i
\(683\) 20.4401i 0.782117i 0.920366 + 0.391059i \(0.127891\pi\)
−0.920366 + 0.391059i \(0.872109\pi\)
\(684\) 0 0
\(685\) −12.3439 −0.471635
\(686\) 39.7542i 1.51782i
\(687\) 0 0
\(688\) 0.340427i 0.0129787i
\(689\) 77.4690i 2.95133i
\(690\) 0 0
\(691\) −39.1289 −1.48853 −0.744267 0.667882i \(-0.767201\pi\)
−0.744267 + 0.667882i \(0.767201\pi\)
\(692\) −24.4662 −0.930064
\(693\) 0 0
\(694\) 21.5947i 0.819722i
\(695\) 13.2869i 0.504001i
\(696\) 0 0
\(697\) 28.6520i 1.08527i
\(698\) 0.0766860i 0.00290261i
\(699\) 0 0
\(700\) 0.404710i 0.0152966i
\(701\) 6.91306i 0.261103i 0.991442 + 0.130551i \(0.0416747\pi\)
−0.991442 + 0.130551i \(0.958325\pi\)
\(702\) 0 0
\(703\) −4.67221 + 1.09470i −0.176216 + 0.0412876i
\(704\) −42.8760 + 0.494871i −1.61595 + 0.0186511i
\(705\) 0 0
\(706\) 56.5635 2.12880
\(707\) −4.26967 −0.160577
\(708\) 0 0
\(709\) −16.4432 −0.617537 −0.308769 0.951137i \(-0.599917\pi\)
−0.308769 + 0.951137i \(0.599917\pi\)
\(710\) 27.2177i 1.02146i
\(711\) 0 0
\(712\) 13.6375i 0.511086i
\(713\) 37.0872i 1.38892i
\(714\) 0 0
\(715\) −50.2321 + 0.579774i −1.87858 + 0.0216823i
\(716\) 63.9459i 2.38977i
\(717\) 0 0
\(718\) 78.7084i 2.93737i
\(719\) 19.9186 0.742840 0.371420 0.928465i \(-0.378871\pi\)
0.371420 + 0.928465i \(0.378871\pi\)
\(720\) 0 0
\(721\) −20.1101 −0.748940
\(722\) 38.9887 19.3314i 1.45101 0.719442i
\(723\) 0 0
\(724\) 39.5688i 1.47056i
\(725\) 0.153298 0.00569334
\(726\) 0 0
\(727\) −14.7932 −0.548651 −0.274325 0.961637i \(-0.588455\pi\)
−0.274325 + 0.961637i \(0.588455\pi\)
\(728\) 53.6674i 1.98904i
\(729\) 0 0
\(730\) 11.6793i 0.432270i
\(731\) 46.4712 1.71880
\(732\) 0 0
\(733\) 30.0355i 1.10939i 0.832054 + 0.554694i \(0.187165\pi\)
−0.832054 + 0.554694i \(0.812835\pi\)
\(734\) 24.2838 0.896331
\(735\) 0 0
\(736\) 31.2033 1.15017
\(737\) −0.244658 21.1973i −0.00901208 0.780814i
\(738\) 0 0
\(739\) 15.0629i 0.554099i −0.960856 0.277049i \(-0.910643\pi\)
0.960856 0.277049i \(-0.0893566\pi\)
\(740\) 8.02644i 0.295058i
\(741\) 0 0
\(742\) −73.3690 −2.69346
\(743\) −9.37768 −0.344034 −0.172017 0.985094i \(-0.555028\pi\)
−0.172017 + 0.985094i \(0.555028\pi\)
\(744\) 0 0
\(745\) 9.07261i 0.332395i
\(746\) 35.9828 1.31742
\(747\) 0 0
\(748\) −0.758373 65.7061i −0.0277289 2.40245i
\(749\) 10.3396i 0.377800i
\(750\) 0 0
\(751\) 29.9856i 1.09419i −0.837071 0.547095i \(-0.815734\pi\)
0.837071 0.547095i \(-0.184266\pi\)
\(752\) 0.238854 0.00871010
\(753\) 0 0
\(754\) −52.9571 −1.92858
\(755\) 25.4102 0.924770
\(756\) 0 0
\(757\) −20.7974 −0.755894 −0.377947 0.925827i \(-0.623370\pi\)
−0.377947 + 0.925827i \(0.623370\pi\)
\(758\) 33.4455i 1.21479i
\(759\) 0 0
\(760\) −6.37403 27.2044i −0.231210 0.986807i
\(761\) 2.37920i 0.0862461i −0.999070 0.0431230i \(-0.986269\pi\)
0.999070 0.0431230i \(-0.0137307\pi\)
\(762\) 0 0
\(763\) 25.4768i 0.922322i
\(764\) 6.78909 0.245621
\(765\) 0 0
\(766\) 13.5278i 0.488779i
\(767\) 80.5348i 2.90794i
\(768\) 0 0
\(769\) 1.08952i 0.0392892i 0.999807 + 0.0196446i \(0.00625347\pi\)
−0.999807 + 0.0196446i \(0.993747\pi\)
\(770\) −0.549090 47.5737i −0.0197878 1.71444i
\(771\) 0 0
\(772\) 35.5954 1.28111
\(773\) 11.3217i 0.407214i 0.979053 + 0.203607i \(0.0652664\pi\)
−0.979053 + 0.203607i \(0.934734\pi\)
\(774\) 0 0
\(775\) 0.297895i 0.0107007i
\(776\) 42.3568i 1.52052i
\(777\) 0 0
\(778\) 24.0755 0.863148
\(779\) 4.66786 + 19.9225i 0.167244 + 0.713797i
\(780\) 0 0
\(781\) 0.202517 + 17.5463i 0.00724664 + 0.627855i
\(782\) 77.8187i 2.78279i
\(783\) 0 0
\(784\) −0.0346754 −0.00123841
\(785\) 43.3802 1.54831
\(786\) 0 0
\(787\) 17.1126 0.609998 0.304999 0.952353i \(-0.401344\pi\)
0.304999 + 0.952353i \(0.401344\pi\)
\(788\) 24.8709i 0.885988i
\(789\) 0 0
\(790\) 40.3833 1.43677
\(791\) −49.0010 −1.74227
\(792\) 0 0
\(793\) 67.1753i 2.38546i
\(794\) −8.18434 −0.290451
\(795\) 0 0
\(796\) 47.9450 1.69936
\(797\) 15.6088i 0.552892i 0.961029 + 0.276446i \(0.0891567\pi\)
−0.961029 + 0.276446i \(0.910843\pi\)
\(798\) 0 0
\(799\) 32.6056i 1.15350i
\(800\) 0.250634 0.00886126
\(801\) 0 0
\(802\) 17.4860i 0.617451i
\(803\) −0.0869014 7.52921i −0.00306669 0.265700i
\(804\) 0 0
\(805\) 34.8632i 1.22877i
\(806\) 102.909i 3.62480i
\(807\) 0 0
\(808\) 4.36997i 0.153735i
\(809\) 3.02548i 0.106370i 0.998585 + 0.0531850i \(0.0169373\pi\)
−0.998585 + 0.0531850i \(0.983063\pi\)
\(810\) 0 0
\(811\) −4.78932 −0.168176 −0.0840879 0.996458i \(-0.526798\pi\)
−0.0840879 + 0.996458i \(0.526798\pi\)
\(812\) 31.0335i 1.08906i
\(813\) 0 0
\(814\) 0.0965186 + 8.36246i 0.00338298 + 0.293104i
\(815\) −46.1489 −1.61653
\(816\) 0 0
\(817\) 32.3126 7.57089i 1.13048 0.264872i
\(818\) 14.3595 0.502069
\(819\) 0 0
\(820\) 34.2251 1.19519
\(821\) 19.7078i 0.687807i −0.939005 0.343903i \(-0.888251\pi\)
0.939005 0.343903i \(-0.111749\pi\)
\(822\) 0 0
\(823\) 31.5377 1.09934 0.549668 0.835383i \(-0.314754\pi\)
0.549668 + 0.835383i \(0.314754\pi\)
\(824\) 20.5825i 0.717027i
\(825\) 0 0
\(826\) 76.2726 2.65386
\(827\) 10.1644 0.353452 0.176726 0.984260i \(-0.443449\pi\)
0.176726 + 0.984260i \(0.443449\pi\)
\(828\) 0 0
\(829\) 46.2995i 1.60805i −0.594596 0.804025i \(-0.702688\pi\)
0.594596 0.804025i \(-0.297312\pi\)
\(830\) 79.5406i 2.76089i
\(831\) 0 0
\(832\) −87.1852 −3.02260
\(833\) 4.73348i 0.164005i
\(834\) 0 0
\(835\) 17.2395 0.596598
\(836\) −11.2319 45.5635i −0.388462 1.57585i
\(837\) 0 0
\(838\) 78.6928 2.71840
\(839\) 42.1213i 1.45419i −0.686538 0.727094i \(-0.740870\pi\)
0.686538 0.727094i \(-0.259130\pi\)
\(840\) 0 0
\(841\) −17.2450 −0.594654
\(842\) 53.5406i 1.84513i
\(843\) 0 0
\(844\) 12.4510 0.428583
\(845\) −72.9448 −2.50938
\(846\) 0 0
\(847\) −0.707957 30.6649i −0.0243257 1.05366i
\(848\) 0.513637i 0.0176384i
\(849\) 0 0
\(850\) 0.625063i 0.0214395i
\(851\) 6.12822i 0.210073i
\(852\) 0 0
\(853\) 1.18916i 0.0407161i −0.999793 0.0203581i \(-0.993519\pi\)
0.999793 0.0203581i \(-0.00648062\pi\)
\(854\) 63.6201 2.17703
\(855\) 0 0
\(856\) 10.5825 0.361702
\(857\) 24.0065 0.820047 0.410023 0.912075i \(-0.365521\pi\)
0.410023 + 0.912075i \(0.365521\pi\)
\(858\) 0 0
\(859\) −18.1085 −0.617854 −0.308927 0.951086i \(-0.599970\pi\)
−0.308927 + 0.951086i \(0.599970\pi\)
\(860\) 55.5102i 1.89288i
\(861\) 0 0
\(862\) −1.90314 −0.0648211
\(863\) 42.3524i 1.44169i −0.693095 0.720846i \(-0.743754\pi\)
0.693095 0.720846i \(-0.256246\pi\)
\(864\) 0 0
\(865\) 16.9289 0.575601
\(866\) 37.6065i 1.27792i
\(867\) 0 0
\(868\) 60.3057 2.04691
\(869\) 26.0337 0.300478i 0.883132 0.0101930i
\(870\) 0 0
\(871\) 43.1032i 1.46050i
\(872\) −26.0753 −0.883021
\(873\) 0 0
\(874\) 12.6779 + 54.1093i 0.428836 + 1.83027i
\(875\) 31.0350i 1.04918i
\(876\) 0 0
\(877\) 14.4810 0.488989 0.244495 0.969651i \(-0.421378\pi\)
0.244495 + 0.969651i \(0.421378\pi\)
\(878\) 25.1989 0.850423
\(879\) 0 0
\(880\) −0.333050 + 0.00384403i −0.0112271 + 0.000129582i
\(881\) −24.9014 −0.838951 −0.419476 0.907767i \(-0.637786\pi\)
−0.419476 + 0.907767i \(0.637786\pi\)
\(882\) 0 0
\(883\) 49.4700 1.66480 0.832399 0.554178i \(-0.186967\pi\)
0.832399 + 0.554178i \(0.186967\pi\)
\(884\) 133.609i 4.49374i
\(885\) 0 0
\(886\) −29.2403 −0.982348
\(887\) −21.7252 −0.729460 −0.364730 0.931113i \(-0.618839\pi\)
−0.364730 + 0.931113i \(0.618839\pi\)
\(888\) 0 0
\(889\) 31.2303i 1.04743i
\(890\) 24.5821i 0.823994i
\(891\) 0 0
\(892\) 21.1622i 0.708564i
\(893\) −5.31196 22.6715i −0.177758 0.758672i
\(894\) 0 0
\(895\) 44.2463i 1.47899i
\(896\) 51.3094i 1.71413i
\(897\) 0 0
\(898\) 32.4512i 1.08291i
\(899\) 22.8429i 0.761854i
\(900\) 0 0
\(901\) 70.1158 2.33589
\(902\) 35.6578 0.411559i 1.18728 0.0137034i
\(903\) 0 0
\(904\) 50.1521i 1.66803i
\(905\) 27.3789i 0.910107i
\(906\) 0 0
\(907\) 6.01135i 0.199603i −0.995007 0.0998017i \(-0.968179\pi\)
0.995007 0.0998017i \(-0.0318209\pi\)
\(908\) −89.3206 −2.96421
\(909\) 0 0
\(910\) 96.7376i 3.20682i
\(911\) 24.0331i 0.796252i −0.917331 0.398126i \(-0.869661\pi\)
0.917331 0.398126i \(-0.130339\pi\)
\(912\) 0 0
\(913\) 0.591833 + 51.2769i 0.0195868 + 1.69702i
\(914\) 4.60259i 0.152240i
\(915\) 0 0
\(916\) −16.5638 −0.547284
\(917\) −37.6013 −1.24170
\(918\) 0 0
\(919\) 12.9069i 0.425759i −0.977078 0.212880i \(-0.931716\pi\)
0.977078 0.212880i \(-0.0682842\pi\)
\(920\) 35.6822 1.17641
\(921\) 0 0
\(922\) 29.4877i 0.971127i
\(923\) 35.6791i 1.17439i
\(924\) 0 0
\(925\) 0.0492237i 0.00161847i
\(926\) −91.8738 −3.01916
\(927\) 0 0
\(928\) 19.2189 0.630891
\(929\) −7.73250 −0.253695 −0.126848 0.991922i \(-0.540486\pi\)
−0.126848 + 0.991922i \(0.540486\pi\)
\(930\) 0 0
\(931\) 0.771159 + 3.29131i 0.0252737 + 0.107868i
\(932\) 8.07333i 0.264451i
\(933\) 0 0
\(934\) −86.2585 −2.82246
\(935\) 0.524743 + 45.4642i 0.0171609 + 1.48684i
\(936\) 0 0
\(937\) 10.2538i 0.334977i −0.985874 0.167489i \(-0.946434\pi\)
0.985874 0.167489i \(-0.0535657\pi\)
\(938\) 40.8220 1.33289
\(939\) 0 0
\(940\) −38.9476 −1.27033
\(941\) 24.7981 0.808395 0.404197 0.914672i \(-0.367551\pi\)
0.404197 + 0.914672i \(0.367551\pi\)
\(942\) 0 0
\(943\) −26.1310 −0.850942
\(944\) 0.533964i 0.0173790i
\(945\) 0 0
\(946\) −0.667515 57.8341i −0.0217028 1.88035i
\(947\) 4.32248 0.140462 0.0702309 0.997531i \(-0.477626\pi\)
0.0702309 + 0.997531i \(0.477626\pi\)
\(948\) 0 0
\(949\) 15.3101i 0.496987i
\(950\) 0.101833 + 0.434622i 0.00330388 + 0.0141010i
\(951\) 0 0
\(952\) 48.5733 1.57427
\(953\) 5.06287 0.164003 0.0820013 0.996632i \(-0.473869\pi\)
0.0820013 + 0.996632i \(0.473869\pi\)
\(954\) 0 0
\(955\) −4.69759 −0.152011
\(956\) 30.8847i 0.998884i
\(957\) 0 0
\(958\) 32.5152i 1.05052i
\(959\) 15.3249i 0.494867i
\(960\) 0 0
\(961\) −13.3893 −0.431914
\(962\) 17.0044i 0.548245i
\(963\) 0 0
\(964\) 40.5720 1.30674
\(965\) −24.6296 −0.792856
\(966\) 0 0
\(967\) 11.2371i 0.361361i 0.983542 + 0.180680i \(0.0578300\pi\)
−0.983542 + 0.180680i \(0.942170\pi\)
\(968\) −31.3853 + 0.724588i −1.00876 + 0.0232892i
\(969\) 0 0
\(970\) 76.3499i 2.45145i
\(971\) 42.9353i 1.37786i −0.724827 0.688930i \(-0.758081\pi\)
0.724827 0.688930i \(-0.241919\pi\)
\(972\) 0 0
\(973\) −16.4957 −0.528827
\(974\) 24.9294i 0.798789i
\(975\) 0 0
\(976\) 0.445387i 0.0142565i
\(977\) 13.8317i 0.442514i 0.975216 + 0.221257i \(0.0710159\pi\)
−0.975216 + 0.221257i \(0.928984\pi\)
\(978\) 0 0
\(979\) 0.182907 + 15.8472i 0.00584572 + 0.506478i
\(980\) 5.65418 0.180616
\(981\) 0 0
\(982\) 38.0855i 1.21536i
\(983\) 6.87197i 0.219182i −0.993977 0.109591i \(-0.965046\pi\)
0.993977 0.109591i \(-0.0349541\pi\)
\(984\) 0 0
\(985\) 17.2090i 0.548323i
\(986\) 47.9305i 1.52642i
\(987\) 0 0
\(988\) −21.7669 92.9014i −0.692498 2.95559i
\(989\) 42.3823i 1.34768i
\(990\) 0 0
\(991\) 37.2344i 1.18279i −0.806382 0.591395i \(-0.798578\pi\)
0.806382 0.591395i \(-0.201422\pi\)
\(992\) 37.3470i 1.18577i
\(993\) 0 0
\(994\) −33.7908 −1.07178
\(995\) −33.1747 −1.05171
\(996\) 0 0
\(997\) 29.8335i 0.944837i 0.881374 + 0.472418i \(0.156619\pi\)
−0.881374 + 0.472418i \(0.843381\pi\)
\(998\) 15.6974 0.496891
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.h.g.208.3 24
3.2 odd 2 627.2.h.b.208.22 yes 24
11.10 odd 2 inner 1881.2.h.g.208.21 24
19.18 odd 2 inner 1881.2.h.g.208.22 24
33.32 even 2 627.2.h.b.208.4 yes 24
57.56 even 2 627.2.h.b.208.3 24
209.208 even 2 inner 1881.2.h.g.208.4 24
627.626 odd 2 627.2.h.b.208.21 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.h.b.208.3 24 57.56 even 2
627.2.h.b.208.4 yes 24 33.32 even 2
627.2.h.b.208.21 yes 24 627.626 odd 2
627.2.h.b.208.22 yes 24 3.2 odd 2
1881.2.h.g.208.3 24 1.1 even 1 trivial
1881.2.h.g.208.4 24 209.208 even 2 inner
1881.2.h.g.208.21 24 11.10 odd 2 inner
1881.2.h.g.208.22 24 19.18 odd 2 inner