Properties

Label 1881.4.a.n
Level 18811881
Weight 44
Character orbit 1881.a
Self dual yes
Analytic conductor 110.983110.983
Analytic rank 11
Dimension 2323
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,4,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1881=321119 1881 = 3^{2} \cdot 11 \cdot 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 110.982592721110.982592721
Analytic rank: 11
Dimension: 2323
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 23q4q2+96q414q748q8124q10+253q11150q13152q14+444q16+68q17437q1980q2044q22414q23+383q25464q26384q28+7876q98+O(q100) 23 q - 4 q^{2} + 96 q^{4} - 14 q^{7} - 48 q^{8} - 124 q^{10} + 253 q^{11} - 150 q^{13} - 152 q^{14} + 444 q^{16} + 68 q^{17} - 437 q^{19} - 80 q^{20} - 44 q^{22} - 414 q^{23} + 383 q^{25} - 464 q^{26} - 384 q^{28}+ \cdots - 7876 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −5.51625 0 22.4290 12.5056 0 26.5097 −79.5940 0 −68.9841
1.2 −5.44577 0 21.6564 −12.7630 0 14.1692 −74.3694 0 69.5044
1.3 −4.84967 0 15.5193 5.07821 0 −27.4332 −36.4664 0 −24.6277
1.4 −4.03785 0 8.30426 18.4926 0 −30.6896 −1.22854 0 −74.6704
1.5 −3.86437 0 6.93335 −18.6357 0 18.3770 4.12194 0 72.0151
1.6 −3.55917 0 4.66767 13.9292 0 7.71246 11.8603 0 −49.5764
1.7 −2.75980 0 −0.383506 8.09155 0 12.8476 23.1368 0 −22.3311
1.8 −2.60095 0 −1.23504 −11.0151 0 −27.4794 24.0199 0 28.6498
1.9 −2.17478 0 −3.27032 −3.87793 0 −23.3092 24.5105 0 8.43364
1.10 −1.56050 0 −5.56485 −10.6391 0 30.8256 21.1679 0 16.6023
1.11 −1.38247 0 −6.08877 11.8409 0 −1.48593 19.4774 0 −16.3697
1.12 0.0446892 0 −7.99800 −0.125306 0 5.63643 −0.714939 0 −0.00559983
1.13 0.835942 0 −7.30120 5.65129 0 9.55255 −12.7909 0 4.72415
1.14 1.19481 0 −6.57244 −18.9479 0 −16.9659 −17.4112 0 −22.6391
1.15 1.41012 0 −6.01156 4.37661 0 −26.4649 −19.7580 0 6.17155
1.16 2.00341 0 −3.98634 18.6175 0 22.2095 −24.0136 0 37.2986
1.17 2.42520 0 −2.11842 −17.7335 0 22.8095 −24.5392 0 −43.0071
1.18 3.14294 0 1.87809 −1.64084 0 21.7927 −19.2408 0 −5.15705
1.19 3.80817 0 6.50217 1.32583 0 −7.58061 −5.70400 0 5.04899
1.20 3.85322 0 6.84732 11.1576 0 −16.2200 −4.44155 0 42.9927
See all 23 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.23
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1111 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.4.a.n 23
3.b odd 2 1 1881.4.a.o yes 23
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1881.4.a.n 23 1.a even 1 1 trivial
1881.4.a.o yes 23 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T223+4T222132T221512T220+7417T219+27748T218++479213568 T_{2}^{23} + 4 T_{2}^{22} - 132 T_{2}^{21} - 512 T_{2}^{20} + 7417 T_{2}^{19} + 27748 T_{2}^{18} + \cdots + 479213568 acting on S4new(Γ0(1881))S_{4}^{\mathrm{new}}(\Gamma_0(1881)). Copy content Toggle raw display