Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1881,4,Mod(1,1881)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1881.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1881 = 3^{2} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1881.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(110.982592721\) |
Analytic rank: | \(1\) |
Dimension: | \(23\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.51625 | 0 | 22.4290 | 12.5056 | 0 | 26.5097 | −79.5940 | 0 | −68.9841 | ||||||||||||||||||
1.2 | −5.44577 | 0 | 21.6564 | −12.7630 | 0 | 14.1692 | −74.3694 | 0 | 69.5044 | ||||||||||||||||||
1.3 | −4.84967 | 0 | 15.5193 | 5.07821 | 0 | −27.4332 | −36.4664 | 0 | −24.6277 | ||||||||||||||||||
1.4 | −4.03785 | 0 | 8.30426 | 18.4926 | 0 | −30.6896 | −1.22854 | 0 | −74.6704 | ||||||||||||||||||
1.5 | −3.86437 | 0 | 6.93335 | −18.6357 | 0 | 18.3770 | 4.12194 | 0 | 72.0151 | ||||||||||||||||||
1.6 | −3.55917 | 0 | 4.66767 | 13.9292 | 0 | 7.71246 | 11.8603 | 0 | −49.5764 | ||||||||||||||||||
1.7 | −2.75980 | 0 | −0.383506 | 8.09155 | 0 | 12.8476 | 23.1368 | 0 | −22.3311 | ||||||||||||||||||
1.8 | −2.60095 | 0 | −1.23504 | −11.0151 | 0 | −27.4794 | 24.0199 | 0 | 28.6498 | ||||||||||||||||||
1.9 | −2.17478 | 0 | −3.27032 | −3.87793 | 0 | −23.3092 | 24.5105 | 0 | 8.43364 | ||||||||||||||||||
1.10 | −1.56050 | 0 | −5.56485 | −10.6391 | 0 | 30.8256 | 21.1679 | 0 | 16.6023 | ||||||||||||||||||
1.11 | −1.38247 | 0 | −6.08877 | 11.8409 | 0 | −1.48593 | 19.4774 | 0 | −16.3697 | ||||||||||||||||||
1.12 | 0.0446892 | 0 | −7.99800 | −0.125306 | 0 | 5.63643 | −0.714939 | 0 | −0.00559983 | ||||||||||||||||||
1.13 | 0.835942 | 0 | −7.30120 | 5.65129 | 0 | 9.55255 | −12.7909 | 0 | 4.72415 | ||||||||||||||||||
1.14 | 1.19481 | 0 | −6.57244 | −18.9479 | 0 | −16.9659 | −17.4112 | 0 | −22.6391 | ||||||||||||||||||
1.15 | 1.41012 | 0 | −6.01156 | 4.37661 | 0 | −26.4649 | −19.7580 | 0 | 6.17155 | ||||||||||||||||||
1.16 | 2.00341 | 0 | −3.98634 | 18.6175 | 0 | 22.2095 | −24.0136 | 0 | 37.2986 | ||||||||||||||||||
1.17 | 2.42520 | 0 | −2.11842 | −17.7335 | 0 | 22.8095 | −24.5392 | 0 | −43.0071 | ||||||||||||||||||
1.18 | 3.14294 | 0 | 1.87809 | −1.64084 | 0 | 21.7927 | −19.2408 | 0 | −5.15705 | ||||||||||||||||||
1.19 | 3.80817 | 0 | 6.50217 | 1.32583 | 0 | −7.58061 | −5.70400 | 0 | 5.04899 | ||||||||||||||||||
1.20 | 3.85322 | 0 | 6.84732 | 11.1576 | 0 | −16.2200 | −4.44155 | 0 | 42.9927 | ||||||||||||||||||
See all 23 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \( +1 \) |
\(11\) | \( -1 \) |
\(19\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1881.4.a.n | ✓ | 23 |
3.b | odd | 2 | 1 | 1881.4.a.o | yes | 23 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1881.4.a.n | ✓ | 23 | 1.a | even | 1 | 1 | trivial |
1881.4.a.o | yes | 23 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{23} + 4 T_{2}^{22} - 132 T_{2}^{21} - 512 T_{2}^{20} + 7417 T_{2}^{19} + 27748 T_{2}^{18} + \cdots + 479213568 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1881))\).