Properties

Label 189.2.f.b.127.3
Level $189$
Weight $2$
Character 189.127
Analytic conductor $1.509$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(64,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 127.3
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 189.127
Dual form 189.2.f.b.64.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26604 - 2.19285i) q^{2} +(-2.20574 - 3.82045i) q^{4} +(-0.439693 - 0.761570i) q^{5} +(-0.500000 + 0.866025i) q^{7} -6.10607 q^{8} -2.22668 q^{10} +(1.93969 - 3.35965i) q^{11} +(2.72668 + 4.72275i) q^{13} +(1.26604 + 2.19285i) q^{14} +(-3.31908 + 5.74881i) q^{16} -1.65270 q^{17} +2.41147 q^{19} +(-1.93969 + 3.35965i) q^{20} +(-4.91147 - 8.50692i) q^{22} +(1.58125 + 2.73881i) q^{23} +(2.11334 - 3.66041i) q^{25} +13.8084 q^{26} +4.41147 q^{28} +(-3.02481 + 5.23913i) q^{29} +(2.27719 + 3.94421i) q^{31} +(2.29813 + 3.98048i) q^{32} +(-2.09240 + 3.62414i) q^{34} +0.879385 q^{35} -4.55438 q^{37} +(3.05303 - 5.28801i) q^{38} +(2.68479 + 4.65020i) q^{40} +(-0.592396 - 1.02606i) q^{41} +(-0.0923963 + 0.160035i) q^{43} -17.1138 q^{44} +8.00774 q^{46} +(-0.511144 + 0.885328i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(-5.35117 - 9.26849i) q^{50} +(12.0287 - 20.8343i) q^{52} -7.29086 q^{53} -3.41147 q^{55} +(3.05303 - 5.28801i) q^{56} +(7.65910 + 13.2660i) q^{58} +(3.33022 + 5.76811i) q^{59} +(1.29813 - 2.24843i) q^{61} +11.5321 q^{62} -1.63816 q^{64} +(2.39780 - 4.15312i) q^{65} +(1.47906 + 2.56180i) q^{67} +(3.64543 + 6.31407i) q^{68} +(1.11334 - 1.92836i) q^{70} +3.68004 q^{71} -12.7811 q^{73} +(-5.76604 + 9.98708i) q^{74} +(-5.31908 - 9.21291i) q^{76} +(1.93969 + 3.35965i) q^{77} +(2.97906 - 5.15988i) q^{79} +5.83750 q^{80} -3.00000 q^{82} +(-0.109470 + 0.189608i) q^{83} +(0.726682 + 1.25865i) q^{85} +(0.233956 + 0.405223i) q^{86} +(-11.8439 + 20.5142i) q^{88} -11.0273 q^{89} -5.45336 q^{91} +(6.97565 - 12.0822i) q^{92} +(1.29426 + 2.24173i) q^{94} +(-1.06031 - 1.83651i) q^{95} +(-6.25150 + 10.8279i) q^{97} -2.53209 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 3 q^{7} - 12 q^{8} + 6 q^{11} + 3 q^{13} + 3 q^{14} - 3 q^{16} - 12 q^{17} - 6 q^{19} - 6 q^{20} - 9 q^{22} + 12 q^{23} + 6 q^{25} + 6 q^{26} + 6 q^{28} + 9 q^{29} + 3 q^{31}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26604 2.19285i 0.895229 1.55058i 0.0617072 0.998094i \(-0.480346\pi\)
0.833521 0.552487i \(-0.186321\pi\)
\(3\) 0 0
\(4\) −2.20574 3.82045i −1.10287 1.91022i
\(5\) −0.439693 0.761570i −0.196637 0.340584i 0.750799 0.660530i \(-0.229669\pi\)
−0.947436 + 0.319946i \(0.896335\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −6.10607 −2.15882
\(9\) 0 0
\(10\) −2.22668 −0.704139
\(11\) 1.93969 3.35965i 0.584839 1.01297i −0.410056 0.912060i \(-0.634491\pi\)
0.994895 0.100911i \(-0.0321758\pi\)
\(12\) 0 0
\(13\) 2.72668 + 4.72275i 0.756245 + 1.30986i 0.944753 + 0.327784i \(0.106302\pi\)
−0.188507 + 0.982072i \(0.560365\pi\)
\(14\) 1.26604 + 2.19285i 0.338365 + 0.586065i
\(15\) 0 0
\(16\) −3.31908 + 5.74881i −0.829769 + 1.43720i
\(17\) −1.65270 −0.400840 −0.200420 0.979710i \(-0.564231\pi\)
−0.200420 + 0.979710i \(0.564231\pi\)
\(18\) 0 0
\(19\) 2.41147 0.553230 0.276615 0.960981i \(-0.410787\pi\)
0.276615 + 0.960981i \(0.410787\pi\)
\(20\) −1.93969 + 3.35965i −0.433728 + 0.751240i
\(21\) 0 0
\(22\) −4.91147 8.50692i −1.04713 1.81368i
\(23\) 1.58125 + 2.73881i 0.329714 + 0.571081i 0.982455 0.186500i \(-0.0597144\pi\)
−0.652741 + 0.757581i \(0.726381\pi\)
\(24\) 0 0
\(25\) 2.11334 3.66041i 0.422668 0.732083i
\(26\) 13.8084 2.70805
\(27\) 0 0
\(28\) 4.41147 0.833690
\(29\) −3.02481 + 5.23913i −0.561694 + 0.972883i 0.435655 + 0.900114i \(0.356517\pi\)
−0.997349 + 0.0727688i \(0.976816\pi\)
\(30\) 0 0
\(31\) 2.27719 + 3.94421i 0.408995 + 0.708400i 0.994777 0.102068i \(-0.0325459\pi\)
−0.585782 + 0.810468i \(0.699213\pi\)
\(32\) 2.29813 + 3.98048i 0.406256 + 0.703657i
\(33\) 0 0
\(34\) −2.09240 + 3.62414i −0.358843 + 0.621534i
\(35\) 0.879385 0.148643
\(36\) 0 0
\(37\) −4.55438 −0.748735 −0.374368 0.927280i \(-0.622140\pi\)
−0.374368 + 0.927280i \(0.622140\pi\)
\(38\) 3.05303 5.28801i 0.495267 0.857828i
\(39\) 0 0
\(40\) 2.68479 + 4.65020i 0.424503 + 0.735261i
\(41\) −0.592396 1.02606i −0.0925168 0.160244i 0.816053 0.577977i \(-0.196158\pi\)
−0.908570 + 0.417734i \(0.862825\pi\)
\(42\) 0 0
\(43\) −0.0923963 + 0.160035i −0.0140903 + 0.0244051i −0.872985 0.487748i \(-0.837819\pi\)
0.858894 + 0.512153i \(0.171152\pi\)
\(44\) −17.1138 −2.58000
\(45\) 0 0
\(46\) 8.00774 1.18068
\(47\) −0.511144 + 0.885328i −0.0745581 + 0.129138i −0.900894 0.434039i \(-0.857088\pi\)
0.826336 + 0.563178i \(0.190421\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −5.35117 9.26849i −0.756769 1.31076i
\(51\) 0 0
\(52\) 12.0287 20.8343i 1.66808 2.88920i
\(53\) −7.29086 −1.00148 −0.500738 0.865599i \(-0.666938\pi\)
−0.500738 + 0.865599i \(0.666938\pi\)
\(54\) 0 0
\(55\) −3.41147 −0.460003
\(56\) 3.05303 5.28801i 0.407979 0.706640i
\(57\) 0 0
\(58\) 7.65910 + 13.2660i 1.00569 + 1.74190i
\(59\) 3.33022 + 5.76811i 0.433558 + 0.750944i 0.997177 0.0750906i \(-0.0239246\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(60\) 0 0
\(61\) 1.29813 2.24843i 0.166209 0.287882i −0.770875 0.636986i \(-0.780181\pi\)
0.937084 + 0.349104i \(0.113514\pi\)
\(62\) 11.5321 1.46458
\(63\) 0 0
\(64\) −1.63816 −0.204769
\(65\) 2.39780 4.15312i 0.297411 0.515131i
\(66\) 0 0
\(67\) 1.47906 + 2.56180i 0.180695 + 0.312974i 0.942118 0.335283i \(-0.108832\pi\)
−0.761422 + 0.648256i \(0.775499\pi\)
\(68\) 3.64543 + 6.31407i 0.442073 + 0.765693i
\(69\) 0 0
\(70\) 1.11334 1.92836i 0.133070 0.230483i
\(71\) 3.68004 0.436741 0.218370 0.975866i \(-0.429926\pi\)
0.218370 + 0.975866i \(0.429926\pi\)
\(72\) 0 0
\(73\) −12.7811 −1.49591 −0.747955 0.663750i \(-0.768964\pi\)
−0.747955 + 0.663750i \(0.768964\pi\)
\(74\) −5.76604 + 9.98708i −0.670289 + 1.16097i
\(75\) 0 0
\(76\) −5.31908 9.21291i −0.610140 1.05679i
\(77\) 1.93969 + 3.35965i 0.221048 + 0.382867i
\(78\) 0 0
\(79\) 2.97906 5.15988i 0.335170 0.580531i −0.648348 0.761345i \(-0.724540\pi\)
0.983517 + 0.180813i \(0.0578729\pi\)
\(80\) 5.83750 0.652652
\(81\) 0 0
\(82\) −3.00000 −0.331295
\(83\) −0.109470 + 0.189608i −0.0120159 + 0.0208122i −0.871971 0.489558i \(-0.837158\pi\)
0.859955 + 0.510370i \(0.170492\pi\)
\(84\) 0 0
\(85\) 0.726682 + 1.25865i 0.0788197 + 0.136520i
\(86\) 0.233956 + 0.405223i 0.0252281 + 0.0436963i
\(87\) 0 0
\(88\) −11.8439 + 20.5142i −1.26256 + 2.18682i
\(89\) −11.0273 −1.16890 −0.584448 0.811431i \(-0.698689\pi\)
−0.584448 + 0.811431i \(0.698689\pi\)
\(90\) 0 0
\(91\) −5.45336 −0.571668
\(92\) 6.97565 12.0822i 0.727262 1.25965i
\(93\) 0 0
\(94\) 1.29426 + 2.24173i 0.133493 + 0.231217i
\(95\) −1.06031 1.83651i −0.108785 0.188422i
\(96\) 0 0
\(97\) −6.25150 + 10.8279i −0.634743 + 1.09941i 0.351826 + 0.936065i \(0.385561\pi\)
−0.986569 + 0.163342i \(0.947773\pi\)
\(98\) −2.53209 −0.255780
\(99\) 0 0
\(100\) −18.6459 −1.86459
\(101\) −4.85844 + 8.41507i −0.483433 + 0.837330i −0.999819 0.0190255i \(-0.993944\pi\)
0.516386 + 0.856356i \(0.327277\pi\)
\(102\) 0 0
\(103\) −3.29813 5.71253i −0.324975 0.562873i 0.656533 0.754298i \(-0.272022\pi\)
−0.981507 + 0.191425i \(0.938689\pi\)
\(104\) −16.6493 28.8374i −1.63260 2.82774i
\(105\) 0 0
\(106\) −9.23055 + 15.9878i −0.896550 + 1.55287i
\(107\) −2.38919 −0.230971 −0.115486 0.993309i \(-0.536842\pi\)
−0.115486 + 0.993309i \(0.536842\pi\)
\(108\) 0 0
\(109\) 3.95811 0.379118 0.189559 0.981869i \(-0.439294\pi\)
0.189559 + 0.981869i \(0.439294\pi\)
\(110\) −4.31908 + 7.48086i −0.411808 + 0.713272i
\(111\) 0 0
\(112\) −3.31908 5.74881i −0.313623 0.543212i
\(113\) 8.22668 + 14.2490i 0.773901 + 1.34044i 0.935410 + 0.353565i \(0.115031\pi\)
−0.161509 + 0.986871i \(0.551636\pi\)
\(114\) 0 0
\(115\) 1.39053 2.40847i 0.129668 0.224591i
\(116\) 26.6878 2.47790
\(117\) 0 0
\(118\) 16.8648 1.55253
\(119\) 0.826352 1.43128i 0.0757515 0.131206i
\(120\) 0 0
\(121\) −2.02481 3.50708i −0.184074 0.318826i
\(122\) −3.28699 5.69323i −0.297590 0.515441i
\(123\) 0 0
\(124\) 10.0458 17.3998i 0.902136 1.56255i
\(125\) −8.11381 −0.725721
\(126\) 0 0
\(127\) 17.6536 1.56651 0.783253 0.621702i \(-0.213559\pi\)
0.783253 + 0.621702i \(0.213559\pi\)
\(128\) −6.67024 + 11.5532i −0.589572 + 1.02117i
\(129\) 0 0
\(130\) −6.07145 10.5161i −0.532502 0.922320i
\(131\) −9.59879 16.6256i −0.838650 1.45259i −0.891023 0.453958i \(-0.850012\pi\)
0.0523729 0.998628i \(-0.483322\pi\)
\(132\) 0 0
\(133\) −1.20574 + 2.08840i −0.104551 + 0.181087i
\(134\) 7.49020 0.647055
\(135\) 0 0
\(136\) 10.0915 0.865341
\(137\) 9.07785 15.7233i 0.775573 1.34333i −0.158899 0.987295i \(-0.550794\pi\)
0.934472 0.356037i \(-0.115872\pi\)
\(138\) 0 0
\(139\) −11.0287 19.1022i −0.935441 1.62023i −0.773846 0.633374i \(-0.781670\pi\)
−0.161595 0.986857i \(-0.551664\pi\)
\(140\) −1.93969 3.35965i −0.163934 0.283942i
\(141\) 0 0
\(142\) 4.65910 8.06980i 0.390983 0.677202i
\(143\) 21.1557 1.76913
\(144\) 0 0
\(145\) 5.31996 0.441798
\(146\) −16.1814 + 28.0270i −1.33918 + 2.31953i
\(147\) 0 0
\(148\) 10.0458 + 17.3998i 0.825756 + 1.43025i
\(149\) −7.57785 13.1252i −0.620802 1.07526i −0.989337 0.145646i \(-0.953474\pi\)
0.368535 0.929614i \(-0.379859\pi\)
\(150\) 0 0
\(151\) 9.47818 16.4167i 0.771323 1.33597i −0.165515 0.986207i \(-0.552929\pi\)
0.936838 0.349764i \(-0.113738\pi\)
\(152\) −14.7246 −1.19432
\(153\) 0 0
\(154\) 9.82295 0.791556
\(155\) 2.00253 3.46848i 0.160847 0.278595i
\(156\) 0 0
\(157\) 9.02869 + 15.6381i 0.720568 + 1.24806i 0.960773 + 0.277337i \(0.0894520\pi\)
−0.240205 + 0.970722i \(0.577215\pi\)
\(158\) −7.54323 13.0653i −0.600107 1.03942i
\(159\) 0 0
\(160\) 2.02094 3.50038i 0.159770 0.276729i
\(161\) −3.16250 −0.249240
\(162\) 0 0
\(163\) 0.958111 0.0750450 0.0375225 0.999296i \(-0.488053\pi\)
0.0375225 + 0.999296i \(0.488053\pi\)
\(164\) −2.61334 + 4.52644i −0.204068 + 0.353456i
\(165\) 0 0
\(166\) 0.277189 + 0.480105i 0.0215140 + 0.0372634i
\(167\) 9.91921 + 17.1806i 0.767572 + 1.32947i 0.938876 + 0.344255i \(0.111869\pi\)
−0.171304 + 0.985218i \(0.554798\pi\)
\(168\) 0 0
\(169\) −8.36959 + 14.4965i −0.643814 + 1.11512i
\(170\) 3.68004 0.282247
\(171\) 0 0
\(172\) 0.815207 0.0621590
\(173\) 11.3414 19.6438i 0.862268 1.49349i −0.00746626 0.999972i \(-0.502377\pi\)
0.869734 0.493520i \(-0.164290\pi\)
\(174\) 0 0
\(175\) 2.11334 + 3.66041i 0.159754 + 0.276701i
\(176\) 12.8760 + 22.3019i 0.970564 + 1.68107i
\(177\) 0 0
\(178\) −13.9611 + 24.1813i −1.04643 + 1.81247i
\(179\) 7.34730 0.549163 0.274581 0.961564i \(-0.411461\pi\)
0.274581 + 0.961564i \(0.411461\pi\)
\(180\) 0 0
\(181\) −3.44562 −0.256111 −0.128056 0.991767i \(-0.540874\pi\)
−0.128056 + 0.991767i \(0.540874\pi\)
\(182\) −6.90420 + 11.9584i −0.511773 + 0.886417i
\(183\) 0 0
\(184\) −9.65523 16.7233i −0.711793 1.23286i
\(185\) 2.00253 + 3.46848i 0.147229 + 0.255008i
\(186\) 0 0
\(187\) −3.20574 + 5.55250i −0.234427 + 0.406039i
\(188\) 4.50980 0.328911
\(189\) 0 0
\(190\) −5.36959 −0.389551
\(191\) 2.82888 4.89976i 0.204690 0.354534i −0.745344 0.666680i \(-0.767715\pi\)
0.950034 + 0.312146i \(0.101048\pi\)
\(192\) 0 0
\(193\) −4.79813 8.31061i −0.345377 0.598211i 0.640045 0.768337i \(-0.278916\pi\)
−0.985422 + 0.170127i \(0.945582\pi\)
\(194\) 15.8293 + 27.4172i 1.13648 + 1.96844i
\(195\) 0 0
\(196\) −2.20574 + 3.82045i −0.157553 + 0.272889i
\(197\) −8.31996 −0.592772 −0.296386 0.955068i \(-0.595782\pi\)
−0.296386 + 0.955068i \(0.595782\pi\)
\(198\) 0 0
\(199\) 6.59627 0.467597 0.233798 0.972285i \(-0.424884\pi\)
0.233798 + 0.972285i \(0.424884\pi\)
\(200\) −12.9042 + 22.3507i −0.912465 + 1.58044i
\(201\) 0 0
\(202\) 12.3020 + 21.3077i 0.865566 + 1.49920i
\(203\) −3.02481 5.23913i −0.212300 0.367715i
\(204\) 0 0
\(205\) −0.520945 + 0.902302i −0.0363843 + 0.0630195i
\(206\) −16.7023 −1.16371
\(207\) 0 0
\(208\) −36.2003 −2.51004
\(209\) 4.67752 8.10170i 0.323551 0.560406i
\(210\) 0 0
\(211\) 1.68479 + 2.91815i 0.115986 + 0.200893i 0.918173 0.396179i \(-0.129664\pi\)
−0.802188 + 0.597072i \(0.796331\pi\)
\(212\) 16.0817 + 27.8544i 1.10450 + 1.91304i
\(213\) 0 0
\(214\) −3.02481 + 5.23913i −0.206772 + 0.358140i
\(215\) 0.162504 0.0110827
\(216\) 0 0
\(217\) −4.55438 −0.309171
\(218\) 5.01114 8.67956i 0.339398 0.587854i
\(219\) 0 0
\(220\) 7.52481 + 13.0334i 0.507323 + 0.878709i
\(221\) −4.50640 7.80531i −0.303133 0.525042i
\(222\) 0 0
\(223\) 3.13816 5.43545i 0.210146 0.363984i −0.741614 0.670827i \(-0.765939\pi\)
0.951760 + 0.306843i \(0.0992726\pi\)
\(224\) −4.59627 −0.307101
\(225\) 0 0
\(226\) 41.6614 2.77127
\(227\) −3.08125 + 5.33688i −0.204510 + 0.354221i −0.949976 0.312322i \(-0.898893\pi\)
0.745467 + 0.666543i \(0.232227\pi\)
\(228\) 0 0
\(229\) −11.6925 20.2521i −0.772664 1.33829i −0.936098 0.351740i \(-0.885590\pi\)
0.163434 0.986554i \(-0.447743\pi\)
\(230\) −3.52094 6.09845i −0.232164 0.402120i
\(231\) 0 0
\(232\) 18.4697 31.9905i 1.21260 2.10028i
\(233\) 8.52528 0.558510 0.279255 0.960217i \(-0.409913\pi\)
0.279255 + 0.960217i \(0.409913\pi\)
\(234\) 0 0
\(235\) 0.898986 0.0586434
\(236\) 14.6912 25.4459i 0.956315 1.65639i
\(237\) 0 0
\(238\) −2.09240 3.62414i −0.135630 0.234918i
\(239\) 7.28106 + 12.6112i 0.470973 + 0.815748i 0.999449 0.0331997i \(-0.0105697\pi\)
−0.528476 + 0.848948i \(0.677236\pi\)
\(240\) 0 0
\(241\) 2.70187 4.67977i 0.174043 0.301451i −0.765787 0.643094i \(-0.777650\pi\)
0.939830 + 0.341644i \(0.110984\pi\)
\(242\) −10.2540 −0.659154
\(243\) 0 0
\(244\) −11.4534 −0.733226
\(245\) −0.439693 + 0.761570i −0.0280909 + 0.0486549i
\(246\) 0 0
\(247\) 6.57532 + 11.3888i 0.418378 + 0.724651i
\(248\) −13.9047 24.0836i −0.882947 1.52931i
\(249\) 0 0
\(250\) −10.2724 + 17.7924i −0.649686 + 1.12529i
\(251\) 12.0669 0.761654 0.380827 0.924646i \(-0.375639\pi\)
0.380827 + 0.924646i \(0.375639\pi\)
\(252\) 0 0
\(253\) 12.2686 0.771318
\(254\) 22.3503 38.7118i 1.40238 2.42900i
\(255\) 0 0
\(256\) 15.2515 + 26.4164i 0.953219 + 1.65102i
\(257\) 5.28312 + 9.15063i 0.329552 + 0.570801i 0.982423 0.186668i \(-0.0597690\pi\)
−0.652871 + 0.757469i \(0.726436\pi\)
\(258\) 0 0
\(259\) 2.27719 3.94421i 0.141498 0.245081i
\(260\) −21.1557 −1.31202
\(261\) 0 0
\(262\) −48.6100 −3.00314
\(263\) −14.1766 + 24.5547i −0.874169 + 1.51411i −0.0165240 + 0.999863i \(0.505260\pi\)
−0.857645 + 0.514242i \(0.828073\pi\)
\(264\) 0 0
\(265\) 3.20574 + 5.55250i 0.196927 + 0.341087i
\(266\) 3.05303 + 5.28801i 0.187193 + 0.324229i
\(267\) 0 0
\(268\) 6.52481 11.3013i 0.398567 0.690337i
\(269\) −7.48339 −0.456271 −0.228135 0.973629i \(-0.573263\pi\)
−0.228135 + 0.973629i \(0.573263\pi\)
\(270\) 0 0
\(271\) 13.6382 0.828459 0.414229 0.910172i \(-0.364051\pi\)
0.414229 + 0.910172i \(0.364051\pi\)
\(272\) 5.48545 9.50108i 0.332604 0.576088i
\(273\) 0 0
\(274\) −22.9859 39.8128i −1.38863 2.40518i
\(275\) −8.19846 14.2002i −0.494386 0.856302i
\(276\) 0 0
\(277\) 3.07532 5.32661i 0.184778 0.320045i −0.758724 0.651413i \(-0.774177\pi\)
0.943502 + 0.331368i \(0.107510\pi\)
\(278\) −55.8512 −3.34973
\(279\) 0 0
\(280\) −5.36959 −0.320894
\(281\) 1.65611 2.86846i 0.0987951 0.171118i −0.812391 0.583113i \(-0.801835\pi\)
0.911186 + 0.411995i \(0.135168\pi\)
\(282\) 0 0
\(283\) −14.5116 25.1348i −0.862626 1.49411i −0.869385 0.494134i \(-0.835485\pi\)
0.00675974 0.999977i \(-0.497848\pi\)
\(284\) −8.11721 14.0594i −0.481668 0.834273i
\(285\) 0 0
\(286\) 26.7841 46.3913i 1.58377 2.74318i
\(287\) 1.18479 0.0699361
\(288\) 0 0
\(289\) −14.2686 −0.839328
\(290\) 6.73530 11.6659i 0.395510 0.685044i
\(291\) 0 0
\(292\) 28.1917 + 48.8294i 1.64979 + 2.85752i
\(293\) −4.20961 7.29125i −0.245928 0.425960i 0.716464 0.697624i \(-0.245759\pi\)
−0.962392 + 0.271664i \(0.912426\pi\)
\(294\) 0 0
\(295\) 2.92855 5.07239i 0.170507 0.295326i
\(296\) 27.8093 1.61638
\(297\) 0 0
\(298\) −38.3756 −2.22304
\(299\) −8.62314 + 14.9357i −0.498689 + 0.863755i
\(300\) 0 0
\(301\) −0.0923963 0.160035i −0.00532563 0.00922427i
\(302\) −23.9996 41.5685i −1.38102 2.39200i
\(303\) 0 0
\(304\) −8.00387 + 13.8631i −0.459053 + 0.795104i
\(305\) −2.28312 −0.130731
\(306\) 0 0
\(307\) −12.6878 −0.724130 −0.362065 0.932153i \(-0.617928\pi\)
−0.362065 + 0.932153i \(0.617928\pi\)
\(308\) 8.55690 14.8210i 0.487575 0.844504i
\(309\) 0 0
\(310\) −5.07057 8.78249i −0.287989 0.498812i
\(311\) −8.24510 14.2809i −0.467537 0.809797i 0.531775 0.846886i \(-0.321525\pi\)
−0.999312 + 0.0370881i \(0.988192\pi\)
\(312\) 0 0
\(313\) −14.2592 + 24.6977i −0.805980 + 1.39600i 0.109648 + 0.993970i \(0.465028\pi\)
−0.915628 + 0.402027i \(0.868306\pi\)
\(314\) 45.7229 2.58029
\(315\) 0 0
\(316\) −26.2841 −1.47859
\(317\) −12.9474 + 22.4256i −0.727200 + 1.25955i 0.230862 + 0.972987i \(0.425846\pi\)
−0.958062 + 0.286561i \(0.907488\pi\)
\(318\) 0 0
\(319\) 11.7344 + 20.3246i 0.657002 + 1.13796i
\(320\) 0.720285 + 1.24757i 0.0402652 + 0.0697413i
\(321\) 0 0
\(322\) −4.00387 + 6.93491i −0.223127 + 0.386467i
\(323\) −3.98545 −0.221756
\(324\) 0 0
\(325\) 23.0496 1.27856
\(326\) 1.21301 2.10100i 0.0671825 0.116363i
\(327\) 0 0
\(328\) 3.61721 + 6.26519i 0.199727 + 0.345937i
\(329\) −0.511144 0.885328i −0.0281803 0.0488097i
\(330\) 0 0
\(331\) −4.10947 + 7.11781i −0.225877 + 0.391230i −0.956582 0.291463i \(-0.905858\pi\)
0.730705 + 0.682693i \(0.239191\pi\)
\(332\) 0.965852 0.0530080
\(333\) 0 0
\(334\) 50.2327 2.74861
\(335\) 1.30066 2.25281i 0.0710626 0.123084i
\(336\) 0 0
\(337\) −2.28564 3.95885i −0.124507 0.215652i 0.797033 0.603936i \(-0.206402\pi\)
−0.921540 + 0.388283i \(0.873068\pi\)
\(338\) 21.1925 + 36.7065i 1.15272 + 1.99657i
\(339\) 0 0
\(340\) 3.20574 5.55250i 0.173856 0.301127i
\(341\) 17.6682 0.956786
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0.564178 0.977185i 0.0304184 0.0526863i
\(345\) 0 0
\(346\) −28.7173 49.7399i −1.54385 2.67403i
\(347\) 11.2331 + 19.4563i 0.603023 + 1.04447i 0.992361 + 0.123372i \(0.0393707\pi\)
−0.389337 + 0.921095i \(0.627296\pi\)
\(348\) 0 0
\(349\) −13.0496 + 22.6026i −0.698531 + 1.20989i 0.270445 + 0.962735i \(0.412829\pi\)
−0.968976 + 0.247155i \(0.920504\pi\)
\(350\) 10.7023 0.572064
\(351\) 0 0
\(352\) 17.8307 0.950379
\(353\) −0.177519 + 0.307471i −0.00944836 + 0.0163650i −0.870711 0.491795i \(-0.836341\pi\)
0.861263 + 0.508160i \(0.169674\pi\)
\(354\) 0 0
\(355\) −1.61809 2.80261i −0.0858792 0.148747i
\(356\) 24.3234 + 42.1294i 1.28914 + 2.23285i
\(357\) 0 0
\(358\) 9.30200 16.1115i 0.491626 0.851522i
\(359\) −5.45605 −0.287959 −0.143980 0.989581i \(-0.545990\pi\)
−0.143980 + 0.989581i \(0.545990\pi\)
\(360\) 0 0
\(361\) −13.1848 −0.693936
\(362\) −4.36231 + 7.55574i −0.229278 + 0.397121i
\(363\) 0 0
\(364\) 12.0287 + 20.8343i 0.630474 + 1.09201i
\(365\) 5.61974 + 9.73367i 0.294150 + 0.509484i
\(366\) 0 0
\(367\) −5.46198 + 9.46043i −0.285113 + 0.493830i −0.972637 0.232332i \(-0.925364\pi\)
0.687523 + 0.726162i \(0.258698\pi\)
\(368\) −20.9932 −1.09435
\(369\) 0 0
\(370\) 10.1411 0.527213
\(371\) 3.64543 6.31407i 0.189261 0.327810i
\(372\) 0 0
\(373\) −0.865715 1.49946i −0.0448250 0.0776392i 0.842742 0.538317i \(-0.180940\pi\)
−0.887567 + 0.460678i \(0.847606\pi\)
\(374\) 8.11721 + 14.0594i 0.419731 + 0.726995i
\(375\) 0 0
\(376\) 3.12108 5.40587i 0.160957 0.278787i
\(377\) −32.9908 −1.69911
\(378\) 0 0
\(379\) −12.1334 −0.623251 −0.311626 0.950205i \(-0.600873\pi\)
−0.311626 + 0.950205i \(0.600873\pi\)
\(380\) −4.67752 + 8.10170i −0.239952 + 0.415608i
\(381\) 0 0
\(382\) −7.16297 12.4066i −0.366489 0.634778i
\(383\) −4.35591 7.54467i −0.222577 0.385514i 0.733013 0.680215i \(-0.238113\pi\)
−0.955590 + 0.294700i \(0.904780\pi\)
\(384\) 0 0
\(385\) 1.70574 2.95442i 0.0869324 0.150571i
\(386\) −24.2986 −1.23677
\(387\) 0 0
\(388\) 55.1566 2.80015
\(389\) 1.82160 3.15511i 0.0923590 0.159970i −0.816144 0.577848i \(-0.803893\pi\)
0.908503 + 0.417878i \(0.137226\pi\)
\(390\) 0 0
\(391\) −2.61334 4.52644i −0.132162 0.228912i
\(392\) 3.05303 + 5.28801i 0.154201 + 0.267085i
\(393\) 0 0
\(394\) −10.5334 + 18.2444i −0.530667 + 0.919142i
\(395\) −5.23947 −0.263627
\(396\) 0 0
\(397\) −15.4456 −0.775194 −0.387597 0.921829i \(-0.626695\pi\)
−0.387597 + 0.921829i \(0.626695\pi\)
\(398\) 8.35117 14.4646i 0.418606 0.725047i
\(399\) 0 0
\(400\) 14.0287 + 24.2984i 0.701434 + 1.21492i
\(401\) 9.21095 + 15.9538i 0.459973 + 0.796697i 0.998959 0.0456182i \(-0.0145258\pi\)
−0.538986 + 0.842315i \(0.681192\pi\)
\(402\) 0 0
\(403\) −12.4183 + 21.5092i −0.618601 + 1.07145i
\(404\) 42.8658 2.13265
\(405\) 0 0
\(406\) −15.3182 −0.760230
\(407\) −8.83409 + 15.3011i −0.437890 + 0.758447i
\(408\) 0 0
\(409\) 14.3182 + 24.7999i 0.707989 + 1.22627i 0.965602 + 0.260025i \(0.0837309\pi\)
−0.257612 + 0.966248i \(0.582936\pi\)
\(410\) 1.31908 + 2.28471i 0.0651446 + 0.112834i
\(411\) 0 0
\(412\) −14.5496 + 25.2007i −0.716809 + 1.24155i
\(413\) −6.66044 −0.327739
\(414\) 0 0
\(415\) 0.192533 0.00945109
\(416\) −12.5326 + 21.7070i −0.614459 + 1.06427i
\(417\) 0 0
\(418\) −11.8439 20.5142i −0.579304 1.00338i
\(419\) −17.3478 30.0472i −0.847494 1.46790i −0.883438 0.468548i \(-0.844777\pi\)
0.0359442 0.999354i \(-0.488556\pi\)
\(420\) 0 0
\(421\) 13.7010 23.7308i 0.667745 1.15657i −0.310788 0.950479i \(-0.600593\pi\)
0.978533 0.206090i \(-0.0660738\pi\)
\(422\) 8.53209 0.415336
\(423\) 0 0
\(424\) 44.5185 2.16201
\(425\) −3.49273 + 6.04958i −0.169422 + 0.293448i
\(426\) 0 0
\(427\) 1.29813 + 2.24843i 0.0628211 + 0.108809i
\(428\) 5.26991 + 9.12776i 0.254731 + 0.441207i
\(429\) 0 0
\(430\) 0.205737 0.356347i 0.00992152 0.0171846i
\(431\) −26.5921 −1.28090 −0.640449 0.768000i \(-0.721252\pi\)
−0.640449 + 0.768000i \(0.721252\pi\)
\(432\) 0 0
\(433\) 37.1830 1.78690 0.893451 0.449160i \(-0.148277\pi\)
0.893451 + 0.449160i \(0.148277\pi\)
\(434\) −5.76604 + 9.98708i −0.276779 + 0.479395i
\(435\) 0 0
\(436\) −8.73055 15.1218i −0.418118 0.724201i
\(437\) 3.81315 + 6.60457i 0.182408 + 0.315939i
\(438\) 0 0
\(439\) −12.5373 + 21.7152i −0.598373 + 1.03641i 0.394689 + 0.918815i \(0.370853\pi\)
−0.993061 + 0.117597i \(0.962481\pi\)
\(440\) 20.8307 0.993064
\(441\) 0 0
\(442\) −22.8212 −1.08549
\(443\) 1.02229 1.77066i 0.0485704 0.0841264i −0.840718 0.541473i \(-0.817867\pi\)
0.889288 + 0.457347i \(0.151200\pi\)
\(444\) 0 0
\(445\) 4.84864 + 8.39809i 0.229848 + 0.398108i
\(446\) −7.94609 13.7630i −0.376258 0.651698i
\(447\) 0 0
\(448\) 0.819078 1.41868i 0.0386978 0.0670265i
\(449\) 10.2344 0.482992 0.241496 0.970402i \(-0.422362\pi\)
0.241496 + 0.970402i \(0.422362\pi\)
\(450\) 0 0
\(451\) −4.59627 −0.216430
\(452\) 36.2918 62.8592i 1.70702 2.95665i
\(453\) 0 0
\(454\) 7.80200 + 13.5135i 0.366166 + 0.634218i
\(455\) 2.39780 + 4.15312i 0.112411 + 0.194701i
\(456\) 0 0
\(457\) 21.2973 36.8879i 0.996244 1.72554i 0.423129 0.906070i \(-0.360932\pi\)
0.573115 0.819475i \(-0.305735\pi\)
\(458\) −59.2131 −2.76684
\(459\) 0 0
\(460\) −12.2686 −0.572025
\(461\) 0.252374 0.437124i 0.0117542 0.0203589i −0.860088 0.510145i \(-0.829592\pi\)
0.871843 + 0.489786i \(0.162925\pi\)
\(462\) 0 0
\(463\) −1.34002 2.32099i −0.0622761 0.107865i 0.833206 0.552962i \(-0.186503\pi\)
−0.895482 + 0.445097i \(0.853169\pi\)
\(464\) −20.0792 34.7782i −0.932153 1.61454i
\(465\) 0 0
\(466\) 10.7934 18.6947i 0.499994 0.866015i
\(467\) 31.4165 1.45378 0.726892 0.686752i \(-0.240964\pi\)
0.726892 + 0.686752i \(0.240964\pi\)
\(468\) 0 0
\(469\) −2.95811 −0.136593
\(470\) 1.13816 1.97134i 0.0524992 0.0909313i
\(471\) 0 0
\(472\) −20.3346 35.2205i −0.935974 1.62115i
\(473\) 0.358441 + 0.620838i 0.0164811 + 0.0285461i
\(474\) 0 0
\(475\) 5.09627 8.82699i 0.233833 0.405010i
\(476\) −7.29086 −0.334176
\(477\) 0 0
\(478\) 36.8726 1.68651
\(479\) −8.22028 + 14.2380i −0.375594 + 0.650549i −0.990416 0.138118i \(-0.955895\pi\)
0.614821 + 0.788666i \(0.289228\pi\)
\(480\) 0 0
\(481\) −12.4183 21.5092i −0.566227 0.980735i
\(482\) −6.84137 11.8496i −0.311616 0.539734i
\(483\) 0 0
\(484\) −8.93242 + 15.4714i −0.406019 + 0.703246i
\(485\) 10.9949 0.499255
\(486\) 0 0
\(487\) −2.97535 −0.134826 −0.0674129 0.997725i \(-0.521474\pi\)
−0.0674129 + 0.997725i \(0.521474\pi\)
\(488\) −7.92649 + 13.7291i −0.358815 + 0.621486i
\(489\) 0 0
\(490\) 1.11334 + 1.92836i 0.0502956 + 0.0871146i
\(491\) −13.2430 22.9376i −0.597650 1.03516i −0.993167 0.116702i \(-0.962768\pi\)
0.395517 0.918459i \(-0.370565\pi\)
\(492\) 0 0
\(493\) 4.99912 8.65873i 0.225149 0.389970i
\(494\) 33.2986 1.49817
\(495\) 0 0
\(496\) −30.2327 −1.35749
\(497\) −1.84002 + 3.18701i −0.0825363 + 0.142957i
\(498\) 0 0
\(499\) 6.72193 + 11.6427i 0.300915 + 0.521200i 0.976343 0.216225i \(-0.0693746\pi\)
−0.675428 + 0.737426i \(0.736041\pi\)
\(500\) 17.8969 + 30.9984i 0.800375 + 1.38629i
\(501\) 0 0
\(502\) 15.2772 26.4609i 0.681854 1.18101i
\(503\) 22.6631 1.01050 0.505250 0.862973i \(-0.331400\pi\)
0.505250 + 0.862973i \(0.331400\pi\)
\(504\) 0 0
\(505\) 8.54488 0.380242
\(506\) 15.5326 26.9032i 0.690506 1.19599i
\(507\) 0 0
\(508\) −38.9393 67.4448i −1.72765 2.99238i
\(509\) 4.77379 + 8.26844i 0.211594 + 0.366492i 0.952214 0.305433i \(-0.0988011\pi\)
−0.740619 + 0.671925i \(0.765468\pi\)
\(510\) 0 0
\(511\) 6.39053 11.0687i 0.282700 0.489651i
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 26.7547 1.18010
\(515\) −2.90033 + 5.02352i −0.127804 + 0.221363i
\(516\) 0 0
\(517\) 1.98293 + 3.43453i 0.0872090 + 0.151050i
\(518\) −5.76604 9.98708i −0.253345 0.438807i
\(519\) 0 0
\(520\) −14.6411 + 25.3592i −0.642057 + 1.11208i
\(521\) 3.11287 0.136377 0.0681887 0.997672i \(-0.478278\pi\)
0.0681887 + 0.997672i \(0.478278\pi\)
\(522\) 0 0
\(523\) −16.1489 −0.706142 −0.353071 0.935597i \(-0.614863\pi\)
−0.353071 + 0.935597i \(0.614863\pi\)
\(524\) −42.3448 + 73.3434i −1.84984 + 3.20402i
\(525\) 0 0
\(526\) 35.8965 + 62.1746i 1.56516 + 2.71094i
\(527\) −3.76352 6.51860i −0.163941 0.283955i
\(528\) 0 0
\(529\) 6.49928 11.2571i 0.282578 0.489439i
\(530\) 16.2344 0.705178
\(531\) 0 0
\(532\) 10.6382 0.461223
\(533\) 3.23055 5.59548i 0.139931 0.242367i
\(534\) 0 0
\(535\) 1.05051 + 1.81953i 0.0454174 + 0.0786652i
\(536\) −9.03121 15.6425i −0.390089 0.675654i
\(537\) 0 0
\(538\) −9.47431 + 16.4100i −0.408466 + 0.707485i
\(539\) −3.87939 −0.167097
\(540\) 0 0
\(541\) −5.01548 −0.215632 −0.107816 0.994171i \(-0.534386\pi\)
−0.107816 + 0.994171i \(0.534386\pi\)
\(542\) 17.2665 29.9065i 0.741660 1.28459i
\(543\) 0 0
\(544\) −3.79813 6.57856i −0.162844 0.282053i
\(545\) −1.74035 3.01438i −0.0745485 0.129122i
\(546\) 0 0
\(547\) −8.23901 + 14.2704i −0.352275 + 0.610157i −0.986648 0.162870i \(-0.947925\pi\)
0.634373 + 0.773027i \(0.281258\pi\)
\(548\) −80.0934 −3.42142
\(549\) 0 0
\(550\) −41.5185 −1.77035
\(551\) −7.29426 + 12.6340i −0.310746 + 0.538228i
\(552\) 0 0
\(553\) 2.97906 + 5.15988i 0.126682 + 0.219420i
\(554\) −7.78699 13.4875i −0.330837 0.573027i
\(555\) 0 0
\(556\) −48.6528 + 84.2691i −2.06334 + 3.57380i
\(557\) 34.5631 1.46448 0.732242 0.681045i \(-0.238474\pi\)
0.732242 + 0.681045i \(0.238474\pi\)
\(558\) 0 0
\(559\) −1.00774 −0.0426229
\(560\) −2.91875 + 5.05542i −0.123340 + 0.213630i
\(561\) 0 0
\(562\) −4.19341 7.26320i −0.176888 0.306380i
\(563\) −18.6052 32.2251i −0.784115 1.35813i −0.929526 0.368756i \(-0.879784\pi\)
0.145411 0.989371i \(-0.453550\pi\)
\(564\) 0 0
\(565\) 7.23442 12.5304i 0.304354 0.527157i
\(566\) −73.4894 −3.08899
\(567\) 0 0
\(568\) −22.4706 −0.942845
\(569\) 0.202333 0.350452i 0.00848226 0.0146917i −0.861753 0.507328i \(-0.830633\pi\)
0.870235 + 0.492636i \(0.163967\pi\)
\(570\) 0 0
\(571\) 18.8897 + 32.7178i 0.790507 + 1.36920i 0.925653 + 0.378373i \(0.123516\pi\)
−0.135146 + 0.990826i \(0.543150\pi\)
\(572\) −46.6639 80.8243i −1.95112 3.37943i
\(573\) 0 0
\(574\) 1.50000 2.59808i 0.0626088 0.108442i
\(575\) 13.3669 0.557438
\(576\) 0 0
\(577\) −2.21120 −0.0920535 −0.0460267 0.998940i \(-0.514656\pi\)
−0.0460267 + 0.998940i \(0.514656\pi\)
\(578\) −18.0646 + 31.2889i −0.751390 + 1.30145i
\(579\) 0 0
\(580\) −11.7344 20.3246i −0.487245 0.843934i
\(581\) −0.109470 0.189608i −0.00454160 0.00786628i
\(582\) 0 0
\(583\) −14.1420 + 24.4947i −0.585703 + 1.01447i
\(584\) 78.0420 3.22940
\(585\) 0 0
\(586\) −21.3182 −0.880647
\(587\) 12.1049 20.9663i 0.499622 0.865371i −0.500378 0.865807i \(-0.666806\pi\)
1.00000 0.000436347i \(0.000138894\pi\)
\(588\) 0 0
\(589\) 5.49138 + 9.51135i 0.226268 + 0.391908i
\(590\) −7.41534 12.8438i −0.305285 0.528769i
\(591\) 0 0
\(592\) 15.1163 26.1823i 0.621277 1.07608i
\(593\) −12.2385 −0.502577 −0.251288 0.967912i \(-0.580854\pi\)
−0.251288 + 0.967912i \(0.580854\pi\)
\(594\) 0 0
\(595\) −1.45336 −0.0595821
\(596\) −33.4295 + 57.9016i −1.36932 + 2.37174i
\(597\) 0 0
\(598\) 21.8346 + 37.8186i 0.892882 + 1.54652i
\(599\) 19.8084 + 34.3092i 0.809349 + 1.40183i 0.913315 + 0.407253i \(0.133513\pi\)
−0.103966 + 0.994581i \(0.533153\pi\)
\(600\) 0 0
\(601\) 15.0039 25.9875i 0.612021 1.06005i −0.378879 0.925446i \(-0.623690\pi\)
0.990899 0.134605i \(-0.0429764\pi\)
\(602\) −0.467911 −0.0190706
\(603\) 0 0
\(604\) −83.6255 −3.40267
\(605\) −1.78059 + 3.08408i −0.0723914 + 0.125386i
\(606\) 0 0
\(607\) 9.74216 + 16.8739i 0.395422 + 0.684891i 0.993155 0.116804i \(-0.0372650\pi\)
−0.597733 + 0.801695i \(0.703932\pi\)
\(608\) 5.54189 + 9.59883i 0.224753 + 0.389284i
\(609\) 0 0
\(610\) −2.89053 + 5.00654i −0.117034 + 0.202709i
\(611\) −5.57491 −0.225537
\(612\) 0 0
\(613\) −18.5276 −0.748325 −0.374162 0.927363i \(-0.622070\pi\)
−0.374162 + 0.927363i \(0.622070\pi\)
\(614\) −16.0633 + 27.8225i −0.648262 + 1.12282i
\(615\) 0 0
\(616\) −11.8439 20.5142i −0.477204 0.826542i
\(617\) 13.9201 + 24.1103i 0.560402 + 0.970644i 0.997461 + 0.0712118i \(0.0226866\pi\)
−0.437059 + 0.899433i \(0.643980\pi\)
\(618\) 0 0
\(619\) 22.4907 38.9550i 0.903976 1.56573i 0.0816906 0.996658i \(-0.473968\pi\)
0.822286 0.569075i \(-0.192699\pi\)
\(620\) −17.6682 −0.709571
\(621\) 0 0
\(622\) −41.7547 −1.67421
\(623\) 5.51367 9.54996i 0.220901 0.382611i
\(624\) 0 0
\(625\) −6.99912 12.1228i −0.279965 0.484913i
\(626\) 36.1057 + 62.5368i 1.44307 + 2.49947i
\(627\) 0 0
\(628\) 39.8298 68.9873i 1.58938 2.75289i
\(629\) 7.52704 0.300123
\(630\) 0 0
\(631\) 9.43613 0.375646 0.187823 0.982203i \(-0.439857\pi\)
0.187823 + 0.982203i \(0.439857\pi\)
\(632\) −18.1903 + 31.5065i −0.723572 + 1.25326i
\(633\) 0 0
\(634\) 32.7841 + 56.7836i 1.30202 + 2.25517i
\(635\) −7.76217 13.4445i −0.308032 0.533528i
\(636\) 0 0
\(637\) 2.72668 4.72275i 0.108035 0.187122i
\(638\) 59.4252 2.35267
\(639\) 0 0
\(640\) 11.7314 0.463725
\(641\) 18.6951 32.3808i 0.738410 1.27896i −0.214800 0.976658i \(-0.568910\pi\)
0.953211 0.302306i \(-0.0977566\pi\)
\(642\) 0 0
\(643\) −0.805874 1.39581i −0.0317806 0.0550456i 0.849698 0.527270i \(-0.176784\pi\)
−0.881478 + 0.472225i \(0.843451\pi\)
\(644\) 6.97565 + 12.0822i 0.274879 + 0.476105i
\(645\) 0 0
\(646\) −5.04576 + 8.73951i −0.198523 + 0.343851i
\(647\) 41.1762 1.61880 0.809402 0.587255i \(-0.199791\pi\)
0.809402 + 0.587255i \(0.199791\pi\)
\(648\) 0 0
\(649\) 25.8384 1.01425
\(650\) 29.1819 50.5445i 1.14461 1.98252i
\(651\) 0 0
\(652\) −2.11334 3.66041i −0.0827648 0.143353i
\(653\) 1.52600 + 2.64310i 0.0597169 + 0.103433i 0.894338 0.447391i \(-0.147647\pi\)
−0.834621 + 0.550824i \(0.814314\pi\)
\(654\) 0 0
\(655\) −8.44104 + 14.6203i −0.329819 + 0.571263i
\(656\) 7.86484 0.307070
\(657\) 0 0
\(658\) −2.58853 −0.100911
\(659\) 20.8175 36.0569i 0.810934 1.40458i −0.101277 0.994858i \(-0.532293\pi\)
0.912211 0.409721i \(-0.134374\pi\)
\(660\) 0 0
\(661\) −10.1505 17.5812i −0.394808 0.683828i 0.598269 0.801296i \(-0.295856\pi\)
−0.993077 + 0.117468i \(0.962522\pi\)
\(662\) 10.4055 + 18.0229i 0.404423 + 0.700481i
\(663\) 0 0
\(664\) 0.668434 1.15776i 0.0259403 0.0449298i
\(665\) 2.12061 0.0822339
\(666\) 0 0
\(667\) −19.1320 −0.740793
\(668\) 43.7584 75.7917i 1.69306 2.93247i
\(669\) 0 0
\(670\) −3.29339 5.70431i −0.127235 0.220377i
\(671\) −5.03596 8.72254i −0.194411 0.336730i
\(672\) 0 0
\(673\) 0.415345 0.719398i 0.0160104 0.0277307i −0.857909 0.513801i \(-0.828237\pi\)
0.873920 + 0.486071i \(0.161570\pi\)
\(674\) −11.5749 −0.445849
\(675\) 0 0
\(676\) 73.8444 2.84017
\(677\) 5.43360 9.41127i 0.208830 0.361705i −0.742516 0.669828i \(-0.766368\pi\)
0.951346 + 0.308124i \(0.0997011\pi\)
\(678\) 0 0
\(679\) −6.25150 10.8279i −0.239910 0.415537i
\(680\) −4.43717 7.68540i −0.170158 0.294722i
\(681\) 0 0
\(682\) 22.3687 38.7437i 0.856542 1.48357i
\(683\) −32.6946 −1.25102 −0.625512 0.780215i \(-0.715110\pi\)
−0.625512 + 0.780215i \(0.715110\pi\)
\(684\) 0 0
\(685\) −15.9659 −0.610024
\(686\) 1.26604 2.19285i 0.0483378 0.0837235i
\(687\) 0 0
\(688\) −0.613341 1.06234i −0.0233834 0.0405012i
\(689\) −19.8799 34.4329i −0.757362 1.31179i
\(690\) 0 0
\(691\) −7.49912 + 12.9889i −0.285280 + 0.494120i −0.972677 0.232162i \(-0.925420\pi\)
0.687397 + 0.726282i \(0.258753\pi\)
\(692\) −100.064 −3.80387
\(693\) 0 0
\(694\) 56.8863 2.15937
\(695\) −9.69846 + 16.7982i −0.367884 + 0.637193i
\(696\) 0 0
\(697\) 0.979055 + 1.69577i 0.0370844 + 0.0642320i
\(698\) 33.0428 + 57.2318i 1.25069 + 2.16626i
\(699\) 0 0
\(700\) 9.32295 16.1478i 0.352374 0.610330i
\(701\) −26.4688 −0.999714 −0.499857 0.866108i \(-0.666614\pi\)
−0.499857 + 0.866108i \(0.666614\pi\)
\(702\) 0 0
\(703\) −10.9828 −0.414223
\(704\) −3.17752 + 5.50362i −0.119757 + 0.207426i
\(705\) 0 0
\(706\) 0.449493 + 0.778544i 0.0169169 + 0.0293009i
\(707\) −4.85844 8.41507i −0.182720 0.316481i
\(708\) 0 0
\(709\) −7.68004 + 13.3022i −0.288430 + 0.499576i −0.973435 0.228963i \(-0.926467\pi\)
0.685005 + 0.728538i \(0.259800\pi\)
\(710\) −8.19429 −0.307526
\(711\) 0 0
\(712\) 67.3337 2.52344
\(713\) −7.20162 + 12.4736i −0.269703 + 0.467139i
\(714\) 0 0
\(715\) −9.30200 16.1115i −0.347875 0.602538i
\(716\) −16.2062 28.0700i −0.605654 1.04902i
\(717\) 0 0
\(718\) −6.90760 + 11.9643i −0.257789 + 0.446504i
\(719\) −26.7306 −0.996883 −0.498442 0.866923i \(-0.666094\pi\)
−0.498442 + 0.866923i \(0.666094\pi\)
\(720\) 0 0
\(721\) 6.59627 0.245658
\(722\) −16.6925 + 28.9123i −0.621232 + 1.07600i
\(723\) 0 0
\(724\) 7.60014 + 13.1638i 0.282457 + 0.489230i
\(725\) 12.7849 + 22.1441i 0.474820 + 0.822413i
\(726\) 0 0
\(727\) 22.8221 39.5290i 0.846424 1.46605i −0.0379552 0.999279i \(-0.512084\pi\)
0.884379 0.466770i \(-0.154582\pi\)
\(728\) 33.2986 1.23413
\(729\) 0 0
\(730\) 28.4593 1.05333
\(731\) 0.152704 0.264490i 0.00564795 0.00978253i
\(732\) 0 0
\(733\) −2.98751 5.17452i −0.110346 0.191125i 0.805564 0.592509i \(-0.201863\pi\)
−0.915910 + 0.401384i \(0.868529\pi\)
\(734\) 13.8302 + 23.9546i 0.510483 + 0.884182i
\(735\) 0 0
\(736\) −7.26786 + 12.5883i −0.267897 + 0.464011i
\(737\) 11.4757 0.422711
\(738\) 0 0
\(739\) −35.5963 −1.30943 −0.654715 0.755876i \(-0.727211\pi\)
−0.654715 + 0.755876i \(0.727211\pi\)
\(740\) 8.83409 15.3011i 0.324748 0.562480i
\(741\) 0 0
\(742\) −9.23055 15.9878i −0.338864 0.586930i
\(743\) −14.6544 25.3821i −0.537616 0.931178i −0.999032 0.0439943i \(-0.985992\pi\)
0.461416 0.887184i \(-0.347342\pi\)
\(744\) 0 0
\(745\) −6.66385 + 11.5421i −0.244145 + 0.422871i
\(746\) −4.38413 −0.160515
\(747\) 0 0
\(748\) 28.2841 1.03417
\(749\) 1.19459 2.06910i 0.0436495 0.0756031i
\(750\) 0 0
\(751\) 8.66684 + 15.0114i 0.316258 + 0.547774i 0.979704 0.200450i \(-0.0642403\pi\)
−0.663446 + 0.748224i \(0.730907\pi\)
\(752\) −3.39306 5.87695i −0.123732 0.214310i
\(753\) 0 0
\(754\) −41.7679 + 72.3440i −1.52110 + 2.63461i
\(755\) −16.6699 −0.606681
\(756\) 0 0
\(757\) −2.77156 −0.100734 −0.0503671 0.998731i \(-0.516039\pi\)
−0.0503671 + 0.998731i \(0.516039\pi\)
\(758\) −15.3614 + 26.6068i −0.557952 + 0.966402i
\(759\) 0 0
\(760\) 6.47431 + 11.2138i 0.234848 + 0.406768i
\(761\) 3.75372 + 6.50163i 0.136072 + 0.235684i 0.926007 0.377508i \(-0.123219\pi\)
−0.789934 + 0.613191i \(0.789885\pi\)
\(762\) 0 0
\(763\) −1.97906 + 3.42782i −0.0716466 + 0.124096i
\(764\) −24.9590 −0.902987
\(765\) 0 0
\(766\) −22.0591 −0.797029
\(767\) −18.1609 + 31.4556i −0.655752 + 1.13580i
\(768\) 0 0
\(769\) −1.02182 1.76985i −0.0368478 0.0638223i 0.847013 0.531572i \(-0.178398\pi\)
−0.883861 + 0.467749i \(0.845065\pi\)
\(770\) −4.31908 7.48086i −0.155649 0.269592i
\(771\) 0 0
\(772\) −21.1668 + 36.6620i −0.761811 + 1.31950i
\(773\) 24.9418 0.897094 0.448547 0.893759i \(-0.351942\pi\)
0.448547 + 0.893759i \(0.351942\pi\)
\(774\) 0 0
\(775\) 19.2499 0.691477
\(776\) 38.1721 66.1159i 1.37030 2.37342i
\(777\) 0 0
\(778\) −4.61246 7.98902i −0.165365 0.286420i
\(779\) −1.42855 2.47432i −0.0511831 0.0886516i
\(780\) 0 0
\(781\) 7.13816 12.3636i 0.255423 0.442406i
\(782\) −13.2344 −0.473262
\(783\) 0 0
\(784\) 6.63816 0.237077
\(785\) 7.93969 13.7520i 0.283380 0.490828i
\(786\) 0 0
\(787\) −3.55350 6.15484i −0.126669 0.219396i 0.795715 0.605671i \(-0.207095\pi\)
−0.922384 + 0.386274i \(0.873762\pi\)
\(788\) 18.3516 + 31.7860i 0.653750 + 1.13233i
\(789\) 0 0
\(790\) −6.63341 + 11.4894i −0.236006 + 0.408774i
\(791\) −16.4534 −0.585014
\(792\) 0 0
\(793\) 14.1584 0.502779
\(794\) −19.5548 + 33.8700i −0.693975 + 1.20200i
\(795\) 0 0
\(796\) −14.5496 25.2007i −0.515698 0.893215i
\(797\) 16.8314 + 29.1528i 0.596199 + 1.03265i 0.993376 + 0.114905i \(0.0366564\pi\)
−0.397178 + 0.917742i \(0.630010\pi\)
\(798\) 0 0
\(799\) 0.844770 1.46318i 0.0298858 0.0517638i
\(800\) 19.4270 0.686847
\(801\) 0 0
\(802\) 46.6459 1.64712
\(803\) −24.7913 + 42.9398i −0.874867 + 1.51531i
\(804\) 0 0
\(805\) 1.39053 + 2.40847i 0.0490097 + 0.0848873i
\(806\) 31.4443 + 54.4632i 1.10758 + 1.91838i
\(807\) 0 0
\(808\) 29.6660 51.3830i 1.04364 1.80765i
\(809\) 12.8161 0.450592 0.225296 0.974290i \(-0.427665\pi\)
0.225296 + 0.974290i \(0.427665\pi\)
\(810\) 0 0
\(811\) −26.1239 −0.917335 −0.458667 0.888608i \(-0.651673\pi\)
−0.458667 + 0.888608i \(0.651673\pi\)
\(812\) −13.3439 + 23.1123i −0.468279 + 0.811083i
\(813\) 0 0
\(814\) 22.3687 + 38.7437i 0.784023 + 1.35797i
\(815\) −0.421274 0.729669i −0.0147566 0.0255592i
\(816\) 0 0
\(817\) −0.222811 + 0.385920i −0.00779518 + 0.0135016i
\(818\) 72.5099 2.53525
\(819\) 0 0
\(820\) 4.59627 0.160509
\(821\) 13.8320 23.9578i 0.482741 0.836132i −0.517062 0.855948i \(-0.672974\pi\)
0.999804 + 0.0198153i \(0.00630781\pi\)
\(822\) 0 0
\(823\) −13.9162 24.1036i −0.485089 0.840199i 0.514764 0.857332i \(-0.327879\pi\)
−0.999853 + 0.0171330i \(0.994546\pi\)
\(824\) 20.1386 + 34.8811i 0.701562 + 1.21514i
\(825\) 0 0
\(826\) −8.43242 + 14.6054i −0.293401 + 0.508186i
\(827\) −4.65507 −0.161873 −0.0809363 0.996719i \(-0.525791\pi\)
−0.0809363 + 0.996719i \(0.525791\pi\)
\(828\) 0 0
\(829\) −9.97359 −0.346397 −0.173199 0.984887i \(-0.555410\pi\)
−0.173199 + 0.984887i \(0.555410\pi\)
\(830\) 0.243756 0.422197i 0.00846089 0.0146547i
\(831\) 0 0
\(832\) −4.46673 7.73660i −0.154856 0.268218i
\(833\) 0.826352 + 1.43128i 0.0286314 + 0.0495910i
\(834\) 0 0
\(835\) 8.72281 15.1084i 0.301865 0.522846i
\(836\) −41.2695 −1.42734
\(837\) 0 0
\(838\) −87.8522 −3.03480
\(839\) −3.36484 + 5.82807i −0.116167 + 0.201207i −0.918246 0.396011i \(-0.870394\pi\)
0.802079 + 0.597218i \(0.203727\pi\)
\(840\) 0 0
\(841\) −3.79901 6.58008i −0.131000 0.226899i
\(842\) −34.6921 60.0885i −1.19557 2.07079i
\(843\) 0 0
\(844\) 7.43242 12.8733i 0.255834 0.443118i
\(845\) 14.7202 0.506390
\(846\) 0 0
\(847\) 4.04963 0.139147
\(848\) 24.1989 41.9138i 0.830995 1.43932i
\(849\) 0 0
\(850\) 8.84389 + 15.3181i 0.303343 + 0.525406i
\(851\) −7.20162 12.4736i −0.246868 0.427588i
\(852\) 0 0
\(853\) −2.89528 + 5.01477i −0.0991324 + 0.171702i −0.911326 0.411686i \(-0.864940\pi\)
0.812193 + 0.583388i \(0.198273\pi\)
\(854\) 6.57398 0.224957
\(855\) 0 0
\(856\) 14.5885 0.498626
\(857\) −17.4538 + 30.2309i −0.596211 + 1.03267i 0.397163 + 0.917748i \(0.369995\pi\)
−0.993375 + 0.114921i \(0.963339\pi\)
\(858\) 0 0
\(859\) 6.30747 + 10.9249i 0.215208 + 0.372751i 0.953337 0.301909i \(-0.0976237\pi\)
−0.738129 + 0.674660i \(0.764290\pi\)
\(860\) −0.358441 0.620838i −0.0122227 0.0211704i
\(861\) 0 0
\(862\) −33.6668 + 58.3127i −1.14670 + 1.98614i
\(863\) 24.2053 0.823959 0.411979 0.911193i \(-0.364838\pi\)
0.411979 + 0.911193i \(0.364838\pi\)
\(864\) 0 0
\(865\) −19.9469 −0.678214
\(866\) 47.0754 81.5369i 1.59969 2.77074i
\(867\) 0 0
\(868\) 10.0458 + 17.3998i 0.340975 + 0.590587i
\(869\) −11.5569 20.0171i −0.392041 0.679035i
\(870\) 0 0
\(871\) −8.06583 + 13.9704i −0.273300 + 0.473370i
\(872\) −24.1685 −0.818448
\(873\) 0 0
\(874\) 19.3105 0.653186
\(875\) 4.05690 7.02676i 0.137148 0.237548i
\(876\) 0 0
\(877\) 0.562834 + 0.974856i 0.0190055 + 0.0329186i 0.875372 0.483450i \(-0.160617\pi\)
−0.856366 + 0.516369i \(0.827283\pi\)
\(878\) 31.7456 + 54.9849i 1.07136 + 1.85565i
\(879\) 0 0
\(880\) 11.3229 19.6119i 0.381697 0.661118i
\(881\) 4.38331 0.147678 0.0738388 0.997270i \(-0.476475\pi\)
0.0738388 + 0.997270i \(0.476475\pi\)
\(882\) 0 0
\(883\) −6.88949 −0.231850 −0.115925 0.993258i \(-0.536983\pi\)
−0.115925 + 0.993258i \(0.536983\pi\)
\(884\) −19.8799 + 34.4329i −0.668632 + 1.15810i
\(885\) 0 0
\(886\) −2.58853 4.48346i −0.0869632 0.150625i
\(887\) 19.5376 + 33.8401i 0.656009 + 1.13624i 0.981640 + 0.190744i \(0.0610899\pi\)
−0.325631 + 0.945497i \(0.605577\pi\)
\(888\) 0 0
\(889\) −8.82682 + 15.2885i −0.296042 + 0.512760i
\(890\) 24.5544 0.823065
\(891\) 0 0
\(892\) −27.6878 −0.927056
\(893\) −1.23261 + 2.13495i −0.0412478 + 0.0714432i
\(894\) 0 0
\(895\) −3.23055 5.59548i −0.107985 0.187036i
\(896\) −6.67024 11.5532i −0.222837 0.385965i
\(897\) 0 0
\(898\) 12.9572 22.4426i 0.432388 0.748919i
\(899\) −27.5523 −0.918921
\(900\) 0 0
\(901\) 12.0496 0.401431
\(902\) −5.81908 + 10.0789i −0.193754 + 0.335592i
\(903\) 0 0
\(904\) −50.2327 87.0055i −1.67071 2.89376i
\(905\) 1.51501 + 2.62408i 0.0503608 + 0.0872275i
\(906\) 0 0
\(907\) −21.2469 + 36.8007i −0.705492 + 1.22195i 0.261022 + 0.965333i \(0.415941\pi\)
−0.966514 + 0.256615i \(0.917393\pi\)
\(908\) 27.1857 0.902190
\(909\) 0 0
\(910\) 12.1429 0.402533
\(911\) −7.74675 + 13.4178i −0.256661 + 0.444550i −0.965345 0.260976i \(-0.915956\pi\)
0.708684 + 0.705526i \(0.249289\pi\)
\(912\) 0 0
\(913\) 0.424678 + 0.735564i 0.0140548 + 0.0243436i
\(914\) −53.9265 93.4035i −1.78373 3.08951i
\(915\) 0 0
\(916\) −51.5813 + 89.3414i −1.70429 + 2.95192i
\(917\) 19.1976 0.633960
\(918\) 0 0
\(919\) 6.52940 0.215385 0.107693 0.994184i \(-0.465654\pi\)
0.107693 + 0.994184i \(0.465654\pi\)
\(920\) −8.49067 + 14.7063i −0.279929 + 0.484851i
\(921\) 0 0
\(922\) −0.639033 1.10684i −0.0210454 0.0364518i
\(923\) 10.0343 + 17.3799i 0.330283 + 0.572068i
\(924\) 0 0
\(925\) −9.62495 + 16.6709i −0.316466 + 0.548136i
\(926\) −6.78611 −0.223005
\(927\) 0 0
\(928\) −27.8057 −0.912767
\(929\) 29.1386 50.4696i 0.956007 1.65585i 0.223961 0.974598i \(-0.428101\pi\)
0.732046 0.681255i \(-0.238565\pi\)
\(930\) 0 0
\(931\) −1.20574 2.08840i −0.0395164 0.0684445i
\(932\) −18.8045 32.5704i −0.615963 1.06688i
\(933\) 0 0
\(934\) 39.7747 68.8918i 1.30147 2.25421i
\(935\) 5.63816 0.184387
\(936\) 0 0
\(937\) 32.4175 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(938\) −3.74510 + 6.48670i −0.122282 + 0.211798i
\(939\) 0 0
\(940\) −1.98293 3.43453i −0.0646759 0.112022i
\(941\) −13.6613 23.6621i −0.445346 0.771363i 0.552730 0.833360i \(-0.313586\pi\)
−0.998076 + 0.0619979i \(0.980253\pi\)
\(942\) 0 0
\(943\) 1.87346 3.24492i 0.0610081 0.105669i
\(944\) −44.2131 −1.43901
\(945\) 0 0
\(946\) 1.81521 0.0590175
\(947\) −19.1065 + 33.0935i −0.620879 + 1.07539i 0.368443 + 0.929650i \(0.379891\pi\)
−0.989322 + 0.145744i \(0.953443\pi\)
\(948\) 0 0
\(949\) −34.8499 60.3618i −1.13127 1.95943i
\(950\) −12.9042 22.3507i −0.418668 0.725153i
\(951\) 0 0
\(952\) −5.04576 + 8.73951i −0.163534 + 0.283249i
\(953\) −58.9377 −1.90918 −0.954590 0.297924i \(-0.903706\pi\)
−0.954590 + 0.297924i \(0.903706\pi\)
\(954\) 0 0
\(955\) −4.97535 −0.160998
\(956\) 32.1202 55.6338i 1.03884 1.79933i
\(957\) 0 0
\(958\) 20.8145 + 36.0518i 0.672486 + 1.16478i
\(959\) 9.07785 + 15.7233i 0.293139 + 0.507732i
\(960\) 0 0
\(961\) 5.12882 8.88338i 0.165446 0.286561i
\(962\) −62.8887 −2.02761
\(963\) 0 0
\(964\) −23.8384 −0.767784
\(965\) −4.21941 + 7.30823i −0.135828 + 0.235260i
\(966\) 0 0
\(967\) −12.3594 21.4071i −0.397451 0.688405i 0.595960 0.803014i \(-0.296772\pi\)
−0.993411 + 0.114609i \(0.963438\pi\)
\(968\) 12.3637 + 21.4145i 0.397383 + 0.688287i
\(969\) 0 0
\(970\) 13.9201 24.1103i 0.446947 0.774135i
\(971\) −8.17623 −0.262388 −0.131194 0.991357i \(-0.541881\pi\)
−0.131194 + 0.991357i \(0.541881\pi\)
\(972\) 0 0
\(973\) 22.0574 0.707127
\(974\) −3.76692 + 6.52450i −0.120700 + 0.209058i
\(975\) 0 0
\(976\) 8.61721 + 14.9254i 0.275830 + 0.477752i
\(977\) −7.92427 13.7252i −0.253520 0.439109i 0.710973 0.703220i \(-0.248255\pi\)
−0.964492 + 0.264111i \(0.914922\pi\)
\(978\) 0 0
\(979\) −21.3897 + 37.0480i −0.683616 + 1.18406i
\(980\) 3.87939 0.123922
\(981\) 0 0
\(982\) −67.0651 −2.14013
\(983\) 26.6532 46.1646i 0.850104 1.47242i −0.0310096 0.999519i \(-0.509872\pi\)
0.881114 0.472904i \(-0.156794\pi\)
\(984\) 0 0
\(985\) 3.65822 + 6.33623i 0.116561 + 0.201889i
\(986\) −12.6582 21.9247i −0.403120 0.698224i
\(987\) 0 0
\(988\) 29.0069 50.2414i 0.922831 1.59839i
\(989\) −0.584407 −0.0185831
\(990\) 0 0
\(991\) 40.2094 1.27730 0.638648 0.769499i \(-0.279494\pi\)
0.638648 + 0.769499i \(0.279494\pi\)
\(992\) −10.4666 + 18.1286i −0.332314 + 0.575584i
\(993\) 0 0
\(994\) 4.65910 + 8.06980i 0.147778 + 0.255958i
\(995\) −2.90033 5.02352i −0.0919466 0.159256i
\(996\) 0 0
\(997\) −14.3601 + 24.8724i −0.454789 + 0.787717i −0.998676 0.0514412i \(-0.983619\pi\)
0.543887 + 0.839158i \(0.316952\pi\)
\(998\) 34.0411 1.07755
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.f.b.127.3 6
3.2 odd 2 63.2.f.a.43.1 yes 6
4.3 odd 2 3024.2.r.k.2017.1 6
7.2 even 3 1323.2.h.c.802.1 6
7.3 odd 6 1323.2.g.e.667.3 6
7.4 even 3 1323.2.g.d.667.3 6
7.5 odd 6 1323.2.h.b.802.1 6
7.6 odd 2 1323.2.f.d.883.3 6
9.2 odd 6 567.2.a.h.1.3 3
9.4 even 3 inner 189.2.f.b.64.3 6
9.5 odd 6 63.2.f.a.22.1 6
9.7 even 3 567.2.a.c.1.1 3
12.11 even 2 1008.2.r.h.673.3 6
21.2 odd 6 441.2.h.d.214.3 6
21.5 even 6 441.2.h.e.214.3 6
21.11 odd 6 441.2.g.c.79.1 6
21.17 even 6 441.2.g.b.79.1 6
21.20 even 2 441.2.f.c.295.1 6
36.7 odd 6 9072.2.a.bs.1.3 3
36.11 even 6 9072.2.a.ca.1.1 3
36.23 even 6 1008.2.r.h.337.3 6
36.31 odd 6 3024.2.r.k.1009.1 6
63.4 even 3 1323.2.h.c.226.1 6
63.5 even 6 441.2.g.b.67.1 6
63.13 odd 6 1323.2.f.d.442.3 6
63.20 even 6 3969.2.a.q.1.3 3
63.23 odd 6 441.2.g.c.67.1 6
63.31 odd 6 1323.2.h.b.226.1 6
63.32 odd 6 441.2.h.d.373.3 6
63.34 odd 6 3969.2.a.l.1.1 3
63.40 odd 6 1323.2.g.e.361.3 6
63.41 even 6 441.2.f.c.148.1 6
63.58 even 3 1323.2.g.d.361.3 6
63.59 even 6 441.2.h.e.373.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.f.a.22.1 6 9.5 odd 6
63.2.f.a.43.1 yes 6 3.2 odd 2
189.2.f.b.64.3 6 9.4 even 3 inner
189.2.f.b.127.3 6 1.1 even 1 trivial
441.2.f.c.148.1 6 63.41 even 6
441.2.f.c.295.1 6 21.20 even 2
441.2.g.b.67.1 6 63.5 even 6
441.2.g.b.79.1 6 21.17 even 6
441.2.g.c.67.1 6 63.23 odd 6
441.2.g.c.79.1 6 21.11 odd 6
441.2.h.d.214.3 6 21.2 odd 6
441.2.h.d.373.3 6 63.32 odd 6
441.2.h.e.214.3 6 21.5 even 6
441.2.h.e.373.3 6 63.59 even 6
567.2.a.c.1.1 3 9.7 even 3
567.2.a.h.1.3 3 9.2 odd 6
1008.2.r.h.337.3 6 36.23 even 6
1008.2.r.h.673.3 6 12.11 even 2
1323.2.f.d.442.3 6 63.13 odd 6
1323.2.f.d.883.3 6 7.6 odd 2
1323.2.g.d.361.3 6 63.58 even 3
1323.2.g.d.667.3 6 7.4 even 3
1323.2.g.e.361.3 6 63.40 odd 6
1323.2.g.e.667.3 6 7.3 odd 6
1323.2.h.b.226.1 6 63.31 odd 6
1323.2.h.b.802.1 6 7.5 odd 6
1323.2.h.c.226.1 6 63.4 even 3
1323.2.h.c.802.1 6 7.2 even 3
3024.2.r.k.1009.1 6 36.31 odd 6
3024.2.r.k.2017.1 6 4.3 odd 2
3969.2.a.l.1.1 3 63.34 odd 6
3969.2.a.q.1.3 3 63.20 even 6
9072.2.a.bs.1.3 3 36.7 odd 6
9072.2.a.ca.1.1 3 36.11 even 6