Properties

Label 9072.2.a.ca.1.1
Level $9072$
Weight $2$
Character 9072.1
Self dual yes
Analytic conductor $72.440$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9072,2,Mod(1,9072)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9072, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9072.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9072 = 2^{4} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9072.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4402847137\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 9072.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.879385 q^{5} -1.00000 q^{7} -3.87939 q^{11} -5.45336 q^{13} +1.65270 q^{17} -2.41147 q^{19} -3.16250 q^{23} -4.22668 q^{25} -6.04963 q^{29} +4.55438 q^{31} +0.879385 q^{35} -4.55438 q^{37} -1.18479 q^{41} -0.184793 q^{43} +1.02229 q^{47} +1.00000 q^{49} +7.29086 q^{53} +3.41147 q^{55} -6.66044 q^{59} -2.59627 q^{61} +4.79561 q^{65} +2.95811 q^{67} +3.68004 q^{71} -12.7811 q^{73} +3.87939 q^{77} +5.95811 q^{79} +0.218941 q^{83} -1.45336 q^{85} +11.0273 q^{89} +5.45336 q^{91} +2.12061 q^{95} +12.5030 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} - 6 q^{11} - 3 q^{13} + 6 q^{17} + 3 q^{19} - 12 q^{23} - 6 q^{25} + 9 q^{29} + 3 q^{31} - 3 q^{35} - 3 q^{37} + 3 q^{43} - 3 q^{47} + 3 q^{49} + 6 q^{53} + 3 q^{59} + 6 q^{61} + 15 q^{65}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.879385 −0.393273 −0.196637 0.980476i \(-0.563002\pi\)
−0.196637 + 0.980476i \(0.563002\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.87939 −1.16968 −0.584839 0.811149i \(-0.698842\pi\)
−0.584839 + 0.811149i \(0.698842\pi\)
\(12\) 0 0
\(13\) −5.45336 −1.51249 −0.756245 0.654288i \(-0.772968\pi\)
−0.756245 + 0.654288i \(0.772968\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.65270 0.400840 0.200420 0.979710i \(-0.435769\pi\)
0.200420 + 0.979710i \(0.435769\pi\)
\(18\) 0 0
\(19\) −2.41147 −0.553230 −0.276615 0.960981i \(-0.589213\pi\)
−0.276615 + 0.960981i \(0.589213\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.16250 −0.659428 −0.329714 0.944081i \(-0.606952\pi\)
−0.329714 + 0.944081i \(0.606952\pi\)
\(24\) 0 0
\(25\) −4.22668 −0.845336
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.04963 −1.12339 −0.561694 0.827345i \(-0.689850\pi\)
−0.561694 + 0.827345i \(0.689850\pi\)
\(30\) 0 0
\(31\) 4.55438 0.817990 0.408995 0.912537i \(-0.365879\pi\)
0.408995 + 0.912537i \(0.365879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.879385 0.148643
\(36\) 0 0
\(37\) −4.55438 −0.748735 −0.374368 0.927280i \(-0.622140\pi\)
−0.374368 + 0.927280i \(0.622140\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.18479 −0.185034 −0.0925168 0.995711i \(-0.529491\pi\)
−0.0925168 + 0.995711i \(0.529491\pi\)
\(42\) 0 0
\(43\) −0.184793 −0.0281806 −0.0140903 0.999901i \(-0.504485\pi\)
−0.0140903 + 0.999901i \(0.504485\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.02229 0.149116 0.0745581 0.997217i \(-0.476245\pi\)
0.0745581 + 0.997217i \(0.476245\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.29086 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(54\) 0 0
\(55\) 3.41147 0.460003
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.66044 −0.867116 −0.433558 0.901126i \(-0.642742\pi\)
−0.433558 + 0.901126i \(0.642742\pi\)
\(60\) 0 0
\(61\) −2.59627 −0.332418 −0.166209 0.986091i \(-0.553153\pi\)
−0.166209 + 0.986091i \(0.553153\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.79561 0.594822
\(66\) 0 0
\(67\) 2.95811 0.361391 0.180695 0.983539i \(-0.442165\pi\)
0.180695 + 0.983539i \(0.442165\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.68004 0.436741 0.218370 0.975866i \(-0.429926\pi\)
0.218370 + 0.975866i \(0.429926\pi\)
\(72\) 0 0
\(73\) −12.7811 −1.49591 −0.747955 0.663750i \(-0.768964\pi\)
−0.747955 + 0.663750i \(0.768964\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.87939 0.442097
\(78\) 0 0
\(79\) 5.95811 0.670340 0.335170 0.942158i \(-0.391206\pi\)
0.335170 + 0.942158i \(0.391206\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.218941 0.0240319 0.0120159 0.999928i \(-0.496175\pi\)
0.0120159 + 0.999928i \(0.496175\pi\)
\(84\) 0 0
\(85\) −1.45336 −0.157639
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.0273 1.16890 0.584448 0.811431i \(-0.301311\pi\)
0.584448 + 0.811431i \(0.301311\pi\)
\(90\) 0 0
\(91\) 5.45336 0.571668
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.12061 0.217570
\(96\) 0 0
\(97\) 12.5030 1.26949 0.634743 0.772723i \(-0.281106\pi\)
0.634743 + 0.772723i \(0.281106\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.71688 −0.966866 −0.483433 0.875381i \(-0.660610\pi\)
−0.483433 + 0.875381i \(0.660610\pi\)
\(102\) 0 0
\(103\) −6.59627 −0.649949 −0.324975 0.945723i \(-0.605356\pi\)
−0.324975 + 0.945723i \(0.605356\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.38919 −0.230971 −0.115486 0.993309i \(-0.536842\pi\)
−0.115486 + 0.993309i \(0.536842\pi\)
\(108\) 0 0
\(109\) 3.95811 0.379118 0.189559 0.981869i \(-0.439294\pi\)
0.189559 + 0.981869i \(0.439294\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.4534 1.54780 0.773901 0.633306i \(-0.218303\pi\)
0.773901 + 0.633306i \(0.218303\pi\)
\(114\) 0 0
\(115\) 2.78106 0.259335
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.65270 −0.151503
\(120\) 0 0
\(121\) 4.04963 0.368148
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.11381 0.725721
\(126\) 0 0
\(127\) −17.6536 −1.56651 −0.783253 0.621702i \(-0.786441\pi\)
−0.783253 + 0.621702i \(0.786441\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.1976 1.67730 0.838650 0.544670i \(-0.183345\pi\)
0.838650 + 0.544670i \(0.183345\pi\)
\(132\) 0 0
\(133\) 2.41147 0.209101
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.1557 1.55115 0.775573 0.631258i \(-0.217461\pi\)
0.775573 + 0.631258i \(0.217461\pi\)
\(138\) 0 0
\(139\) −22.0574 −1.87088 −0.935441 0.353483i \(-0.884997\pi\)
−0.935441 + 0.353483i \(0.884997\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 21.1557 1.76913
\(144\) 0 0
\(145\) 5.31996 0.441798
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.1557 −1.24160 −0.620802 0.783968i \(-0.713193\pi\)
−0.620802 + 0.783968i \(0.713193\pi\)
\(150\) 0 0
\(151\) 18.9564 1.54265 0.771323 0.636444i \(-0.219595\pi\)
0.771323 + 0.636444i \(0.219595\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00505 −0.321694
\(156\) 0 0
\(157\) −18.0574 −1.44114 −0.720568 0.693385i \(-0.756119\pi\)
−0.720568 + 0.693385i \(0.756119\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.16250 0.249240
\(162\) 0 0
\(163\) −0.958111 −0.0750450 −0.0375225 0.999296i \(-0.511947\pi\)
−0.0375225 + 0.999296i \(0.511947\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.8384 −1.53514 −0.767572 0.640963i \(-0.778535\pi\)
−0.767572 + 0.640963i \(0.778535\pi\)
\(168\) 0 0
\(169\) 16.7392 1.28763
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.6827 1.72454 0.862268 0.506452i \(-0.169043\pi\)
0.862268 + 0.506452i \(0.169043\pi\)
\(174\) 0 0
\(175\) 4.22668 0.319507
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.34730 0.549163 0.274581 0.961564i \(-0.411461\pi\)
0.274581 + 0.961564i \(0.411461\pi\)
\(180\) 0 0
\(181\) −3.44562 −0.256111 −0.128056 0.991767i \(-0.540874\pi\)
−0.128056 + 0.991767i \(0.540874\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00505 0.294457
\(186\) 0 0
\(187\) −6.41147 −0.468853
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.65776 −0.409381 −0.204690 0.978827i \(-0.565619\pi\)
−0.204690 + 0.978827i \(0.565619\pi\)
\(192\) 0 0
\(193\) 9.59627 0.690754 0.345377 0.938464i \(-0.387751\pi\)
0.345377 + 0.938464i \(0.387751\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.31996 0.592772 0.296386 0.955068i \(-0.404218\pi\)
0.296386 + 0.955068i \(0.404218\pi\)
\(198\) 0 0
\(199\) −6.59627 −0.467597 −0.233798 0.972285i \(-0.575116\pi\)
−0.233798 + 0.972285i \(0.575116\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.04963 0.424601
\(204\) 0 0
\(205\) 1.04189 0.0727687
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.35504 0.647101
\(210\) 0 0
\(211\) 3.36959 0.231972 0.115986 0.993251i \(-0.462997\pi\)
0.115986 + 0.993251i \(0.462997\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.162504 0.0110827
\(216\) 0 0
\(217\) −4.55438 −0.309171
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.01279 −0.606266
\(222\) 0 0
\(223\) 6.27631 0.420293 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.16250 0.409020 0.204510 0.978865i \(-0.434440\pi\)
0.204510 + 0.978865i \(0.434440\pi\)
\(228\) 0 0
\(229\) 23.3851 1.54533 0.772664 0.634815i \(-0.218924\pi\)
0.772664 + 0.634815i \(0.218924\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.52528 −0.558510 −0.279255 0.960217i \(-0.590087\pi\)
−0.279255 + 0.960217i \(0.590087\pi\)
\(234\) 0 0
\(235\) −0.898986 −0.0586434
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.5621 −0.941945 −0.470973 0.882148i \(-0.656097\pi\)
−0.470973 + 0.882148i \(0.656097\pi\)
\(240\) 0 0
\(241\) −5.40373 −0.348085 −0.174043 0.984738i \(-0.555683\pi\)
−0.174043 + 0.984738i \(0.555683\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.879385 −0.0561819
\(246\) 0 0
\(247\) 13.1506 0.836755
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0669 0.761654 0.380827 0.924646i \(-0.375639\pi\)
0.380827 + 0.924646i \(0.375639\pi\)
\(252\) 0 0
\(253\) 12.2686 0.771318
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.5662 0.659104 0.329552 0.944137i \(-0.393102\pi\)
0.329552 + 0.944137i \(0.393102\pi\)
\(258\) 0 0
\(259\) 4.55438 0.282995
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 28.3533 1.74834 0.874169 0.485622i \(-0.161407\pi\)
0.874169 + 0.485622i \(0.161407\pi\)
\(264\) 0 0
\(265\) −6.41147 −0.393854
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.48339 0.456271 0.228135 0.973629i \(-0.426737\pi\)
0.228135 + 0.973629i \(0.426737\pi\)
\(270\) 0 0
\(271\) −13.6382 −0.828459 −0.414229 0.910172i \(-0.635949\pi\)
−0.414229 + 0.910172i \(0.635949\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.3969 0.988772
\(276\) 0 0
\(277\) −6.15064 −0.369556 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.31221 0.197590 0.0987951 0.995108i \(-0.468501\pi\)
0.0987951 + 0.995108i \(0.468501\pi\)
\(282\) 0 0
\(283\) −29.0232 −1.72525 −0.862626 0.505843i \(-0.831182\pi\)
−0.862626 + 0.505843i \(0.831182\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.18479 0.0699361
\(288\) 0 0
\(289\) −14.2686 −0.839328
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.41921 −0.491856 −0.245928 0.969288i \(-0.579093\pi\)
−0.245928 + 0.969288i \(0.579093\pi\)
\(294\) 0 0
\(295\) 5.85710 0.341013
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.2463 0.997378
\(300\) 0 0
\(301\) 0.184793 0.0106513
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.28312 0.130731
\(306\) 0 0
\(307\) 12.6878 0.724130 0.362065 0.932153i \(-0.382072\pi\)
0.362065 + 0.932153i \(0.382072\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.4902 0.935073 0.467537 0.883974i \(-0.345142\pi\)
0.467537 + 0.883974i \(0.345142\pi\)
\(312\) 0 0
\(313\) 28.5185 1.61196 0.805980 0.591943i \(-0.201639\pi\)
0.805980 + 0.591943i \(0.201639\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.8949 −1.45440 −0.727200 0.686425i \(-0.759179\pi\)
−0.727200 + 0.686425i \(0.759179\pi\)
\(318\) 0 0
\(319\) 23.4688 1.31400
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.98545 −0.221756
\(324\) 0 0
\(325\) 23.0496 1.27856
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.02229 −0.0563606
\(330\) 0 0
\(331\) −8.21894 −0.451754 −0.225877 0.974156i \(-0.572525\pi\)
−0.225877 + 0.974156i \(0.572525\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.60132 −0.142125
\(336\) 0 0
\(337\) 4.57129 0.249014 0.124507 0.992219i \(-0.460265\pi\)
0.124507 + 0.992219i \(0.460265\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −17.6682 −0.956786
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.4662 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(348\) 0 0
\(349\) 26.0993 1.39706 0.698531 0.715580i \(-0.253838\pi\)
0.698531 + 0.715580i \(0.253838\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.355037 −0.0188967 −0.00944836 0.999955i \(-0.503008\pi\)
−0.00944836 + 0.999955i \(0.503008\pi\)
\(354\) 0 0
\(355\) −3.23618 −0.171758
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.45605 −0.287959 −0.143980 0.989581i \(-0.545990\pi\)
−0.143980 + 0.989581i \(0.545990\pi\)
\(360\) 0 0
\(361\) −13.1848 −0.693936
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.2395 0.588301
\(366\) 0 0
\(367\) −10.9240 −0.570226 −0.285113 0.958494i \(-0.592031\pi\)
−0.285113 + 0.958494i \(0.592031\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.29086 −0.378523
\(372\) 0 0
\(373\) 1.73143 0.0896500 0.0448250 0.998995i \(-0.485727\pi\)
0.0448250 + 0.998995i \(0.485727\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.9908 1.69911
\(378\) 0 0
\(379\) 12.1334 0.623251 0.311626 0.950205i \(-0.399127\pi\)
0.311626 + 0.950205i \(0.399127\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.71183 0.445154 0.222577 0.974915i \(-0.428553\pi\)
0.222577 + 0.974915i \(0.428553\pi\)
\(384\) 0 0
\(385\) −3.41147 −0.173865
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.64321 0.184718 0.0923590 0.995726i \(-0.470559\pi\)
0.0923590 + 0.995726i \(0.470559\pi\)
\(390\) 0 0
\(391\) −5.22668 −0.264325
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.23947 −0.263627
\(396\) 0 0
\(397\) −15.4456 −0.775194 −0.387597 0.921829i \(-0.626695\pi\)
−0.387597 + 0.921829i \(0.626695\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.4219 0.919946 0.459973 0.887933i \(-0.347859\pi\)
0.459973 + 0.887933i \(0.347859\pi\)
\(402\) 0 0
\(403\) −24.8367 −1.23720
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.6682 0.875779
\(408\) 0 0
\(409\) −28.6364 −1.41598 −0.707989 0.706223i \(-0.750398\pi\)
−0.707989 + 0.706223i \(0.750398\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.66044 0.327739
\(414\) 0 0
\(415\) −0.192533 −0.00945109
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.6955 1.69499 0.847494 0.530805i \(-0.178111\pi\)
0.847494 + 0.530805i \(0.178111\pi\)
\(420\) 0 0
\(421\) −27.4020 −1.33549 −0.667745 0.744390i \(-0.732740\pi\)
−0.667745 + 0.744390i \(0.732740\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.98545 −0.338844
\(426\) 0 0
\(427\) 2.59627 0.125642
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.5921 −1.28090 −0.640449 0.768000i \(-0.721252\pi\)
−0.640449 + 0.768000i \(0.721252\pi\)
\(432\) 0 0
\(433\) 37.1830 1.78690 0.893451 0.449160i \(-0.148277\pi\)
0.893451 + 0.449160i \(0.148277\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.62630 0.364815
\(438\) 0 0
\(439\) −25.0746 −1.19675 −0.598373 0.801218i \(-0.704186\pi\)
−0.598373 + 0.801218i \(0.704186\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.04458 −0.0971408 −0.0485704 0.998820i \(-0.515467\pi\)
−0.0485704 + 0.998820i \(0.515467\pi\)
\(444\) 0 0
\(445\) −9.69728 −0.459695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.2344 −0.482992 −0.241496 0.970402i \(-0.577638\pi\)
−0.241496 + 0.970402i \(0.577638\pi\)
\(450\) 0 0
\(451\) 4.59627 0.216430
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.79561 −0.224822
\(456\) 0 0
\(457\) −42.5945 −1.99249 −0.996244 0.0865948i \(-0.972401\pi\)
−0.996244 + 0.0865948i \(0.972401\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.504748 0.0235084 0.0117542 0.999931i \(-0.496258\pi\)
0.0117542 + 0.999931i \(0.496258\pi\)
\(462\) 0 0
\(463\) −2.68004 −0.124552 −0.0622761 0.998059i \(-0.519836\pi\)
−0.0622761 + 0.998059i \(0.519836\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.4165 1.45378 0.726892 0.686752i \(-0.240964\pi\)
0.726892 + 0.686752i \(0.240964\pi\)
\(468\) 0 0
\(469\) −2.95811 −0.136593
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.716881 0.0329622
\(474\) 0 0
\(475\) 10.1925 0.467666
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.4406 0.751189 0.375594 0.926784i \(-0.377439\pi\)
0.375594 + 0.926784i \(0.377439\pi\)
\(480\) 0 0
\(481\) 24.8367 1.13245
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.9949 −0.499255
\(486\) 0 0
\(487\) 2.97535 0.134826 0.0674129 0.997725i \(-0.478526\pi\)
0.0674129 + 0.997725i \(0.478526\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.4861 1.19530 0.597650 0.801757i \(-0.296101\pi\)
0.597650 + 0.801757i \(0.296101\pi\)
\(492\) 0 0
\(493\) −9.99825 −0.450298
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.68004 −0.165073
\(498\) 0 0
\(499\) 13.4439 0.601830 0.300915 0.953651i \(-0.402708\pi\)
0.300915 + 0.953651i \(0.402708\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.6631 1.01050 0.505250 0.862973i \(-0.331400\pi\)
0.505250 + 0.862973i \(0.331400\pi\)
\(504\) 0 0
\(505\) 8.54488 0.380242
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.54757 0.423189 0.211594 0.977358i \(-0.432134\pi\)
0.211594 + 0.977358i \(0.432134\pi\)
\(510\) 0 0
\(511\) 12.7811 0.565401
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.80066 0.255608
\(516\) 0 0
\(517\) −3.96585 −0.174418
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.11287 −0.136377 −0.0681887 0.997672i \(-0.521722\pi\)
−0.0681887 + 0.997672i \(0.521722\pi\)
\(522\) 0 0
\(523\) 16.1489 0.706142 0.353071 0.935597i \(-0.385137\pi\)
0.353071 + 0.935597i \(0.385137\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.52704 0.327883
\(528\) 0 0
\(529\) −12.9986 −0.565155
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.46110 0.279861
\(534\) 0 0
\(535\) 2.10101 0.0908348
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.87939 −0.167097
\(540\) 0 0
\(541\) −5.01548 −0.215632 −0.107816 0.994171i \(-0.534386\pi\)
−0.107816 + 0.994171i \(0.534386\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.48070 −0.149097
\(546\) 0 0
\(547\) −16.4780 −0.704549 −0.352275 0.935897i \(-0.614592\pi\)
−0.352275 + 0.935897i \(0.614592\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.5885 0.621492
\(552\) 0 0
\(553\) −5.95811 −0.253365
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −34.5631 −1.46448 −0.732242 0.681045i \(-0.761526\pi\)
−0.732242 + 0.681045i \(0.761526\pi\)
\(558\) 0 0
\(559\) 1.00774 0.0426229
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.2104 1.56823 0.784115 0.620615i \(-0.213117\pi\)
0.784115 + 0.620615i \(0.213117\pi\)
\(564\) 0 0
\(565\) −14.4688 −0.608709
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.404667 0.0169645 0.00848226 0.999964i \(-0.497300\pi\)
0.00848226 + 0.999964i \(0.497300\pi\)
\(570\) 0 0
\(571\) 37.7793 1.58101 0.790507 0.612453i \(-0.209817\pi\)
0.790507 + 0.612453i \(0.209817\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.3669 0.557438
\(576\) 0 0
\(577\) −2.21120 −0.0920535 −0.0460267 0.998940i \(-0.514656\pi\)
−0.0460267 + 0.998940i \(0.514656\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.218941 −0.00908320
\(582\) 0 0
\(583\) −28.2841 −1.17141
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.2098 −0.999244 −0.499622 0.866243i \(-0.666528\pi\)
−0.499622 + 0.866243i \(0.666528\pi\)
\(588\) 0 0
\(589\) −10.9828 −0.452537
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.2385 0.502577 0.251288 0.967912i \(-0.419146\pi\)
0.251288 + 0.967912i \(0.419146\pi\)
\(594\) 0 0
\(595\) 1.45336 0.0595821
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −39.6168 −1.61870 −0.809349 0.587328i \(-0.800180\pi\)
−0.809349 + 0.587328i \(0.800180\pi\)
\(600\) 0 0
\(601\) −30.0077 −1.22404 −0.612021 0.790842i \(-0.709643\pi\)
−0.612021 + 0.790842i \(0.709643\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.56118 −0.144783
\(606\) 0 0
\(607\) 19.4843 0.790844 0.395422 0.918499i \(-0.370598\pi\)
0.395422 + 0.918499i \(0.370598\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.57491 −0.225537
\(612\) 0 0
\(613\) −18.5276 −0.748325 −0.374162 0.927363i \(-0.622070\pi\)
−0.374162 + 0.927363i \(0.622070\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.8402 1.12080 0.560402 0.828221i \(-0.310647\pi\)
0.560402 + 0.828221i \(0.310647\pi\)
\(618\) 0 0
\(619\) 44.9813 1.80795 0.903976 0.427583i \(-0.140635\pi\)
0.903976 + 0.427583i \(0.140635\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.0273 −0.441801
\(624\) 0 0
\(625\) 13.9982 0.559930
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.52704 −0.300123
\(630\) 0 0
\(631\) −9.43613 −0.375646 −0.187823 0.982203i \(-0.560143\pi\)
−0.187823 + 0.982203i \(0.560143\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.5243 0.616065
\(636\) 0 0
\(637\) −5.45336 −0.216070
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.3901 1.47682 0.738410 0.674352i \(-0.235577\pi\)
0.738410 + 0.674352i \(0.235577\pi\)
\(642\) 0 0
\(643\) −1.61175 −0.0635611 −0.0317806 0.999495i \(-0.510118\pi\)
−0.0317806 + 0.999495i \(0.510118\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 41.1762 1.61880 0.809402 0.587255i \(-0.199791\pi\)
0.809402 + 0.587255i \(0.199791\pi\)
\(648\) 0 0
\(649\) 25.8384 1.01425
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.05199 0.119434 0.0597169 0.998215i \(-0.480980\pi\)
0.0597169 + 0.998215i \(0.480980\pi\)
\(654\) 0 0
\(655\) −16.8821 −0.659637
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.6350 −1.62187 −0.810934 0.585138i \(-0.801041\pi\)
−0.810934 + 0.585138i \(0.801041\pi\)
\(660\) 0 0
\(661\) 20.3010 0.789616 0.394808 0.918764i \(-0.370811\pi\)
0.394808 + 0.918764i \(0.370811\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.12061 −0.0822339
\(666\) 0 0
\(667\) 19.1320 0.740793
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0719 0.388822
\(672\) 0 0
\(673\) −0.830689 −0.0320207 −0.0160104 0.999872i \(-0.505096\pi\)
−0.0160104 + 0.999872i \(0.505096\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.8672 0.417660 0.208830 0.977952i \(-0.433034\pi\)
0.208830 + 0.977952i \(0.433034\pi\)
\(678\) 0 0
\(679\) −12.5030 −0.479821
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −32.6946 −1.25102 −0.625512 0.780215i \(-0.715110\pi\)
−0.625512 + 0.780215i \(0.715110\pi\)
\(684\) 0 0
\(685\) −15.9659 −0.610024
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.7597 −1.51472
\(690\) 0 0
\(691\) −14.9982 −0.570560 −0.285280 0.958444i \(-0.592087\pi\)
−0.285280 + 0.958444i \(0.592087\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.3969 0.735767
\(696\) 0 0
\(697\) −1.95811 −0.0741687
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.4688 0.999714 0.499857 0.866108i \(-0.333386\pi\)
0.499857 + 0.866108i \(0.333386\pi\)
\(702\) 0 0
\(703\) 10.9828 0.414223
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.71688 0.365441
\(708\) 0 0
\(709\) 15.3601 0.576860 0.288430 0.957501i \(-0.406867\pi\)
0.288430 + 0.957501i \(0.406867\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.4032 −0.539405
\(714\) 0 0
\(715\) −18.6040 −0.695750
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.7306 −0.996883 −0.498442 0.866923i \(-0.666094\pi\)
−0.498442 + 0.866923i \(0.666094\pi\)
\(720\) 0 0
\(721\) 6.59627 0.245658
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 25.5699 0.949641
\(726\) 0 0
\(727\) 45.6441 1.69285 0.846424 0.532510i \(-0.178751\pi\)
0.846424 + 0.532510i \(0.178751\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.305407 −0.0112959
\(732\) 0 0
\(733\) 5.97502 0.220693 0.110346 0.993893i \(-0.464804\pi\)
0.110346 + 0.993893i \(0.464804\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.4757 −0.422711
\(738\) 0 0
\(739\) 35.5963 1.30943 0.654715 0.755876i \(-0.272789\pi\)
0.654715 + 0.755876i \(0.272789\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.3087 1.07523 0.537616 0.843190i \(-0.319325\pi\)
0.537616 + 0.843190i \(0.319325\pi\)
\(744\) 0 0
\(745\) 13.3277 0.488289
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.38919 0.0872989
\(750\) 0 0
\(751\) 17.3337 0.632515 0.316258 0.948673i \(-0.397574\pi\)
0.316258 + 0.948673i \(0.397574\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.6699 −0.606681
\(756\) 0 0
\(757\) −2.77156 −0.100734 −0.0503671 0.998731i \(-0.516039\pi\)
−0.0503671 + 0.998731i \(0.516039\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.50744 0.272144 0.136072 0.990699i \(-0.456552\pi\)
0.136072 + 0.990699i \(0.456552\pi\)
\(762\) 0 0
\(763\) −3.95811 −0.143293
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.3218 1.31150
\(768\) 0 0
\(769\) 2.04364 0.0736957 0.0368478 0.999321i \(-0.488268\pi\)
0.0368478 + 0.999321i \(0.488268\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24.9418 −0.897094 −0.448547 0.893759i \(-0.648058\pi\)
−0.448547 + 0.893759i \(0.648058\pi\)
\(774\) 0 0
\(775\) −19.2499 −0.691477
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.85710 0.102366
\(780\) 0 0
\(781\) −14.2763 −0.510847
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.8794 0.566760
\(786\) 0 0
\(787\) −7.10700 −0.253337 −0.126669 0.991945i \(-0.540428\pi\)
−0.126669 + 0.991945i \(0.540428\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.4534 −0.585014
\(792\) 0 0
\(793\) 14.1584 0.502779
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.6628 1.19240 0.596199 0.802837i \(-0.296677\pi\)
0.596199 + 0.802837i \(0.296677\pi\)
\(798\) 0 0
\(799\) 1.68954 0.0597716
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 49.5827 1.74973
\(804\) 0 0
\(805\) −2.78106 −0.0980195
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.8161 −0.450592 −0.225296 0.974290i \(-0.572335\pi\)
−0.225296 + 0.974290i \(0.572335\pi\)
\(810\) 0 0
\(811\) 26.1239 0.917335 0.458667 0.888608i \(-0.348327\pi\)
0.458667 + 0.888608i \(0.348327\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.842549 0.0295132
\(816\) 0 0
\(817\) 0.445622 0.0155904
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27.6641 0.965483 0.482741 0.875763i \(-0.339641\pi\)
0.482741 + 0.875763i \(0.339641\pi\)
\(822\) 0 0
\(823\) −27.8324 −0.970178 −0.485089 0.874465i \(-0.661213\pi\)
−0.485089 + 0.874465i \(0.661213\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.65507 −0.161873 −0.0809363 0.996719i \(-0.525791\pi\)
−0.0809363 + 0.996719i \(0.525791\pi\)
\(828\) 0 0
\(829\) −9.97359 −0.346397 −0.173199 0.984887i \(-0.555410\pi\)
−0.173199 + 0.984887i \(0.555410\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.65270 0.0572628
\(834\) 0 0
\(835\) 17.4456 0.603731
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.72967 0.232334 0.116167 0.993230i \(-0.462939\pi\)
0.116167 + 0.993230i \(0.462939\pi\)
\(840\) 0 0
\(841\) 7.59802 0.262001
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −14.7202 −0.506390
\(846\) 0 0
\(847\) −4.04963 −0.139147
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.4032 0.493737
\(852\) 0 0
\(853\) 5.79055 0.198265 0.0991324 0.995074i \(-0.468393\pi\)
0.0991324 + 0.995074i \(0.468393\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.9077 −1.19242 −0.596211 0.802827i \(-0.703328\pi\)
−0.596211 + 0.802827i \(0.703328\pi\)
\(858\) 0 0
\(859\) 12.6149 0.430416 0.215208 0.976568i \(-0.430957\pi\)
0.215208 + 0.976568i \(0.430957\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.2053 0.823959 0.411979 0.911193i \(-0.364838\pi\)
0.411979 + 0.911193i \(0.364838\pi\)
\(864\) 0 0
\(865\) −19.9469 −0.678214
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.1138 −0.784082
\(870\) 0 0
\(871\) −16.1317 −0.546600
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.11381 −0.274297
\(876\) 0 0
\(877\) −1.12567 −0.0380111 −0.0190055 0.999819i \(-0.506050\pi\)
−0.0190055 + 0.999819i \(0.506050\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.38331 −0.147678 −0.0738388 0.997270i \(-0.523525\pi\)
−0.0738388 + 0.997270i \(0.523525\pi\)
\(882\) 0 0
\(883\) 6.88949 0.231850 0.115925 0.993258i \(-0.463017\pi\)
0.115925 + 0.993258i \(0.463017\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.0752 −1.31202 −0.656009 0.754753i \(-0.727757\pi\)
−0.656009 + 0.754753i \(0.727757\pi\)
\(888\) 0 0
\(889\) 17.6536 0.592084
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.46522 −0.0824955
\(894\) 0 0
\(895\) −6.46110 −0.215971
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −27.5523 −0.918921
\(900\) 0 0
\(901\) 12.0496 0.401431
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.03003 0.100722
\(906\) 0 0
\(907\) −42.4938 −1.41098 −0.705492 0.708718i \(-0.749274\pi\)
−0.705492 + 0.708718i \(0.749274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.4935 0.513322 0.256661 0.966501i \(-0.417378\pi\)
0.256661 + 0.966501i \(0.417378\pi\)
\(912\) 0 0
\(913\) −0.849356 −0.0281096
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.1976 −0.633960
\(918\) 0 0
\(919\) −6.52940 −0.215385 −0.107693 0.994184i \(-0.534346\pi\)
−0.107693 + 0.994184i \(0.534346\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.0686 −0.660567
\(924\) 0 0
\(925\) 19.2499 0.632933
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 58.2772 1.91201 0.956007 0.293343i \(-0.0947679\pi\)
0.956007 + 0.293343i \(0.0947679\pi\)
\(930\) 0 0
\(931\) −2.41147 −0.0790329
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.63816 0.184387
\(936\) 0 0
\(937\) 32.4175 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.3226 −0.890693 −0.445346 0.895358i \(-0.646919\pi\)
−0.445346 + 0.895358i \(0.646919\pi\)
\(942\) 0 0
\(943\) 3.74691 0.122016
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.2131 1.24176 0.620879 0.783906i \(-0.286776\pi\)
0.620879 + 0.783906i \(0.286776\pi\)
\(948\) 0 0
\(949\) 69.6998 2.26255
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.9377 1.90918 0.954590 0.297924i \(-0.0962943\pi\)
0.954590 + 0.297924i \(0.0962943\pi\)
\(954\) 0 0
\(955\) 4.97535 0.160998
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.1557 −0.586278
\(960\) 0 0
\(961\) −10.2576 −0.330892
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.43882 −0.271655
\(966\) 0 0
\(967\) −24.7187 −0.794901 −0.397451 0.917624i \(-0.630105\pi\)
−0.397451 + 0.917624i \(0.630105\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.17623 −0.262388 −0.131194 0.991357i \(-0.541881\pi\)
−0.131194 + 0.991357i \(0.541881\pi\)
\(972\) 0 0
\(973\) 22.0574 0.707127
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.8485 −0.507040 −0.253520 0.967330i \(-0.581588\pi\)
−0.253520 + 0.967330i \(0.581588\pi\)
\(978\) 0 0
\(979\) −42.7793 −1.36723
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −53.3063 −1.70021 −0.850104 0.526615i \(-0.823461\pi\)
−0.850104 + 0.526615i \(0.823461\pi\)
\(984\) 0 0
\(985\) −7.31645 −0.233121
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.584407 0.0185831
\(990\) 0 0
\(991\) −40.2094 −1.27730 −0.638648 0.769499i \(-0.720506\pi\)
−0.638648 + 0.769499i \(0.720506\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.80066 0.183893
\(996\) 0 0
\(997\) 28.7202 0.909577 0.454789 0.890599i \(-0.349715\pi\)
0.454789 + 0.890599i \(0.349715\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9072.2.a.ca.1.1 3
3.2 odd 2 9072.2.a.bs.1.3 3
4.3 odd 2 567.2.a.h.1.3 3
9.2 odd 6 3024.2.r.k.1009.1 6
9.4 even 3 1008.2.r.h.673.3 6
9.5 odd 6 3024.2.r.k.2017.1 6
9.7 even 3 1008.2.r.h.337.3 6
12.11 even 2 567.2.a.c.1.1 3
28.27 even 2 3969.2.a.q.1.3 3
36.7 odd 6 63.2.f.a.22.1 6
36.11 even 6 189.2.f.b.64.3 6
36.23 even 6 189.2.f.b.127.3 6
36.31 odd 6 63.2.f.a.43.1 yes 6
84.83 odd 2 3969.2.a.l.1.1 3
252.11 even 6 1323.2.h.c.226.1 6
252.23 even 6 1323.2.h.c.802.1 6
252.31 even 6 441.2.g.b.79.1 6
252.47 odd 6 1323.2.g.e.361.3 6
252.59 odd 6 1323.2.g.e.667.3 6
252.67 odd 6 441.2.g.c.79.1 6
252.79 odd 6 441.2.g.c.67.1 6
252.83 odd 6 1323.2.f.d.442.3 6
252.95 even 6 1323.2.g.d.667.3 6
252.103 even 6 441.2.h.e.214.3 6
252.115 even 6 441.2.h.e.373.3 6
252.131 odd 6 1323.2.h.b.802.1 6
252.139 even 6 441.2.f.c.295.1 6
252.151 odd 6 441.2.h.d.373.3 6
252.167 odd 6 1323.2.f.d.883.3 6
252.187 even 6 441.2.g.b.67.1 6
252.191 even 6 1323.2.g.d.361.3 6
252.223 even 6 441.2.f.c.148.1 6
252.227 odd 6 1323.2.h.b.226.1 6
252.247 odd 6 441.2.h.d.214.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.f.a.22.1 6 36.7 odd 6
63.2.f.a.43.1 yes 6 36.31 odd 6
189.2.f.b.64.3 6 36.11 even 6
189.2.f.b.127.3 6 36.23 even 6
441.2.f.c.148.1 6 252.223 even 6
441.2.f.c.295.1 6 252.139 even 6
441.2.g.b.67.1 6 252.187 even 6
441.2.g.b.79.1 6 252.31 even 6
441.2.g.c.67.1 6 252.79 odd 6
441.2.g.c.79.1 6 252.67 odd 6
441.2.h.d.214.3 6 252.247 odd 6
441.2.h.d.373.3 6 252.151 odd 6
441.2.h.e.214.3 6 252.103 even 6
441.2.h.e.373.3 6 252.115 even 6
567.2.a.c.1.1 3 12.11 even 2
567.2.a.h.1.3 3 4.3 odd 2
1008.2.r.h.337.3 6 9.7 even 3
1008.2.r.h.673.3 6 9.4 even 3
1323.2.f.d.442.3 6 252.83 odd 6
1323.2.f.d.883.3 6 252.167 odd 6
1323.2.g.d.361.3 6 252.191 even 6
1323.2.g.d.667.3 6 252.95 even 6
1323.2.g.e.361.3 6 252.47 odd 6
1323.2.g.e.667.3 6 252.59 odd 6
1323.2.h.b.226.1 6 252.227 odd 6
1323.2.h.b.802.1 6 252.131 odd 6
1323.2.h.c.226.1 6 252.11 even 6
1323.2.h.c.802.1 6 252.23 even 6
3024.2.r.k.1009.1 6 9.2 odd 6
3024.2.r.k.2017.1 6 9.5 odd 6
3969.2.a.l.1.1 3 84.83 odd 2
3969.2.a.q.1.3 3 28.27 even 2
9072.2.a.bs.1.3 3 3.2 odd 2
9072.2.a.ca.1.1 3 1.1 even 1 trivial