gp: [N,k,chi] = [192,5,Mod(31,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 5, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.31");
S:= CuspForms(chi, 5);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,216,0,0,0,0,0,0,0,-1104]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 17 x 6 + 208 x 4 + 1377 x 2 + 6561 x^{8} + 17x^{6} + 208x^{4} + 1377x^{2} + 6561 x 8 + 1 7 x 6 + 2 0 8 x 4 + 1 3 7 7 x 2 + 6 5 6 1
x^8 + 17*x^6 + 208*x^4 + 1377*x^2 + 6561
:
β 1 \beta_{1} β 1 = = =
( ν 7 − 64 ν 5 − 440 ν 3 − 3807 ν ) / 5832 ( \nu^{7} - 64\nu^{5} - 440\nu^{3} - 3807\nu ) / 5832 ( ν 7 − 6 4 ν 5 − 4 4 0 ν 3 − 3 8 0 7 ν ) / 5 8 3 2
(v^7 - 64*v^5 - 440*v^3 - 3807*v) / 5832
β 2 \beta_{2} β 2 = = =
( 17 ν 6 + 208 ν 4 + 3536 ν 2 + 14985 ) / 2106 ( 17\nu^{6} + 208\nu^{4} + 3536\nu^{2} + 14985 ) / 2106 ( 1 7 ν 6 + 2 0 8 ν 4 + 3 5 3 6 ν 2 + 1 4 9 8 5 ) / 2 1 0 6
(17*v^6 + 208*v^4 + 3536*v^2 + 14985) / 2106
β 3 \beta_{3} β 3 = = =
( 3 ν 6 − 1173 ) / 52 ( 3\nu^{6} - 1173 ) / 52 ( 3 ν 6 − 1 1 7 3 ) / 5 2
(3*v^6 - 1173) / 52
β 4 \beta_{4} β 4 = = =
( 34 ν 7 + 416 ν 5 + 2860 ν 3 + 13122 ν ) / 9477 ( 34\nu^{7} + 416\nu^{5} + 2860\nu^{3} + 13122\nu ) / 9477 ( 3 4 ν 7 + 4 1 6 ν 5 + 2 8 6 0 ν 3 + 1 3 1 2 2 ν ) / 9 4 7 7
(34*v^7 + 416*v^5 + 2860*v^3 + 13122*v) / 9477
β 5 \beta_{5} β 5 = = =
( − 35 ν 7 − 676 ν 5 − 9386 ν 3 − 102951 ν ) / 3159 ( -35\nu^{7} - 676\nu^{5} - 9386\nu^{3} - 102951\nu ) / 3159 ( − 3 5 ν 7 − 6 7 6 ν 5 − 9 3 8 6 ν 3 − 1 0 2 9 5 1 ν ) / 3 1 5 9
(-35*v^7 - 676*v^5 - 9386*v^3 - 102951*v) / 3159
β 6 \beta_{6} β 6 = = =
( − 16 ν 6 − 272 ν 4 − 2032 ν 2 − 11016 ) / 27 ( -16\nu^{6} - 272\nu^{4} - 2032\nu^{2} - 11016 ) / 27 ( − 1 6 ν 6 − 2 7 2 ν 4 − 2 0 3 2 ν 2 − 1 1 0 1 6 ) / 2 7
(-16*v^6 - 272*v^4 - 2032*v^2 - 11016) / 27
β 7 \beta_{7} β 7 = = =
( 17 ν 7 + 208 ν 5 + 2888 ν 3 + 6561 ν ) / 243 ( 17\nu^{7} + 208\nu^{5} + 2888\nu^{3} + 6561\nu ) / 243 ( 1 7 ν 7 + 2 0 8 ν 5 + 2 8 8 8 ν 3 + 6 5 6 1 ν ) / 2 4 3
(17*v^7 + 208*v^5 + 2888*v^3 + 6561*v) / 243
ν \nu ν = = =
( − β 7 − 4 β 5 + 6 β 4 + 24 β 1 ) / 96 ( -\beta_{7} - 4\beta_{5} + 6\beta_{4} + 24\beta_1 ) / 96 ( − β 7 − 4 β 5 + 6 β 4 + 2 4 β 1 ) / 9 6
(-b7 - 4*b5 + 6*b4 + 24*b1) / 96
ν 2 \nu^{2} ν 2 = = =
( β 6 − 4 β 3 + 102 β 2 − 408 ) / 96 ( \beta_{6} - 4\beta_{3} + 102\beta_{2} - 408 ) / 96 ( β 6 − 4 β 3 + 1 0 2 β 2 − 4 0 8 ) / 9 6
(b6 - 4*b3 + 102*b2 - 408) / 96
ν 3 \nu^{3} ν 3 = = =
( 2 β 7 − 39 β 4 ) / 12 ( 2\beta_{7} - 39\beta_{4} ) / 12 ( 2 β 7 − 3 9 β 4 ) / 1 2
(2*b7 - 39*b4) / 12
ν 4 \nu^{4} ν 4 = = =
( − 17 β 6 − 68 β 3 − 762 β 2 − 3048 ) / 96 ( -17\beta_{6} - 68\beta_{3} - 762\beta_{2} - 3048 ) / 96 ( − 1 7 β 6 − 6 8 β 3 − 7 6 2 β 2 − 3 0 4 8 ) / 9 6
(-17*b6 - 68*b3 - 762*b2 - 3048) / 96
ν 5 \nu^{5} ν 5 = = =
( − 55 β 7 + 220 β 5 + 2166 β 4 − 8664 β 1 ) / 96 ( -55\beta_{7} + 220\beta_{5} + 2166\beta_{4} - 8664\beta_1 ) / 96 ( − 5 5 β 7 + 2 2 0 β 5 + 2 1 6 6 β 4 − 8 6 6 4 β 1 ) / 9 6
(-55*b7 + 220*b5 + 2166*b4 - 8664*b1) / 96
ν 6 \nu^{6} ν 6 = = =
( 52 β 3 + 1173 ) / 3 ( 52\beta_{3} + 1173 ) / 3 ( 5 2 β 3 + 1 1 7 3 ) / 3
(52*b3 + 1173) / 3
ν 7 \nu^{7} ν 7 = = =
( − 287 β 7 − 1148 β 5 + 24186 β 4 + 96744 β 1 ) / 96 ( -287\beta_{7} - 1148\beta_{5} + 24186\beta_{4} + 96744\beta_1 ) / 96 ( − 2 8 7 β 7 − 1 1 4 8 β 5 + 2 4 1 8 6 β 4 + 9 6 7 4 4 β 1 ) / 9 6
(-287*b7 - 1148*b5 + 24186*b4 + 96744*b1) / 96
Character values
We give the values of χ \chi χ on generators for ( Z / 192 Z ) × \left(\mathbb{Z}/192\mathbb{Z}\right)^\times ( Z / 1 9 2 Z ) × .
n n n
65 65 6 5
127 127 1 2 7
133 133 1 3 3
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 + 2904 T 5 2 + 1140624 T_{5}^{4} + 2904T_{5}^{2} + 1140624 T 5 4 + 2 9 0 4 T 5 2 + 1 1 4 0 6 2 4
T5^4 + 2904*T5^2 + 1140624
acting on S 5 n e w ( 192 , [ χ ] ) S_{5}^{\mathrm{new}}(192, [\chi]) S 5 n e w ( 1 9 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 2 − 27 ) 4 (T^{2} - 27)^{4} ( T 2 − 2 7 ) 4
(T^2 - 27)^4
5 5 5
( T 4 + 2904 T 2 + 1140624 ) 2 (T^{4} + 2904 T^{2} + 1140624)^{2} ( T 4 + 2 9 0 4 T 2 + 1 1 4 0 6 2 4 ) 2
(T^4 + 2904*T^2 + 1140624)^2
7 7 7
( T 4 + 8360 T 2 + 11424400 ) 2 (T^{4} + 8360 T^{2} + 11424400)^{2} ( T 4 + 8 3 6 0 T 2 + 1 1 4 2 4 4 0 0 ) 2
(T^4 + 8360*T^2 + 11424400)^2
11 11 1 1
( T 4 − 41856 T 2 + 376049664 ) 2 (T^{4} - 41856 T^{2} + 376049664)^{2} ( T 4 − 4 1 8 5 6 T 2 + 3 7 6 0 4 9 6 6 4 ) 2
(T^4 - 41856*T^2 + 376049664)^2
13 13 1 3
( T 2 + 25392 ) 4 (T^{2} + 25392)^{4} ( T 2 + 2 5 3 9 2 ) 4
(T^2 + 25392)^4
17 17 1 7
( T 2 + 276 T − 41436 ) 4 (T^{2} + 276 T - 41436)^{4} ( T 2 + 2 7 6 T − 4 1 4 3 6 ) 4
(T^2 + 276*T - 41436)^4
19 19 1 9
( T 4 − 362976 T 2 + 32903057664 ) 2 (T^{4} - 362976 T^{2} + 32903057664)^{2} ( T 4 − 3 6 2 9 7 6 T 2 + 3 2 9 0 3 0 5 7 6 6 4 ) 2
(T^4 - 362976*T^2 + 32903057664)^2
23 23 2 3
( T 4 + 999072 T 2 + 220238735616 ) 2 (T^{4} + 999072 T^{2} + 220238735616)^{2} ( T 4 + 9 9 9 0 7 2 T 2 + 2 2 0 2 3 8 7 3 5 6 1 6 ) 2
(T^4 + 999072*T^2 + 220238735616)^2
29 29 2 9
( T 4 + 36504 T 2 + 19607184 ) 2 (T^{4} + 36504 T^{2} + 19607184)^{2} ( T 4 + 3 6 5 0 4 T 2 + 1 9 6 0 7 1 8 4 ) 2
(T^4 + 36504*T^2 + 19607184)^2
31 31 3 1
( T 4 + 1533032 T 2 + 21976283536 ) 2 (T^{4} + 1533032 T^{2} + 21976283536)^{2} ( T 4 + 1 5 3 3 0 3 2 T 2 + 2 1 9 7 6 2 8 3 5 3 6 ) 2
(T^4 + 1533032*T^2 + 21976283536)^2
37 37 3 7
( T 4 + 4818624 T 2 + 19969081344 ) 2 (T^{4} + 4818624 T^{2} + 19969081344)^{2} ( T 4 + 4 8 1 8 6 2 4 T 2 + 1 9 9 6 9 0 8 1 3 4 4 ) 2
(T^4 + 4818624*T^2 + 19969081344)^2
41 41 4 1
( T 2 + 5244 T + 6814404 ) 4 (T^{2} + 5244 T + 6814404)^{4} ( T 2 + 5 2 4 4 T + 6 8 1 4 4 0 4 ) 4
(T^2 + 5244*T + 6814404)^4
43 43 4 3
( T 4 − 6695136 T 2 + 6666395904 ) 2 (T^{4} - 6695136 T^{2} + 6666395904)^{2} ( T 4 − 6 6 9 5 1 3 6 T 2 + 6 6 6 6 3 9 5 9 0 4 ) 2
(T^4 - 6695136*T^2 + 6666395904)^2
47 47 4 7
( T 4 + 812448 T 2 + 122343250176 ) 2 (T^{4} + 812448 T^{2} + 122343250176)^{2} ( T 4 + 8 1 2 4 4 8 T 2 + 1 2 2 3 4 3 2 5 0 1 7 6 ) 2
(T^4 + 812448*T^2 + 122343250176)^2
53 53 5 3
( T 4 + 6818136 T 2 + 684015010704 ) 2 (T^{4} + 6818136 T^{2} + 684015010704)^{2} ( T 4 + 6 8 1 8 1 3 6 T 2 + 6 8 4 0 1 5 0 1 0 7 0 4 ) 2
(T^4 + 6818136*T^2 + 684015010704)^2
59 59 5 9
( T 4 + ⋯ + 39557659302144 ) 2 (T^{4} + \cdots + 39557659302144)^{2} ( T 4 + ⋯ + 3 9 5 5 7 6 5 9 3 0 2 1 4 4 ) 2
(T^4 - 33869664*T^2 + 39557659302144)^2
61 61 6 1
( T 4 + ⋯ + 89415936000000 ) 2 (T^{4} + \cdots + 89415936000000)^{2} ( T 4 + ⋯ + 8 9 4 1 5 9 3 6 0 0 0 0 0 0 ) 2
(T^4 + 21912000*T^2 + 89415936000000)^2
67 67 6 7
( T 4 + ⋯ + 57232735213824 ) 2 (T^{4} + \cdots + 57232735213824)^{2} ( T 4 + ⋯ + 5 7 2 3 2 7 3 5 2 1 3 8 2 4 ) 2
(T^4 - 26742624*T^2 + 57232735213824)^2
71 71 7 1
( T 4 + ⋯ + 18848240199936 ) 2 (T^{4} + \cdots + 18848240199936)^{2} ( T 4 + ⋯ + 1 8 8 4 8 2 4 0 1 9 9 9 3 6 ) 2
(T^4 + 8795808*T^2 + 18848240199936)^2
73 73 7 3
( T 2 − 9620 T + 17088100 ) 4 (T^{2} - 9620 T + 17088100)^{4} ( T 2 − 9 6 2 0 T + 1 7 0 8 8 1 0 0 ) 4
(T^2 - 9620*T + 17088100)^4
79 79 7 9
( T 4 + ⋯ + 17 ⋯ 96 ) 2 (T^{4} + \cdots + 17\!\cdots\!96)^{2} ( T 4 + ⋯ + 1 7 ⋯ 9 6 ) 2
(T^4 + 83602472*T^2 + 1726216693399696)^2
83 83 8 3
( T 4 + ⋯ + 805778621337600 ) 2 (T^{4} + \cdots + 805778621337600)^{2} ( T 4 + ⋯ + 8 0 5 7 7 8 6 2 1 3 3 7 6 0 0 ) 2
(T^4 - 121361280*T^2 + 805778621337600)^2
89 89 8 9
( T 2 + 2532 T − 149597244 ) 4 (T^{2} + 2532 T - 149597244)^{4} ( T 2 + 2 5 3 2 T − 1 4 9 5 9 7 2 4 4 ) 4
(T^2 + 2532*T - 149597244)^4
97 97 9 7
( T 2 − 17500 T + 47290180 ) 4 (T^{2} - 17500 T + 47290180)^{4} ( T 2 − 1 7 5 0 0 T + 4 7 2 9 0 1 8 0 ) 4
(T^2 - 17500*T + 47290180)^4
show more
show less