Properties

Label 192.5.b.c
Level $192$
Weight $5$
Character orbit 192.b
Analytic conductor $19.847$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,5,Mod(31,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 192.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8470329121\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31116960000.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{6} + 208x^{4} + 1377x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \beta_1 q^{3} + (\beta_{3} - 2 \beta_{2}) q^{5} + ( - \beta_{5} + 5 \beta_{4}) q^{7} + 27 q^{9} + ( - \beta_{7} - 16 \beta_1) q^{11} - 23 \beta_{2} q^{13} + (3 \beta_{5} + 18 \beta_{4}) q^{15} + (\beta_{6} - 138) q^{17}+ \cdots + ( - 27 \beta_{7} - 432 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 216 q^{9} - 1104 q^{17} - 6616 q^{25} - 1152 q^{33} - 20976 q^{41} - 14232 q^{49} - 288 q^{57} - 17664 q^{65} + 38480 q^{73} + 5832 q^{81} - 10128 q^{89} + 70000 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 17x^{6} + 208x^{4} + 1377x^{2} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} - 64\nu^{5} - 440\nu^{3} - 3807\nu ) / 5832 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 17\nu^{6} + 208\nu^{4} + 3536\nu^{2} + 14985 ) / 2106 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{6} - 1173 ) / 52 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 34\nu^{7} + 416\nu^{5} + 2860\nu^{3} + 13122\nu ) / 9477 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -35\nu^{7} - 676\nu^{5} - 9386\nu^{3} - 102951\nu ) / 3159 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -16\nu^{6} - 272\nu^{4} - 2032\nu^{2} - 11016 ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 17\nu^{7} + 208\nu^{5} + 2888\nu^{3} + 6561\nu ) / 243 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} - 4\beta_{5} + 6\beta_{4} + 24\beta_1 ) / 96 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - 4\beta_{3} + 102\beta_{2} - 408 ) / 96 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} - 39\beta_{4} ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -17\beta_{6} - 68\beta_{3} - 762\beta_{2} - 3048 ) / 96 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -55\beta_{7} + 220\beta_{5} + 2166\beta_{4} - 8664\beta_1 ) / 96 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 52\beta_{3} + 1173 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -287\beta_{7} - 1148\beta_{5} + 24186\beta_{4} + 96744\beta_1 ) / 96 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−1.91203 2.31174i
1.04601 2.81174i
1.04601 + 2.81174i
−1.91203 + 2.31174i
1.91203 + 2.31174i
−1.04601 + 2.81174i
−1.04601 2.81174i
1.91203 2.31174i
0 −5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.2 0 −5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.3 0 −5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.4 0 −5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.5 0 5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.6 0 5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.7 0 5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.8 0 5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.5.b.c 8
3.b odd 2 1 576.5.b.h 8
4.b odd 2 1 inner 192.5.b.c 8
8.b even 2 1 inner 192.5.b.c 8
8.d odd 2 1 inner 192.5.b.c 8
12.b even 2 1 576.5.b.h 8
16.e even 4 2 768.5.g.i 8
16.f odd 4 2 768.5.g.i 8
24.f even 2 1 576.5.b.h 8
24.h odd 2 1 576.5.b.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.5.b.c 8 1.a even 1 1 trivial
192.5.b.c 8 4.b odd 2 1 inner
192.5.b.c 8 8.b even 2 1 inner
192.5.b.c 8 8.d odd 2 1 inner
576.5.b.h 8 3.b odd 2 1
576.5.b.h 8 12.b even 2 1
576.5.b.h 8 24.f even 2 1
576.5.b.h 8 24.h odd 2 1
768.5.g.i 8 16.e even 4 2
768.5.g.i 8 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 2904T_{5}^{2} + 1140624 \) acting on \(S_{5}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} - 27)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} + 2904 T^{2} + 1140624)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 8360 T^{2} + 11424400)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 41856 T^{2} + 376049664)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 25392)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 276 T - 41436)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} - 362976 T^{2} + 32903057664)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 999072 T^{2} + 220238735616)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 36504 T^{2} + 19607184)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 1533032 T^{2} + 21976283536)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 4818624 T^{2} + 19969081344)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 5244 T + 6814404)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 6695136 T^{2} + 6666395904)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 812448 T^{2} + 122343250176)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 6818136 T^{2} + 684015010704)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 39557659302144)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 89415936000000)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 57232735213824)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 18848240199936)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 9620 T + 17088100)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 17\!\cdots\!96)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 805778621337600)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 2532 T - 149597244)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 17500 T + 47290180)^{4} \) Copy content Toggle raw display
show more
show less