Properties

Label 192.5.b.c
Level 192192
Weight 55
Character orbit 192.b
Analytic conductor 19.84719.847
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,5,Mod(31,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.31"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 5 5
Character orbit: [χ][\chi] == 192.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,216,0,0,0,0,0,0,0,-1104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.847032912119.8470329121
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.31116960000.10
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+17x6+208x4+1377x2+6561 x^{8} + 17x^{6} + 208x^{4} + 1377x^{2} + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22034 2^{20}\cdot 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β1q3+(β32β2)q5+(β5+5β4)q7+27q9+(β716β1)q1123β2q13+(3β5+18β4)q15+(β6138)q17++(27β7432β1)q99+O(q100) q + 3 \beta_1 q^{3} + (\beta_{3} - 2 \beta_{2}) q^{5} + ( - \beta_{5} + 5 \beta_{4}) q^{7} + 27 q^{9} + ( - \beta_{7} - 16 \beta_1) q^{11} - 23 \beta_{2} q^{13} + (3 \beta_{5} + 18 \beta_{4}) q^{15} + (\beta_{6} - 138) q^{17}+ \cdots + ( - 27 \beta_{7} - 432 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+216q91104q176616q251152q3320976q4114232q49288q5717664q65+38480q73+5832q8110128q89+70000q97+O(q100) 8 q + 216 q^{9} - 1104 q^{17} - 6616 q^{25} - 1152 q^{33} - 20976 q^{41} - 14232 q^{49} - 288 q^{57} - 17664 q^{65} + 38480 q^{73} + 5832 q^{81} - 10128 q^{89} + 70000 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+17x6+208x4+1377x2+6561 x^{8} + 17x^{6} + 208x^{4} + 1377x^{2} + 6561 : Copy content Toggle raw display

β1\beta_{1}== (ν764ν5440ν33807ν)/5832 ( \nu^{7} - 64\nu^{5} - 440\nu^{3} - 3807\nu ) / 5832 Copy content Toggle raw display
β2\beta_{2}== (17ν6+208ν4+3536ν2+14985)/2106 ( 17\nu^{6} + 208\nu^{4} + 3536\nu^{2} + 14985 ) / 2106 Copy content Toggle raw display
β3\beta_{3}== (3ν61173)/52 ( 3\nu^{6} - 1173 ) / 52 Copy content Toggle raw display
β4\beta_{4}== (34ν7+416ν5+2860ν3+13122ν)/9477 ( 34\nu^{7} + 416\nu^{5} + 2860\nu^{3} + 13122\nu ) / 9477 Copy content Toggle raw display
β5\beta_{5}== (35ν7676ν59386ν3102951ν)/3159 ( -35\nu^{7} - 676\nu^{5} - 9386\nu^{3} - 102951\nu ) / 3159 Copy content Toggle raw display
β6\beta_{6}== (16ν6272ν42032ν211016)/27 ( -16\nu^{6} - 272\nu^{4} - 2032\nu^{2} - 11016 ) / 27 Copy content Toggle raw display
β7\beta_{7}== (17ν7+208ν5+2888ν3+6561ν)/243 ( 17\nu^{7} + 208\nu^{5} + 2888\nu^{3} + 6561\nu ) / 243 Copy content Toggle raw display
ν\nu== (β74β5+6β4+24β1)/96 ( -\beta_{7} - 4\beta_{5} + 6\beta_{4} + 24\beta_1 ) / 96 Copy content Toggle raw display
ν2\nu^{2}== (β64β3+102β2408)/96 ( \beta_{6} - 4\beta_{3} + 102\beta_{2} - 408 ) / 96 Copy content Toggle raw display
ν3\nu^{3}== (2β739β4)/12 ( 2\beta_{7} - 39\beta_{4} ) / 12 Copy content Toggle raw display
ν4\nu^{4}== (17β668β3762β23048)/96 ( -17\beta_{6} - 68\beta_{3} - 762\beta_{2} - 3048 ) / 96 Copy content Toggle raw display
ν5\nu^{5}== (55β7+220β5+2166β48664β1)/96 ( -55\beta_{7} + 220\beta_{5} + 2166\beta_{4} - 8664\beta_1 ) / 96 Copy content Toggle raw display
ν6\nu^{6}== (52β3+1173)/3 ( 52\beta_{3} + 1173 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (287β71148β5+24186β4+96744β1)/96 ( -287\beta_{7} - 1148\beta_{5} + 24186\beta_{4} + 96744\beta_1 ) / 96 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
−1.91203 2.31174i
1.04601 2.81174i
1.04601 + 2.81174i
−1.91203 + 2.31174i
1.91203 + 2.31174i
−1.04601 + 2.81174i
−1.04601 2.81174i
1.91203 2.31174i
0 −5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.2 0 −5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.3 0 −5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.4 0 −5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.5 0 5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
31.6 0 5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.7 0 5.19615 0 21.6401i 0 81.4817i 0 27.0000 0
31.8 0 5.19615 0 49.3529i 0 41.4817i 0 27.0000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.5.b.c 8
3.b odd 2 1 576.5.b.h 8
4.b odd 2 1 inner 192.5.b.c 8
8.b even 2 1 inner 192.5.b.c 8
8.d odd 2 1 inner 192.5.b.c 8
12.b even 2 1 576.5.b.h 8
16.e even 4 2 768.5.g.i 8
16.f odd 4 2 768.5.g.i 8
24.f even 2 1 576.5.b.h 8
24.h odd 2 1 576.5.b.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.5.b.c 8 1.a even 1 1 trivial
192.5.b.c 8 4.b odd 2 1 inner
192.5.b.c 8 8.b even 2 1 inner
192.5.b.c 8 8.d odd 2 1 inner
576.5.b.h 8 3.b odd 2 1
576.5.b.h 8 12.b even 2 1
576.5.b.h 8 24.f even 2 1
576.5.b.h 8 24.h odd 2 1
768.5.g.i 8 16.e even 4 2
768.5.g.i 8 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+2904T52+1140624 T_{5}^{4} + 2904T_{5}^{2} + 1140624 acting on S5new(192,[χ])S_{5}^{\mathrm{new}}(192, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T227)4 (T^{2} - 27)^{4} Copy content Toggle raw display
55 (T4+2904T2+1140624)2 (T^{4} + 2904 T^{2} + 1140624)^{2} Copy content Toggle raw display
77 (T4+8360T2+11424400)2 (T^{4} + 8360 T^{2} + 11424400)^{2} Copy content Toggle raw display
1111 (T441856T2+376049664)2 (T^{4} - 41856 T^{2} + 376049664)^{2} Copy content Toggle raw display
1313 (T2+25392)4 (T^{2} + 25392)^{4} Copy content Toggle raw display
1717 (T2+276T41436)4 (T^{2} + 276 T - 41436)^{4} Copy content Toggle raw display
1919 (T4362976T2+32903057664)2 (T^{4} - 362976 T^{2} + 32903057664)^{2} Copy content Toggle raw display
2323 (T4+999072T2+220238735616)2 (T^{4} + 999072 T^{2} + 220238735616)^{2} Copy content Toggle raw display
2929 (T4+36504T2+19607184)2 (T^{4} + 36504 T^{2} + 19607184)^{2} Copy content Toggle raw display
3131 (T4+1533032T2+21976283536)2 (T^{4} + 1533032 T^{2} + 21976283536)^{2} Copy content Toggle raw display
3737 (T4+4818624T2+19969081344)2 (T^{4} + 4818624 T^{2} + 19969081344)^{2} Copy content Toggle raw display
4141 (T2+5244T+6814404)4 (T^{2} + 5244 T + 6814404)^{4} Copy content Toggle raw display
4343 (T46695136T2+6666395904)2 (T^{4} - 6695136 T^{2} + 6666395904)^{2} Copy content Toggle raw display
4747 (T4+812448T2+122343250176)2 (T^{4} + 812448 T^{2} + 122343250176)^{2} Copy content Toggle raw display
5353 (T4+6818136T2+684015010704)2 (T^{4} + 6818136 T^{2} + 684015010704)^{2} Copy content Toggle raw display
5959 (T4++39557659302144)2 (T^{4} + \cdots + 39557659302144)^{2} Copy content Toggle raw display
6161 (T4++89415936000000)2 (T^{4} + \cdots + 89415936000000)^{2} Copy content Toggle raw display
6767 (T4++57232735213824)2 (T^{4} + \cdots + 57232735213824)^{2} Copy content Toggle raw display
7171 (T4++18848240199936)2 (T^{4} + \cdots + 18848240199936)^{2} Copy content Toggle raw display
7373 (T29620T+17088100)4 (T^{2} - 9620 T + 17088100)^{4} Copy content Toggle raw display
7979 (T4++17 ⁣ ⁣96)2 (T^{4} + \cdots + 17\!\cdots\!96)^{2} Copy content Toggle raw display
8383 (T4++805778621337600)2 (T^{4} + \cdots + 805778621337600)^{2} Copy content Toggle raw display
8989 (T2+2532T149597244)4 (T^{2} + 2532 T - 149597244)^{4} Copy content Toggle raw display
9797 (T217500T+47290180)4 (T^{2} - 17500 T + 47290180)^{4} Copy content Toggle raw display
show more
show less