Properties

Label 192.8.a.h
Level 192192
Weight 88
Character orbit 192.a
Self dual yes
Analytic conductor 59.97859.978
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,8,Mod(1,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 8 8
Character orbit: [χ][\chi] == 192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 59.977924893059.9779248930
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 24)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q27q3+530q5+120q7+729q9+7196q11+9626q1314310q15+18674q177004q193240q2163704q23+202775q2519683q2729334q29+87968q31++5245884q99+O(q100) q - 27 q^{3} + 530 q^{5} + 120 q^{7} + 729 q^{9} + 7196 q^{11} + 9626 q^{13} - 14310 q^{15} + 18674 q^{17} - 7004 q^{19} - 3240 q^{21} - 63704 q^{23} + 202775 q^{25} - 19683 q^{27} - 29334 q^{29} + 87968 q^{31}+ \cdots + 5245884 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −27.0000 0 530.000 0 120.000 0 729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.8.a.h 1
3.b odd 2 1 576.8.a.c 1
4.b odd 2 1 192.8.a.p 1
8.b even 2 1 24.8.a.b 1
8.d odd 2 1 48.8.a.a 1
12.b even 2 1 576.8.a.b 1
24.f even 2 1 144.8.a.k 1
24.h odd 2 1 72.8.a.e 1
40.f even 2 1 600.8.a.b 1
40.i odd 4 2 600.8.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.8.a.b 1 8.b even 2 1
48.8.a.a 1 8.d odd 2 1
72.8.a.e 1 24.h odd 2 1
144.8.a.k 1 24.f even 2 1
192.8.a.h 1 1.a even 1 1 trivial
192.8.a.p 1 4.b odd 2 1
576.8.a.b 1 12.b even 2 1
576.8.a.c 1 3.b odd 2 1
600.8.a.b 1 40.f even 2 1
600.8.f.a 2 40.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(192))S_{8}^{\mathrm{new}}(\Gamma_0(192)):

T5530 T_{5} - 530 Copy content Toggle raw display
T7120 T_{7} - 120 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+27 T + 27 Copy content Toggle raw display
55 T530 T - 530 Copy content Toggle raw display
77 T120 T - 120 Copy content Toggle raw display
1111 T7196 T - 7196 Copy content Toggle raw display
1313 T9626 T - 9626 Copy content Toggle raw display
1717 T18674 T - 18674 Copy content Toggle raw display
1919 T+7004 T + 7004 Copy content Toggle raw display
2323 T+63704 T + 63704 Copy content Toggle raw display
2929 T+29334 T + 29334 Copy content Toggle raw display
3131 T87968 T - 87968 Copy content Toggle raw display
3737 T+227982 T + 227982 Copy content Toggle raw display
4141 T+160806 T + 160806 Copy content Toggle raw display
4343 T+136132 T + 136132 Copy content Toggle raw display
4747 T+1206960 T + 1206960 Copy content Toggle raw display
5353 T398786 T - 398786 Copy content Toggle raw display
5959 T+1152436 T + 1152436 Copy content Toggle raw display
6161 T2070602 T - 2070602 Copy content Toggle raw display
6767 T4073428 T - 4073428 Copy content Toggle raw display
7171 T+383752 T + 383752 Copy content Toggle raw display
7373 T3006010 T - 3006010 Copy content Toggle raw display
7979 T+4948112 T + 4948112 Copy content Toggle raw display
8383 T9163492 T - 9163492 Copy content Toggle raw display
8989 T7304106 T - 7304106 Copy content Toggle raw display
9797 T+690526 T + 690526 Copy content Toggle raw display
show more
show less