gp: [N,k,chi] = [600,8,Mod(1,600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("600.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-27,0,0,0,-120]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 7 + 120 T_{7} + 120 T 7 + 1 2 0
T7 + 120
acting on S 8 n e w ( Γ 0 ( 600 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(600)) S 8 n e w ( Γ 0 ( 6 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 27 T + 27 T + 2 7
T + 27
5 5 5
T T T
T
7 7 7
T + 120 T + 120 T + 1 2 0
T + 120
11 11 1 1
T + 7196 T + 7196 T + 7 1 9 6
T + 7196
13 13 1 3
T − 9626 T - 9626 T − 9 6 2 6
T - 9626
17 17 1 7
T + 18674 T + 18674 T + 1 8 6 7 4
T + 18674
19 19 1 9
T − 7004 T - 7004 T − 7 0 0 4
T - 7004
23 23 2 3
T − 63704 T - 63704 T − 6 3 7 0 4
T - 63704
29 29 2 9
T − 29334 T - 29334 T − 2 9 3 3 4
T - 29334
31 31 3 1
T − 87968 T - 87968 T − 8 7 9 6 8
T - 87968
37 37 3 7
T + 227982 T + 227982 T + 2 2 7 9 8 2
T + 227982
41 41 4 1
T + 160806 T + 160806 T + 1 6 0 8 0 6
T + 160806
43 43 4 3
T + 136132 T + 136132 T + 1 3 6 1 3 2
T + 136132
47 47 4 7
T − 1206960 T - 1206960 T − 1 2 0 6 9 6 0
T - 1206960
53 53 5 3
T − 398786 T - 398786 T − 3 9 8 7 8 6
T - 398786
59 59 5 9
T − 1152436 T - 1152436 T − 1 1 5 2 4 3 6
T - 1152436
61 61 6 1
T + 2070602 T + 2070602 T + 2 0 7 0 6 0 2
T + 2070602
67 67 6 7
T − 4073428 T - 4073428 T − 4 0 7 3 4 2 8
T - 4073428
71 71 7 1
T + 383752 T + 383752 T + 3 8 3 7 5 2
T + 383752
73 73 7 3
T + 3006010 T + 3006010 T + 3 0 0 6 0 1 0
T + 3006010
79 79 7 9
T + 4948112 T + 4948112 T + 4 9 4 8 1 1 2
T + 4948112
83 83 8 3
T − 9163492 T - 9163492 T − 9 1 6 3 4 9 2
T - 9163492
89 89 8 9
T − 7304106 T - 7304106 T − 7 3 0 4 1 0 6
T - 7304106
97 97 9 7
T − 690526 T - 690526 T − 6 9 0 5 2 6
T - 690526
show more
show less