Properties

Label 600.8.a.b
Level $600$
Weight $8$
Character orbit 600.a
Self dual yes
Analytic conductor $187.431$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,8,Mod(1,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(187.431015290\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 27 q^{3} - 120 q^{7} + 729 q^{9} - 7196 q^{11} + 9626 q^{13} - 18674 q^{17} + 7004 q^{19} + 3240 q^{21} + 63704 q^{23} - 19683 q^{27} + 29334 q^{29} + 87968 q^{31} + 194292 q^{33} - 227982 q^{37} - 259902 q^{39}+ \cdots - 5245884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −27.0000 0 0 0 −120.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.8.a.b 1
5.b even 2 1 24.8.a.b 1
5.c odd 4 2 600.8.f.a 2
15.d odd 2 1 72.8.a.e 1
20.d odd 2 1 48.8.a.a 1
40.e odd 2 1 192.8.a.p 1
40.f even 2 1 192.8.a.h 1
60.h even 2 1 144.8.a.k 1
120.i odd 2 1 576.8.a.c 1
120.m even 2 1 576.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.8.a.b 1 5.b even 2 1
48.8.a.a 1 20.d odd 2 1
72.8.a.e 1 15.d odd 2 1
144.8.a.k 1 60.h even 2 1
192.8.a.h 1 40.f even 2 1
192.8.a.p 1 40.e odd 2 1
576.8.a.b 1 120.m even 2 1
576.8.a.c 1 120.i odd 2 1
600.8.a.b 1 1.a even 1 1 trivial
600.8.f.a 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 120 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 27 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 120 \) Copy content Toggle raw display
$11$ \( T + 7196 \) Copy content Toggle raw display
$13$ \( T - 9626 \) Copy content Toggle raw display
$17$ \( T + 18674 \) Copy content Toggle raw display
$19$ \( T - 7004 \) Copy content Toggle raw display
$23$ \( T - 63704 \) Copy content Toggle raw display
$29$ \( T - 29334 \) Copy content Toggle raw display
$31$ \( T - 87968 \) Copy content Toggle raw display
$37$ \( T + 227982 \) Copy content Toggle raw display
$41$ \( T + 160806 \) Copy content Toggle raw display
$43$ \( T + 136132 \) Copy content Toggle raw display
$47$ \( T - 1206960 \) Copy content Toggle raw display
$53$ \( T - 398786 \) Copy content Toggle raw display
$59$ \( T - 1152436 \) Copy content Toggle raw display
$61$ \( T + 2070602 \) Copy content Toggle raw display
$67$ \( T - 4073428 \) Copy content Toggle raw display
$71$ \( T + 383752 \) Copy content Toggle raw display
$73$ \( T + 3006010 \) Copy content Toggle raw display
$79$ \( T + 4948112 \) Copy content Toggle raw display
$83$ \( T - 9163492 \) Copy content Toggle raw display
$89$ \( T - 7304106 \) Copy content Toggle raw display
$97$ \( T - 690526 \) Copy content Toggle raw display
show more
show less