Properties

Label 1920.2.bc.h.607.3
Level $1920$
Weight $2$
Character 1920.607
Analytic conductor $15.331$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(607,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.3
Root \(0.264658 + 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 1920.607
Dual form 1920.2.bc.h.1183.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-2.00000 + 1.00000i) q^{5} +(3.24914 + 3.24914i) q^{7} -1.00000 q^{9} +(-3.24914 - 3.24914i) q^{11} +(1.00000 + 2.00000i) q^{15} +(-0.0586332 - 0.0586332i) q^{17} +(4.30777 + 4.30777i) q^{19} +(3.24914 - 3.24914i) q^{21} +(-4.30777 + 4.30777i) q^{23} +(3.00000 - 4.00000i) q^{25} +1.00000i q^{27} +(-1.00000 + 1.00000i) q^{29} -6.49828i q^{31} +(-3.24914 + 3.24914i) q^{33} +(-9.74742 - 3.24914i) q^{35} -1.88273 q^{37} +4.00000i q^{41} -4.61555 q^{43} +(2.00000 - 1.00000i) q^{45} +(-6.80605 + 6.80605i) q^{47} +14.1138i q^{49} +(-0.0586332 + 0.0586332i) q^{51} +9.11383i q^{53} +(9.74742 + 3.24914i) q^{55} +(4.30777 - 4.30777i) q^{57} +(-1.36641 + 1.36641i) q^{59} +(2.05863 + 2.05863i) q^{61} +(-3.24914 - 3.24914i) q^{63} -12.3810 q^{67} +(4.30777 + 4.30777i) q^{69} -8.99656 q^{71} +(1.11727 + 1.11727i) q^{73} +(-4.00000 - 3.00000i) q^{75} -21.1138i q^{77} -8.99656 q^{79} +1.00000 q^{81} -4.99656i q^{83} +(0.175899 + 0.0586332i) q^{85} +(1.00000 + 1.00000i) q^{87} +4.11727 q^{89} -6.49828 q^{93} +(-12.9233 - 4.30777i) q^{95} +(9.99656 + 9.99656i) q^{97} +(3.24914 + 3.24914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{5} + 2 q^{7} - 6 q^{9} - 2 q^{11} + 6 q^{15} - 2 q^{17} + 10 q^{19} + 2 q^{21} - 10 q^{23} + 18 q^{25} - 6 q^{29} - 2 q^{33} - 6 q^{35} - 8 q^{37} + 4 q^{43} + 12 q^{45} + 10 q^{47} - 2 q^{51}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 3.24914 + 3.24914i 1.22806 + 1.22806i 0.964697 + 0.263363i \(0.0848316\pi\)
0.263363 + 0.964697i \(0.415168\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.24914 3.24914i −0.979653 0.979653i 0.0201443 0.999797i \(-0.493587\pi\)
−0.999797 + 0.0201443i \(0.993587\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 + 2.00000i 0.258199 + 0.516398i
\(16\) 0 0
\(17\) −0.0586332 0.0586332i −0.0142206 0.0142206i 0.699961 0.714181i \(-0.253201\pi\)
−0.714181 + 0.699961i \(0.753201\pi\)
\(18\) 0 0
\(19\) 4.30777 + 4.30777i 0.988271 + 0.988271i 0.999932 0.0116609i \(-0.00371188\pi\)
−0.0116609 + 0.999932i \(0.503712\pi\)
\(20\) 0 0
\(21\) 3.24914 3.24914i 0.709021 0.709021i
\(22\) 0 0
\(23\) −4.30777 + 4.30777i −0.898233 + 0.898233i −0.995280 0.0970469i \(-0.969060\pi\)
0.0970469 + 0.995280i \(0.469060\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) 0 0
\(31\) 6.49828i 1.16713i −0.812068 0.583563i \(-0.801658\pi\)
0.812068 0.583563i \(-0.198342\pi\)
\(32\) 0 0
\(33\) −3.24914 + 3.24914i −0.565603 + 0.565603i
\(34\) 0 0
\(35\) −9.74742 3.24914i −1.64761 0.549205i
\(36\) 0 0
\(37\) −1.88273 −0.309520 −0.154760 0.987952i \(-0.549460\pi\)
−0.154760 + 0.987952i \(0.549460\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) −4.61555 −0.703864 −0.351932 0.936025i \(-0.614475\pi\)
−0.351932 + 0.936025i \(0.614475\pi\)
\(44\) 0 0
\(45\) 2.00000 1.00000i 0.298142 0.149071i
\(46\) 0 0
\(47\) −6.80605 + 6.80605i −0.992765 + 0.992765i −0.999974 0.00720889i \(-0.997705\pi\)
0.00720889 + 0.999974i \(0.497705\pi\)
\(48\) 0 0
\(49\) 14.1138i 2.01626i
\(50\) 0 0
\(51\) −0.0586332 + 0.0586332i −0.00821028 + 0.00821028i
\(52\) 0 0
\(53\) 9.11383i 1.25188i 0.779871 + 0.625940i \(0.215285\pi\)
−0.779871 + 0.625940i \(0.784715\pi\)
\(54\) 0 0
\(55\) 9.74742 + 3.24914i 1.31434 + 0.438114i
\(56\) 0 0
\(57\) 4.30777 4.30777i 0.570579 0.570579i
\(58\) 0 0
\(59\) −1.36641 + 1.36641i −0.177891 + 0.177891i −0.790436 0.612545i \(-0.790146\pi\)
0.612545 + 0.790436i \(0.290146\pi\)
\(60\) 0 0
\(61\) 2.05863 + 2.05863i 0.263581 + 0.263581i 0.826507 0.562926i \(-0.190324\pi\)
−0.562926 + 0.826507i \(0.690324\pi\)
\(62\) 0 0
\(63\) −3.24914 3.24914i −0.409353 0.409353i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.3810 −1.51258 −0.756291 0.654236i \(-0.772990\pi\)
−0.756291 + 0.654236i \(0.772990\pi\)
\(68\) 0 0
\(69\) 4.30777 + 4.30777i 0.518595 + 0.518595i
\(70\) 0 0
\(71\) −8.99656 −1.06770 −0.533848 0.845581i \(-0.679254\pi\)
−0.533848 + 0.845581i \(0.679254\pi\)
\(72\) 0 0
\(73\) 1.11727 + 1.11727i 0.130766 + 0.130766i 0.769461 0.638694i \(-0.220525\pi\)
−0.638694 + 0.769461i \(0.720525\pi\)
\(74\) 0 0
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) 0 0
\(77\) 21.1138i 2.40614i
\(78\) 0 0
\(79\) −8.99656 −1.01219 −0.506096 0.862477i \(-0.668912\pi\)
−0.506096 + 0.862477i \(0.668912\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.99656i 0.548444i −0.961666 0.274222i \(-0.911580\pi\)
0.961666 0.274222i \(-0.0884203\pi\)
\(84\) 0 0
\(85\) 0.175899 + 0.0586332i 0.0190790 + 0.00635966i
\(86\) 0 0
\(87\) 1.00000 + 1.00000i 0.107211 + 0.107211i
\(88\) 0 0
\(89\) 4.11727 0.436429 0.218215 0.975901i \(-0.429977\pi\)
0.218215 + 0.975901i \(0.429977\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.49828 −0.673840
\(94\) 0 0
\(95\) −12.9233 4.30777i −1.32590 0.441968i
\(96\) 0 0
\(97\) 9.99656 + 9.99656i 1.01500 + 1.01500i 0.999886 + 0.0151113i \(0.00481026\pi\)
0.0151113 + 0.999886i \(0.495190\pi\)
\(98\) 0 0
\(99\) 3.24914 + 3.24914i 0.326551 + 0.326551i
\(100\) 0 0
\(101\) 2.88273 2.88273i 0.286843 0.286843i −0.548988 0.835830i \(-0.684987\pi\)
0.835830 + 0.548988i \(0.184987\pi\)
\(102\) 0 0
\(103\) −5.36641 + 5.36641i −0.528768 + 0.528768i −0.920205 0.391437i \(-0.871978\pi\)
0.391437 + 0.920205i \(0.371978\pi\)
\(104\) 0 0
\(105\) −3.24914 + 9.74742i −0.317084 + 0.951251i
\(106\) 0 0
\(107\) 17.2311i 1.66579i 0.553429 + 0.832896i \(0.313319\pi\)
−0.553429 + 0.832896i \(0.686681\pi\)
\(108\) 0 0
\(109\) −7.05520 + 7.05520i −0.675765 + 0.675765i −0.959039 0.283274i \(-0.908579\pi\)
0.283274 + 0.959039i \(0.408579\pi\)
\(110\) 0 0
\(111\) 1.88273i 0.178701i
\(112\) 0 0
\(113\) 2.05863 2.05863i 0.193660 0.193660i −0.603616 0.797276i \(-0.706274\pi\)
0.797276 + 0.603616i \(0.206274\pi\)
\(114\) 0 0
\(115\) 4.30777 12.9233i 0.401702 1.20511i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.381015i 0.0349276i
\(120\) 0 0
\(121\) 10.1138i 0.919439i
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) 7.24914 7.24914i 0.643257 0.643257i −0.308098 0.951355i \(-0.599692\pi\)
0.951355 + 0.308098i \(0.0996923\pi\)
\(128\) 0 0
\(129\) 4.61555i 0.406376i
\(130\) 0 0
\(131\) 9.13187 9.13187i 0.797856 0.797856i −0.184902 0.982757i \(-0.559197\pi\)
0.982757 + 0.184902i \(0.0591966\pi\)
\(132\) 0 0
\(133\) 27.9931i 2.42731i
\(134\) 0 0
\(135\) −1.00000 2.00000i −0.0860663 0.172133i
\(136\) 0 0
\(137\) 5.05520 5.05520i 0.431894 0.431894i −0.457378 0.889272i \(-0.651211\pi\)
0.889272 + 0.457378i \(0.151211\pi\)
\(138\) 0 0
\(139\) −6.19051 + 6.19051i −0.525072 + 0.525072i −0.919099 0.394027i \(-0.871082\pi\)
0.394027 + 0.919099i \(0.371082\pi\)
\(140\) 0 0
\(141\) 6.80605 + 6.80605i 0.573173 + 0.573173i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 3.00000i 0.0830455 0.249136i
\(146\) 0 0
\(147\) 14.1138 1.16409
\(148\) 0 0
\(149\) 0.882734 + 0.882734i 0.0723164 + 0.0723164i 0.742340 0.670024i \(-0.233716\pi\)
−0.670024 + 0.742340i \(0.733716\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0.0586332 + 0.0586332i 0.00474021 + 0.00474021i
\(154\) 0 0
\(155\) 6.49828 + 12.9966i 0.521954 + 1.04391i
\(156\) 0 0
\(157\) 9.76547i 0.779369i 0.920948 + 0.389685i \(0.127416\pi\)
−0.920948 + 0.389685i \(0.872584\pi\)
\(158\) 0 0
\(159\) 9.11383 0.722774
\(160\) 0 0
\(161\) −27.9931 −2.20617
\(162\) 0 0
\(163\) 20.9966i 1.64458i 0.569070 + 0.822289i \(0.307303\pi\)
−0.569070 + 0.822289i \(0.692697\pi\)
\(164\) 0 0
\(165\) 3.24914 9.74742i 0.252945 0.758836i
\(166\) 0 0
\(167\) 2.42504 + 2.42504i 0.187655 + 0.187655i 0.794682 0.607026i \(-0.207638\pi\)
−0.607026 + 0.794682i \(0.707638\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.30777 4.30777i −0.329424 0.329424i
\(172\) 0 0
\(173\) 0.234533 0.0178312 0.00891559 0.999960i \(-0.497162\pi\)
0.00891559 + 0.999960i \(0.497162\pi\)
\(174\) 0 0
\(175\) 22.7440 3.24914i 1.71928 0.245612i
\(176\) 0 0
\(177\) 1.36641 + 1.36641i 0.102705 + 0.102705i
\(178\) 0 0
\(179\) 5.13187 + 5.13187i 0.383574 + 0.383574i 0.872388 0.488814i \(-0.162570\pi\)
−0.488814 + 0.872388i \(0.662570\pi\)
\(180\) 0 0
\(181\) −0.0586332 + 0.0586332i −0.00435817 + 0.00435817i −0.709283 0.704924i \(-0.750981\pi\)
0.704924 + 0.709283i \(0.250981\pi\)
\(182\) 0 0
\(183\) 2.05863 2.05863i 0.152179 0.152179i
\(184\) 0 0
\(185\) 3.76547 1.88273i 0.276843 0.138421i
\(186\) 0 0
\(187\) 0.381015i 0.0278626i
\(188\) 0 0
\(189\) −3.24914 + 3.24914i −0.236340 + 0.236340i
\(190\) 0 0
\(191\) 20.6155i 1.49169i 0.666120 + 0.745844i \(0.267954\pi\)
−0.666120 + 0.745844i \(0.732046\pi\)
\(192\) 0 0
\(193\) 13.9966 13.9966i 1.00749 1.00749i 0.00752289 0.999972i \(-0.497605\pi\)
0.999972 0.00752289i \(-0.00239463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.8793 1.06011 0.530053 0.847965i \(-0.322172\pi\)
0.530053 + 0.847965i \(0.322172\pi\)
\(198\) 0 0
\(199\) 18.4983i 1.31131i −0.755061 0.655654i \(-0.772393\pi\)
0.755061 0.655654i \(-0.227607\pi\)
\(200\) 0 0
\(201\) 12.3810i 0.873289i
\(202\) 0 0
\(203\) −6.49828 −0.456090
\(204\) 0 0
\(205\) −4.00000 8.00000i −0.279372 0.558744i
\(206\) 0 0
\(207\) 4.30777 4.30777i 0.299411 0.299411i
\(208\) 0 0
\(209\) 27.9931i 1.93632i
\(210\) 0 0
\(211\) −8.92332 + 8.92332i −0.614307 + 0.614307i −0.944065 0.329759i \(-0.893033\pi\)
0.329759 + 0.944065i \(0.393033\pi\)
\(212\) 0 0
\(213\) 8.99656i 0.616434i
\(214\) 0 0
\(215\) 9.23109 4.61555i 0.629555 0.314778i
\(216\) 0 0
\(217\) 21.1138 21.1138i 1.43330 1.43330i
\(218\) 0 0
\(219\) 1.11727 1.11727i 0.0754979 0.0754979i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.1319 13.1319i −0.879375 0.879375i 0.114095 0.993470i \(-0.463603\pi\)
−0.993470 + 0.114095i \(0.963603\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) 1.50172 0.0996726 0.0498363 0.998757i \(-0.484130\pi\)
0.0498363 + 0.998757i \(0.484130\pi\)
\(228\) 0 0
\(229\) −7.05520 7.05520i −0.466220 0.466220i 0.434467 0.900688i \(-0.356937\pi\)
−0.900688 + 0.434467i \(0.856937\pi\)
\(230\) 0 0
\(231\) −21.1138 −1.38919
\(232\) 0 0
\(233\) 9.05520 + 9.05520i 0.593226 + 0.593226i 0.938501 0.345276i \(-0.112215\pi\)
−0.345276 + 0.938501i \(0.612215\pi\)
\(234\) 0 0
\(235\) 6.80605 20.4182i 0.443978 1.33193i
\(236\) 0 0
\(237\) 8.99656i 0.584390i
\(238\) 0 0
\(239\) −16.9966 −1.09942 −0.549708 0.835357i \(-0.685261\pi\)
−0.549708 + 0.835357i \(0.685261\pi\)
\(240\) 0 0
\(241\) −23.9931 −1.54553 −0.772767 0.634690i \(-0.781128\pi\)
−0.772767 + 0.634690i \(0.781128\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −14.1138 28.2277i −0.901699 1.80340i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.99656 −0.316644
\(250\) 0 0
\(251\) −7.24914 7.24914i −0.457562 0.457562i 0.440293 0.897854i \(-0.354875\pi\)
−0.897854 + 0.440293i \(0.854875\pi\)
\(252\) 0 0
\(253\) 27.9931 1.75991
\(254\) 0 0
\(255\) 0.0586332 0.175899i 0.00367175 0.0110153i
\(256\) 0 0
\(257\) −3.17246 3.17246i −0.197893 0.197893i 0.601203 0.799096i \(-0.294688\pi\)
−0.799096 + 0.601203i \(0.794688\pi\)
\(258\) 0 0
\(259\) −6.11727 6.11727i −0.380108 0.380108i
\(260\) 0 0
\(261\) 1.00000 1.00000i 0.0618984 0.0618984i
\(262\) 0 0
\(263\) 20.6888 20.6888i 1.27573 1.27573i 0.332689 0.943037i \(-0.392044\pi\)
0.943037 0.332689i \(-0.107956\pi\)
\(264\) 0 0
\(265\) −9.11383 18.2277i −0.559858 1.11972i
\(266\) 0 0
\(267\) 4.11727i 0.251973i
\(268\) 0 0
\(269\) 17.8793 17.8793i 1.09012 1.09012i 0.0946050 0.995515i \(-0.469841\pi\)
0.995515 0.0946050i \(-0.0301588\pi\)
\(270\) 0 0
\(271\) 18.4983i 1.12369i 0.827242 + 0.561845i \(0.189908\pi\)
−0.827242 + 0.561845i \(0.810092\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.7440 + 3.24914i −1.37151 + 0.195931i
\(276\) 0 0
\(277\) 16.1104 0.967980 0.483990 0.875074i \(-0.339187\pi\)
0.483990 + 0.875074i \(0.339187\pi\)
\(278\) 0 0
\(279\) 6.49828i 0.389042i
\(280\) 0 0
\(281\) 10.1173i 0.603546i −0.953380 0.301773i \(-0.902422\pi\)
0.953380 0.301773i \(-0.0975784\pi\)
\(282\) 0 0
\(283\) −5.61211 −0.333605 −0.166803 0.985990i \(-0.553344\pi\)
−0.166803 + 0.985990i \(0.553344\pi\)
\(284\) 0 0
\(285\) −4.30777 + 12.9233i −0.255170 + 0.765511i
\(286\) 0 0
\(287\) −12.9966 + 12.9966i −0.767163 + 0.767163i
\(288\) 0 0
\(289\) 16.9931i 0.999596i
\(290\) 0 0
\(291\) 9.99656 9.99656i 0.586009 0.586009i
\(292\) 0 0
\(293\) 20.2277i 1.18171i −0.806777 0.590856i \(-0.798790\pi\)
0.806777 0.590856i \(-0.201210\pi\)
\(294\) 0 0
\(295\) 1.36641 4.09922i 0.0795553 0.238666i
\(296\) 0 0
\(297\) 3.24914 3.24914i 0.188534 0.188534i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −14.9966 14.9966i −0.864387 0.864387i
\(302\) 0 0
\(303\) −2.88273 2.88273i −0.165609 0.165609i
\(304\) 0 0
\(305\) −6.17590 2.05863i −0.353631 0.117877i
\(306\) 0 0
\(307\) 20.6155 1.17659 0.588296 0.808646i \(-0.299799\pi\)
0.588296 + 0.808646i \(0.299799\pi\)
\(308\) 0 0
\(309\) 5.36641 + 5.36641i 0.305284 + 0.305284i
\(310\) 0 0
\(311\) −21.2311 −1.20390 −0.601952 0.798532i \(-0.705610\pi\)
−0.601952 + 0.798532i \(0.705610\pi\)
\(312\) 0 0
\(313\) 3.00000 + 3.00000i 0.169570 + 0.169570i 0.786790 0.617220i \(-0.211741\pi\)
−0.617220 + 0.786790i \(0.711741\pi\)
\(314\) 0 0
\(315\) 9.74742 + 3.24914i 0.549205 + 0.183068i
\(316\) 0 0
\(317\) 1.11383i 0.0625588i −0.999511 0.0312794i \(-0.990042\pi\)
0.999511 0.0312794i \(-0.00995817\pi\)
\(318\) 0 0
\(319\) 6.49828 0.363834
\(320\) 0 0
\(321\) 17.2311 0.961746
\(322\) 0 0
\(323\) 0.505157i 0.0281077i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.05520 + 7.05520i 0.390153 + 0.390153i
\(328\) 0 0
\(329\) −44.2277 −2.43835
\(330\) 0 0
\(331\) 8.92332 + 8.92332i 0.490470 + 0.490470i 0.908454 0.417984i \(-0.137263\pi\)
−0.417984 + 0.908454i \(0.637263\pi\)
\(332\) 0 0
\(333\) 1.88273 0.103173
\(334\) 0 0
\(335\) 24.7620 12.3810i 1.35289 0.676447i
\(336\) 0 0
\(337\) −2.00344 2.00344i −0.109134 0.109134i 0.650431 0.759565i \(-0.274588\pi\)
−0.759565 + 0.650431i \(0.774588\pi\)
\(338\) 0 0
\(339\) −2.05863 2.05863i −0.111810 0.111810i
\(340\) 0 0
\(341\) −21.1138 + 21.1138i −1.14338 + 1.14338i
\(342\) 0 0
\(343\) −23.1138 + 23.1138i −1.24803 + 1.24803i
\(344\) 0 0
\(345\) −12.9233 4.30777i −0.695768 0.231923i
\(346\) 0 0
\(347\) 0.234533i 0.0125904i 0.999980 + 0.00629519i \(0.00200383\pi\)
−0.999980 + 0.00629519i \(0.997996\pi\)
\(348\) 0 0
\(349\) −21.1725 + 21.1725i −1.13334 + 1.13334i −0.143717 + 0.989619i \(0.545906\pi\)
−0.989619 + 0.143717i \(0.954094\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.0586332 + 0.0586332i −0.00312073 + 0.00312073i −0.708665 0.705545i \(-0.750702\pi\)
0.705545 + 0.708665i \(0.250702\pi\)
\(354\) 0 0
\(355\) 17.9931 8.99656i 0.954976 0.477488i
\(356\) 0 0
\(357\) −0.381015 −0.0201654
\(358\) 0 0
\(359\) 9.84664i 0.519686i −0.965651 0.259843i \(-0.916329\pi\)
0.965651 0.259843i \(-0.0836708\pi\)
\(360\) 0 0
\(361\) 18.1138i 0.953359i
\(362\) 0 0
\(363\) 10.1138 0.530838
\(364\) 0 0
\(365\) −3.35180 1.11727i −0.175441 0.0584804i
\(366\) 0 0
\(367\) 6.36297 6.36297i 0.332144 0.332144i −0.521256 0.853400i \(-0.674536\pi\)
0.853400 + 0.521256i \(0.174536\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) −29.6121 + 29.6121i −1.53738 + 1.53738i
\(372\) 0 0
\(373\) 28.2277i 1.46157i −0.682606 0.730786i \(-0.739154\pi\)
0.682606 0.730786i \(-0.260846\pi\)
\(374\) 0 0
\(375\) 11.0000 + 2.00000i 0.568038 + 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 19.8026 19.8026i 1.01719 1.01719i 0.0173425 0.999850i \(-0.494479\pi\)
0.999850 0.0173425i \(-0.00552057\pi\)
\(380\) 0 0
\(381\) −7.24914 7.24914i −0.371385 0.371385i
\(382\) 0 0
\(383\) 7.69223 + 7.69223i 0.393054 + 0.393054i 0.875775 0.482720i \(-0.160351\pi\)
−0.482720 + 0.875775i \(0.660351\pi\)
\(384\) 0 0
\(385\) 21.1138 + 42.2277i 1.07606 + 2.15212i
\(386\) 0 0
\(387\) 4.61555 0.234621
\(388\) 0 0
\(389\) 8.88273 + 8.88273i 0.450372 + 0.450372i 0.895478 0.445106i \(-0.146834\pi\)
−0.445106 + 0.895478i \(0.646834\pi\)
\(390\) 0 0
\(391\) 0.505157 0.0255469
\(392\) 0 0
\(393\) −9.13187 9.13187i −0.460642 0.460642i
\(394\) 0 0
\(395\) 17.9931 8.99656i 0.905332 0.452666i
\(396\) 0 0
\(397\) 8.11727i 0.407394i −0.979034 0.203697i \(-0.934704\pi\)
0.979034 0.203697i \(-0.0652957\pi\)
\(398\) 0 0
\(399\) 27.9931 1.40141
\(400\) 0 0
\(401\) 26.1104 1.30389 0.651945 0.758266i \(-0.273953\pi\)
0.651945 + 0.758266i \(0.273953\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.00000 + 1.00000i −0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 6.11727 + 6.11727i 0.303222 + 0.303222i
\(408\) 0 0
\(409\) 2.65164 0.131115 0.0655576 0.997849i \(-0.479117\pi\)
0.0655576 + 0.997849i \(0.479117\pi\)
\(410\) 0 0
\(411\) −5.05520 5.05520i −0.249354 0.249354i
\(412\) 0 0
\(413\) −8.87930 −0.436922
\(414\) 0 0
\(415\) 4.99656 + 9.99312i 0.245272 + 0.490543i
\(416\) 0 0
\(417\) 6.19051 + 6.19051i 0.303150 + 0.303150i
\(418\) 0 0
\(419\) −7.86469 7.86469i −0.384215 0.384215i 0.488403 0.872618i \(-0.337580\pi\)
−0.872618 + 0.488403i \(0.837580\pi\)
\(420\) 0 0
\(421\) 2.94480 2.94480i 0.143521 0.143521i −0.631696 0.775217i \(-0.717641\pi\)
0.775217 + 0.631696i \(0.217641\pi\)
\(422\) 0 0
\(423\) 6.80605 6.80605i 0.330922 0.330922i
\(424\) 0 0
\(425\) −0.410432 + 0.0586332i −0.0199089 + 0.00284413i
\(426\) 0 0
\(427\) 13.3776i 0.647386i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.3810i 1.36707i −0.729920 0.683533i \(-0.760443\pi\)
0.729920 0.683533i \(-0.239557\pi\)
\(432\) 0 0
\(433\) 12.1138 12.1138i 0.582153 0.582153i −0.353341 0.935495i \(-0.614954\pi\)
0.935495 + 0.353341i \(0.114954\pi\)
\(434\) 0 0
\(435\) −3.00000 1.00000i −0.143839 0.0479463i
\(436\) 0 0
\(437\) −37.1138 −1.77540
\(438\) 0 0
\(439\) 14.7328i 0.703159i −0.936158 0.351579i \(-0.885645\pi\)
0.936158 0.351579i \(-0.114355\pi\)
\(440\) 0 0
\(441\) 14.1138i 0.672087i
\(442\) 0 0
\(443\) −39.2603 −1.86531 −0.932657 0.360765i \(-0.882516\pi\)
−0.932657 + 0.360765i \(0.882516\pi\)
\(444\) 0 0
\(445\) −8.23453 + 4.11727i −0.390354 + 0.195177i
\(446\) 0 0
\(447\) 0.882734 0.882734i 0.0417519 0.0417519i
\(448\) 0 0
\(449\) 9.64820i 0.455327i 0.973740 + 0.227663i \(0.0731086\pi\)
−0.973740 + 0.227663i \(0.926891\pi\)
\(450\) 0 0
\(451\) 12.9966 12.9966i 0.611984 0.611984i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.9966 + 17.9966i −0.841844 + 0.841844i −0.989099 0.147255i \(-0.952956\pi\)
0.147255 + 0.989099i \(0.452956\pi\)
\(458\) 0 0
\(459\) 0.0586332 0.0586332i 0.00273676 0.00273676i
\(460\) 0 0
\(461\) 16.1138 + 16.1138i 0.750496 + 0.750496i 0.974572 0.224076i \(-0.0719363\pi\)
−0.224076 + 0.974572i \(0.571936\pi\)
\(462\) 0 0
\(463\) 6.86813 + 6.86813i 0.319189 + 0.319189i 0.848456 0.529267i \(-0.177533\pi\)
−0.529267 + 0.848456i \(0.677533\pi\)
\(464\) 0 0
\(465\) 12.9966 6.49828i 0.602701 0.301351i
\(466\) 0 0
\(467\) −1.26719 −0.0586384 −0.0293192 0.999570i \(-0.509334\pi\)
−0.0293192 + 0.999570i \(0.509334\pi\)
\(468\) 0 0
\(469\) −40.2277 40.2277i −1.85754 1.85754i
\(470\) 0 0
\(471\) 9.76547 0.449969
\(472\) 0 0
\(473\) 14.9966 + 14.9966i 0.689543 + 0.689543i
\(474\) 0 0
\(475\) 30.1544 4.30777i 1.38358 0.197654i
\(476\) 0 0
\(477\) 9.11383i 0.417294i
\(478\) 0 0
\(479\) −7.00344 −0.319995 −0.159998 0.987117i \(-0.551149\pi\)
−0.159998 + 0.987117i \(0.551149\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 27.9931i 1.27373i
\(484\) 0 0
\(485\) −29.9897 9.99656i −1.36176 0.453921i
\(486\) 0 0
\(487\) 25.2423 + 25.2423i 1.14384 + 1.14384i 0.987742 + 0.156094i \(0.0498903\pi\)
0.156094 + 0.987742i \(0.450110\pi\)
\(488\) 0 0
\(489\) 20.9966 0.949497
\(490\) 0 0
\(491\) 10.6336 + 10.6336i 0.479887 + 0.479887i 0.905096 0.425208i \(-0.139799\pi\)
−0.425208 + 0.905096i \(0.639799\pi\)
\(492\) 0 0
\(493\) 0.117266 0.00528141
\(494\) 0 0
\(495\) −9.74742 3.24914i −0.438114 0.146038i
\(496\) 0 0
\(497\) −29.2311 29.2311i −1.31119 1.31119i
\(498\) 0 0
\(499\) 4.30777 + 4.30777i 0.192842 + 0.192842i 0.796923 0.604081i \(-0.206460\pi\)
−0.604081 + 0.796923i \(0.706460\pi\)
\(500\) 0 0
\(501\) 2.42504 2.42504i 0.108343 0.108343i
\(502\) 0 0
\(503\) −13.0698 + 13.0698i −0.582754 + 0.582754i −0.935659 0.352905i \(-0.885194\pi\)
0.352905 + 0.935659i \(0.385194\pi\)
\(504\) 0 0
\(505\) −2.88273 + 8.64820i −0.128280 + 0.384840i
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) 16.9931 16.9931i 0.753207 0.753207i −0.221869 0.975076i \(-0.571216\pi\)
0.975076 + 0.221869i \(0.0712159\pi\)
\(510\) 0 0
\(511\) 7.26031i 0.321177i
\(512\) 0 0
\(513\) −4.30777 + 4.30777i −0.190193 + 0.190193i
\(514\) 0 0
\(515\) 5.36641 16.0992i 0.236472 0.709416i
\(516\) 0 0
\(517\) 44.2277 1.94513
\(518\) 0 0
\(519\) 0.234533i 0.0102948i
\(520\) 0 0
\(521\) 14.3518i 0.628764i 0.949297 + 0.314382i \(0.101797\pi\)
−0.949297 + 0.314382i \(0.898203\pi\)
\(522\) 0 0
\(523\) 4.38101 0.191568 0.0957842 0.995402i \(-0.469464\pi\)
0.0957842 + 0.995402i \(0.469464\pi\)
\(524\) 0 0
\(525\) −3.24914 22.7440i −0.141804 0.992629i
\(526\) 0 0
\(527\) −0.381015 + 0.381015i −0.0165973 + 0.0165973i
\(528\) 0 0
\(529\) 14.1138i 0.613645i
\(530\) 0 0
\(531\) 1.36641 1.36641i 0.0592970 0.0592970i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −17.2311 34.4622i −0.744965 1.48993i
\(536\) 0 0
\(537\) 5.13187 5.13187i 0.221457 0.221457i
\(538\) 0 0
\(539\) 45.8578 45.8578i 1.97524 1.97524i
\(540\) 0 0
\(541\) 13.4070 + 13.4070i 0.576412 + 0.576412i 0.933913 0.357501i \(-0.116371\pi\)
−0.357501 + 0.933913i \(0.616371\pi\)
\(542\) 0 0
\(543\) 0.0586332 + 0.0586332i 0.00251619 + 0.00251619i
\(544\) 0 0
\(545\) 7.05520 21.1656i 0.302211 0.906634i
\(546\) 0 0
\(547\) −19.3845 −0.828819 −0.414410 0.910090i \(-0.636012\pi\)
−0.414410 + 0.910090i \(0.636012\pi\)
\(548\) 0 0
\(549\) −2.05863 2.05863i −0.0878603 0.0878603i
\(550\) 0 0
\(551\) −8.61555 −0.367035
\(552\) 0 0
\(553\) −29.2311 29.2311i −1.24303 1.24303i
\(554\) 0 0
\(555\) −1.88273 3.76547i −0.0799176 0.159835i
\(556\) 0 0
\(557\) 35.9931i 1.52508i −0.646942 0.762539i \(-0.723953\pi\)
0.646942 0.762539i \(-0.276047\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.381015 0.0160865
\(562\) 0 0
\(563\) 8.23453i 0.347044i 0.984830 + 0.173522i \(0.0555148\pi\)
−0.984830 + 0.173522i \(0.944485\pi\)
\(564\) 0 0
\(565\) −2.05863 + 6.17590i −0.0866073 + 0.259822i
\(566\) 0 0
\(567\) 3.24914 + 3.24914i 0.136451 + 0.136451i
\(568\) 0 0
\(569\) 15.8827 0.665839 0.332919 0.942955i \(-0.391966\pi\)
0.332919 + 0.942955i \(0.391966\pi\)
\(570\) 0 0
\(571\) −22.1905 22.1905i −0.928644 0.928644i 0.0689746 0.997618i \(-0.478027\pi\)
−0.997618 + 0.0689746i \(0.978027\pi\)
\(572\) 0 0
\(573\) 20.6155 0.861227
\(574\) 0 0
\(575\) 4.30777 + 30.1544i 0.179647 + 1.25753i
\(576\) 0 0
\(577\) 8.00344 + 8.00344i 0.333187 + 0.333187i 0.853796 0.520608i \(-0.174295\pi\)
−0.520608 + 0.853796i \(0.674295\pi\)
\(578\) 0 0
\(579\) −13.9966 13.9966i −0.581677 0.581677i
\(580\) 0 0
\(581\) 16.2345 16.2345i 0.673522 0.673522i
\(582\) 0 0
\(583\) 29.6121 29.6121i 1.22641 1.22641i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00344i 0.123965i −0.998077 0.0619826i \(-0.980258\pi\)
0.998077 0.0619826i \(-0.0197423\pi\)
\(588\) 0 0
\(589\) 27.9931 27.9931i 1.15344 1.15344i
\(590\) 0 0
\(591\) 14.8793i 0.612052i
\(592\) 0 0
\(593\) −22.0518 + 22.0518i −0.905557 + 0.905557i −0.995910 0.0903527i \(-0.971201\pi\)
0.0903527 + 0.995910i \(0.471201\pi\)
\(594\) 0 0
\(595\) 0.381015 + 0.762030i 0.0156201 + 0.0312402i
\(596\) 0 0
\(597\) −18.4983 −0.757084
\(598\) 0 0
\(599\) 17.8466i 0.729194i −0.931165 0.364597i \(-0.881207\pi\)
0.931165 0.364597i \(-0.118793\pi\)
\(600\) 0 0
\(601\) 44.4553i 1.81337i 0.421808 + 0.906685i \(0.361396\pi\)
−0.421808 + 0.906685i \(0.638604\pi\)
\(602\) 0 0
\(603\) 12.3810 0.504194
\(604\) 0 0
\(605\) −10.1138 20.2277i −0.411186 0.822371i
\(606\) 0 0
\(607\) 22.5975 22.5975i 0.917204 0.917204i −0.0796209 0.996825i \(-0.525371\pi\)
0.996825 + 0.0796209i \(0.0253710\pi\)
\(608\) 0 0
\(609\) 6.49828i 0.263324i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.1173i 0.650970i 0.945547 + 0.325485i \(0.105528\pi\)
−0.945547 + 0.325485i \(0.894472\pi\)
\(614\) 0 0
\(615\) −8.00000 + 4.00000i −0.322591 + 0.161296i
\(616\) 0 0
\(617\) 21.2897 21.2897i 0.857092 0.857092i −0.133902 0.990995i \(-0.542751\pi\)
0.990995 + 0.133902i \(0.0427509\pi\)
\(618\) 0 0
\(619\) −6.19051 + 6.19051i −0.248817 + 0.248817i −0.820485 0.571668i \(-0.806297\pi\)
0.571668 + 0.820485i \(0.306297\pi\)
\(620\) 0 0
\(621\) −4.30777 4.30777i −0.172865 0.172865i
\(622\) 0 0
\(623\) 13.3776 + 13.3776i 0.535961 + 0.535961i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) −27.9931 −1.11794
\(628\) 0 0
\(629\) 0.110391 + 0.110391i 0.00440156 + 0.00440156i
\(630\) 0 0
\(631\) 1.46563 0.0583457 0.0291729 0.999574i \(-0.490713\pi\)
0.0291729 + 0.999574i \(0.490713\pi\)
\(632\) 0 0
\(633\) 8.92332 + 8.92332i 0.354670 + 0.354670i
\(634\) 0 0
\(635\) −7.24914 + 21.7474i −0.287673 + 0.863020i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.99656 0.355898
\(640\) 0 0
\(641\) 43.9931 1.73762 0.868812 0.495142i \(-0.164884\pi\)
0.868812 + 0.495142i \(0.164884\pi\)
\(642\) 0 0
\(643\) 5.46563i 0.215543i 0.994176 + 0.107772i \(0.0343715\pi\)
−0.994176 + 0.107772i \(0.965628\pi\)
\(644\) 0 0
\(645\) −4.61555 9.23109i −0.181737 0.363474i
\(646\) 0 0
\(647\) 28.1836 + 28.1836i 1.10801 + 1.10801i 0.993412 + 0.114601i \(0.0365591\pi\)
0.114601 + 0.993412i \(0.463441\pi\)
\(648\) 0 0
\(649\) 8.87930 0.348543
\(650\) 0 0
\(651\) −21.1138 21.1138i −0.827516 0.827516i
\(652\) 0 0
\(653\) 3.11383 0.121854 0.0609268 0.998142i \(-0.480594\pi\)
0.0609268 + 0.998142i \(0.480594\pi\)
\(654\) 0 0
\(655\) −9.13187 + 27.3956i −0.356812 + 1.07044i
\(656\) 0 0
\(657\) −1.11727 1.11727i −0.0435887 0.0435887i
\(658\) 0 0
\(659\) −13.9820 13.9820i −0.544660 0.544660i 0.380232 0.924891i \(-0.375844\pi\)
−0.924891 + 0.380232i \(0.875844\pi\)
\(660\) 0 0
\(661\) −29.2897 + 29.2897i −1.13924 + 1.13924i −0.150651 + 0.988587i \(0.548137\pi\)
−0.988587 + 0.150651i \(0.951863\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.9931 55.9862i −1.08553 2.17105i
\(666\) 0 0
\(667\) 8.61555i 0.333595i
\(668\) 0 0
\(669\) −13.1319 + 13.1319i −0.507708 + 0.507708i
\(670\) 0 0
\(671\) 13.3776i 0.516436i
\(672\) 0 0
\(673\) −24.7586 + 24.7586i −0.954374 + 0.954374i −0.999004 0.0446300i \(-0.985789\pi\)
0.0446300 + 0.999004i \(0.485789\pi\)
\(674\) 0 0
\(675\) 4.00000 + 3.00000i 0.153960 + 0.115470i
\(676\) 0 0
\(677\) 22.8793 0.879323 0.439661 0.898164i \(-0.355098\pi\)
0.439661 + 0.898164i \(0.355098\pi\)
\(678\) 0 0
\(679\) 64.9605i 2.49295i
\(680\) 0 0
\(681\) 1.50172i 0.0575460i
\(682\) 0 0
\(683\) 35.7294 1.36715 0.683573 0.729882i \(-0.260425\pi\)
0.683573 + 0.729882i \(0.260425\pi\)
\(684\) 0 0
\(685\) −5.05520 + 15.1656i −0.193149 + 0.579447i
\(686\) 0 0
\(687\) −7.05520 + 7.05520i −0.269172 + 0.269172i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 22.4250 22.4250i 0.853089 0.853089i −0.137424 0.990512i \(-0.543882\pi\)
0.990512 + 0.137424i \(0.0438822\pi\)
\(692\) 0 0
\(693\) 21.1138i 0.802048i
\(694\) 0 0
\(695\) 6.19051 18.5715i 0.234819 0.704458i
\(696\) 0 0
\(697\) 0.234533 0.234533i 0.00888356 0.00888356i
\(698\) 0 0
\(699\) 9.05520 9.05520i 0.342499 0.342499i
\(700\) 0 0
\(701\) 7.87930 + 7.87930i 0.297597 + 0.297597i 0.840072 0.542475i \(-0.182513\pi\)
−0.542475 + 0.840072i \(0.682513\pi\)
\(702\) 0 0
\(703\) −8.11039 8.11039i −0.305889 0.305889i
\(704\) 0 0
\(705\) −20.4182 6.80605i −0.768993 0.256331i
\(706\) 0 0
\(707\) 18.7328 0.704520
\(708\) 0 0
\(709\) 17.9414 + 17.9414i 0.673802 + 0.673802i 0.958590 0.284788i \(-0.0919233\pi\)
−0.284788 + 0.958590i \(0.591923\pi\)
\(710\) 0 0
\(711\) 8.99656 0.337397
\(712\) 0 0
\(713\) 27.9931 + 27.9931i 1.04835 + 1.04835i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.9966i 0.634748i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −34.8724 −1.29872
\(722\) 0 0
\(723\) 23.9931i 0.892314i
\(724\) 0 0
\(725\) 1.00000 + 7.00000i 0.0371391 + 0.259973i
\(726\) 0 0
\(727\) −0.281794 0.281794i −0.0104512 0.0104512i 0.701862 0.712313i \(-0.252352\pi\)
−0.712313 + 0.701862i \(0.752352\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0.270624 + 0.270624i 0.0100094 + 0.0100094i
\(732\) 0 0
\(733\) −2.35180 −0.0868657 −0.0434328 0.999056i \(-0.513829\pi\)
−0.0434328 + 0.999056i \(0.513829\pi\)
\(734\) 0 0
\(735\) −28.2277 + 14.1138i −1.04119 + 0.520596i
\(736\) 0 0
\(737\) 40.2277 + 40.2277i 1.48180 + 1.48180i
\(738\) 0 0
\(739\) 11.3112 + 11.3112i 0.416090 + 0.416090i 0.883853 0.467764i \(-0.154940\pi\)
−0.467764 + 0.883853i \(0.654940\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.4250 + 14.4250i −0.529203 + 0.529203i −0.920335 0.391131i \(-0.872084\pi\)
0.391131 + 0.920335i \(0.372084\pi\)
\(744\) 0 0
\(745\) −2.64820 0.882734i −0.0970226 0.0323409i
\(746\) 0 0
\(747\) 4.99656i 0.182815i
\(748\) 0 0
\(749\) −55.9862 + 55.9862i −2.04569 + 2.04569i
\(750\) 0 0
\(751\) 5.73625i 0.209319i 0.994508 + 0.104659i \(0.0333752\pi\)
−0.994508 + 0.104659i \(0.966625\pi\)
\(752\) 0 0
\(753\) −7.24914 + 7.24914i −0.264173 + 0.264173i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12.3449 0.448684 0.224342 0.974510i \(-0.427977\pi\)
0.224342 + 0.974510i \(0.427977\pi\)
\(758\) 0 0
\(759\) 27.9931i 1.01609i
\(760\) 0 0
\(761\) 31.8759i 1.15550i −0.816214 0.577749i \(-0.803931\pi\)
0.816214 0.577749i \(-0.196069\pi\)
\(762\) 0 0
\(763\) −45.8466 −1.65976
\(764\) 0 0
\(765\) −0.175899 0.0586332i −0.00635966 0.00211989i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.87930i 0.103830i −0.998652 0.0519150i \(-0.983468\pi\)
0.998652 0.0519150i \(-0.0165325\pi\)
\(770\) 0 0
\(771\) −3.17246 + 3.17246i −0.114253 + 0.114253i
\(772\) 0 0
\(773\) 35.5760i 1.27958i 0.768550 + 0.639790i \(0.220979\pi\)
−0.768550 + 0.639790i \(0.779021\pi\)
\(774\) 0 0
\(775\) −25.9931 19.4948i −0.933701 0.700275i
\(776\) 0 0
\(777\) −6.11727 + 6.11727i −0.219456 + 0.219456i
\(778\) 0 0
\(779\) −17.2311 + 17.2311i −0.617368 + 0.617368i
\(780\) 0 0
\(781\) 29.2311 + 29.2311i 1.04597 + 1.04597i
\(782\) 0 0
\(783\) −1.00000 1.00000i −0.0357371 0.0357371i
\(784\) 0 0
\(785\) −9.76547 19.5309i −0.348544 0.697089i
\(786\) 0 0
\(787\) 45.1430 1.60918 0.804588 0.593834i \(-0.202386\pi\)
0.804588 + 0.593834i \(0.202386\pi\)
\(788\) 0 0
\(789\) −20.6888 20.6888i −0.736540 0.736540i
\(790\) 0 0
\(791\) 13.3776 0.475652
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −18.2277 + 9.11383i −0.646468 + 0.323234i
\(796\) 0 0
\(797\) 43.3415i 1.53523i 0.640909 + 0.767617i \(0.278558\pi\)
−0.640909 + 0.767617i \(0.721442\pi\)
\(798\) 0 0
\(799\) 0.798121 0.0282355
\(800\) 0 0
\(801\) −4.11727 −0.145476
\(802\) 0 0
\(803\) 7.26031i 0.256211i
\(804\) 0 0
\(805\) 55.9862 27.9931i 1.97326 0.986628i
\(806\) 0 0
\(807\) −17.8793 17.8793i −0.629381 0.629381i
\(808\) 0 0
\(809\) −35.5241 −1.24896 −0.624480 0.781041i \(-0.714689\pi\)
−0.624480 + 0.781041i \(0.714689\pi\)
\(810\) 0 0
\(811\) 28.9233 + 28.9233i 1.01564 + 1.01564i 0.999876 + 0.0157594i \(0.00501657\pi\)
0.0157594 + 0.999876i \(0.494983\pi\)
\(812\) 0 0
\(813\) 18.4983 0.648763
\(814\) 0 0
\(815\) −20.9966 41.9931i −0.735477 1.47095i
\(816\) 0 0
\(817\) −19.8827 19.8827i −0.695609 0.695609i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.6482 + 12.6482i −0.441425 + 0.441425i −0.892491 0.451066i \(-0.851044\pi\)
0.451066 + 0.892491i \(0.351044\pi\)
\(822\) 0 0
\(823\) −29.7113 + 29.7113i −1.03567 + 1.03567i −0.0363321 + 0.999340i \(0.511567\pi\)
−0.999340 + 0.0363321i \(0.988433\pi\)
\(824\) 0 0
\(825\) 3.24914 + 22.7440i 0.113121 + 0.791844i
\(826\) 0 0
\(827\) 18.2277i 0.633838i 0.948453 + 0.316919i \(0.102648\pi\)
−0.948453 + 0.316919i \(0.897352\pi\)
\(828\) 0 0
\(829\) −10.8207 + 10.8207i −0.375817 + 0.375817i −0.869591 0.493773i \(-0.835617\pi\)
0.493773 + 0.869591i \(0.335617\pi\)
\(830\) 0 0
\(831\) 16.1104i 0.558863i
\(832\) 0 0
\(833\) 0.827538 0.827538i 0.0286725 0.0286725i
\(834\) 0 0
\(835\) −7.27512 2.42504i −0.251766 0.0839220i
\(836\) 0 0
\(837\) 6.49828 0.224613
\(838\) 0 0
\(839\) 6.84320i 0.236254i 0.992999 + 0.118127i \(0.0376889\pi\)
−0.992999 + 0.118127i \(0.962311\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) −10.1173 −0.348457
\(844\) 0 0
\(845\) 26.0000 13.0000i 0.894427 0.447214i
\(846\) 0 0
\(847\) −32.8613 + 32.8613i −1.12913 + 1.12913i
\(848\) 0 0
\(849\) 5.61211i 0.192607i
\(850\) 0 0
\(851\) 8.11039 8.11039i 0.278021 0.278021i
\(852\) 0 0
\(853\) 36.1173i 1.23663i −0.785930 0.618316i \(-0.787815\pi\)
0.785930 0.618316i \(-0.212185\pi\)
\(854\) 0 0
\(855\) 12.9233 + 4.30777i 0.441968 + 0.147323i
\(856\) 0 0
\(857\) −8.93793 + 8.93793i −0.305314 + 0.305314i −0.843089 0.537775i \(-0.819265\pi\)
0.537775 + 0.843089i \(0.319265\pi\)
\(858\) 0 0
\(859\) −39.7665 + 39.7665i −1.35682 + 1.35682i −0.479003 + 0.877813i \(0.659002\pi\)
−0.877813 + 0.479003i \(0.840998\pi\)
\(860\) 0 0
\(861\) 12.9966 + 12.9966i 0.442922 + 0.442922i
\(862\) 0 0
\(863\) 10.8061 + 10.8061i 0.367842 + 0.367842i 0.866690 0.498847i \(-0.166243\pi\)
−0.498847 + 0.866690i \(0.666243\pi\)
\(864\) 0 0
\(865\) −0.469065 + 0.234533i −0.0159487 + 0.00797435i
\(866\) 0 0
\(867\) −16.9931 −0.577117
\(868\) 0 0
\(869\) 29.2311 + 29.2311i 0.991597 + 0.991597i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −9.99656 9.99656i −0.338332 0.338332i
\(874\) 0 0
\(875\) −42.2388 + 29.2423i −1.42793 + 0.988569i
\(876\) 0 0
\(877\) 14.2345i 0.480666i −0.970690 0.240333i \(-0.922743\pi\)
0.970690 0.240333i \(-0.0772566\pi\)
\(878\) 0 0
\(879\) −20.2277 −0.682262
\(880\) 0 0
\(881\) 14.3449 0.483293 0.241646 0.970364i \(-0.422313\pi\)
0.241646 + 0.970364i \(0.422313\pi\)
\(882\) 0 0
\(883\) 58.7552i 1.97727i −0.150341 0.988634i \(-0.548037\pi\)
0.150341 0.988634i \(-0.451963\pi\)
\(884\) 0 0
\(885\) −4.09922 1.36641i −0.137794 0.0459313i
\(886\) 0 0
\(887\) 12.3078 + 12.3078i 0.413255 + 0.413255i 0.882871 0.469616i \(-0.155608\pi\)
−0.469616 + 0.882871i \(0.655608\pi\)
\(888\) 0 0
\(889\) 47.1070 1.57992
\(890\) 0 0
\(891\) −3.24914 3.24914i −0.108850 0.108850i
\(892\) 0 0
\(893\) −58.6379 −1.96224
\(894\) 0 0
\(895\) −15.3956 5.13187i −0.514619 0.171540i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.49828 + 6.49828i 0.216730 + 0.216730i
\(900\) 0 0
\(901\) 0.534373 0.534373i 0.0178025 0.0178025i
\(902\) 0 0
\(903\) −14.9966 + 14.9966i −0.499054 + 0.499054i
\(904\) 0 0
\(905\) 0.0586332 0.175899i 0.00194903 0.00584710i
\(906\) 0 0
\(907\) 8.23453i 0.273423i 0.990611 + 0.136712i \(0.0436534\pi\)
−0.990611 + 0.136712i \(0.956347\pi\)
\(908\) 0 0
\(909\) −2.88273 + 2.88273i −0.0956142 + 0.0956142i
\(910\) 0 0
\(911\) 42.6087i 1.41169i −0.708367 0.705844i \(-0.750568\pi\)
0.708367 0.705844i \(-0.249432\pi\)
\(912\) 0 0
\(913\) −16.2345 + 16.2345i −0.537285 + 0.537285i
\(914\) 0 0
\(915\) −2.05863 + 6.17590i −0.0680563 + 0.204169i
\(916\) 0 0
\(917\) 59.3415 1.95963
\(918\) 0 0
\(919\) 31.2603i 1.03118i −0.856835 0.515591i \(-0.827572\pi\)
0.856835 0.515591i \(-0.172428\pi\)
\(920\) 0 0
\(921\) 20.6155i 0.679305i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −5.64820 + 7.53093i −0.185712 + 0.247616i
\(926\) 0 0
\(927\) 5.36641 5.36641i 0.176256 0.176256i
\(928\) 0 0
\(929\) 54.5726i 1.79047i 0.445596 + 0.895234i \(0.352992\pi\)
−0.445596 + 0.895234i \(0.647008\pi\)
\(930\) 0 0
\(931\) −60.7992 + 60.7992i −1.99261 + 1.99261i
\(932\) 0 0
\(933\) 21.2311i 0.695075i
\(934\) 0 0
\(935\) −0.381015 0.762030i −0.0124605 0.0249210i
\(936\) 0 0
\(937\) 21.2277 21.2277i 0.693477 0.693477i −0.269518 0.962995i \(-0.586864\pi\)
0.962995 + 0.269518i \(0.0868644\pi\)
\(938\) 0 0
\(939\) 3.00000 3.00000i 0.0979013 0.0979013i
\(940\) 0 0
\(941\) −7.99656 7.99656i −0.260680 0.260680i 0.564650 0.825330i \(-0.309011\pi\)
−0.825330 + 0.564650i \(0.809011\pi\)
\(942\) 0 0
\(943\) −17.2311 17.2311i −0.561122 0.561122i
\(944\) 0 0
\(945\) 3.24914 9.74742i 0.105695 0.317084i
\(946\) 0 0
\(947\) 41.7225 1.35580 0.677900 0.735155i \(-0.262890\pi\)
0.677900 + 0.735155i \(0.262890\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.11383 −0.0361184
\(952\) 0 0
\(953\) 20.0586 + 20.0586i 0.649763 + 0.649763i 0.952936 0.303173i \(-0.0980459\pi\)
−0.303173 + 0.952936i \(0.598046\pi\)
\(954\) 0 0
\(955\) −20.6155 41.2311i −0.667103 1.33421i
\(956\) 0 0
\(957\) 6.49828i 0.210060i
\(958\) 0 0
\(959\) 32.8501 1.06078
\(960\) 0 0
\(961\) −11.2277 −0.362182
\(962\) 0 0
\(963\) 17.2311i 0.555264i
\(964\) 0 0
\(965\) −13.9966 + 41.9897i −0.450565 + 1.35170i
\(966\) 0 0
\(967\) −38.8544 38.8544i −1.24947 1.24947i −0.955953 0.293519i \(-0.905174\pi\)
−0.293519 0.955953i \(-0.594826\pi\)
\(968\) 0 0
\(969\) −0.505157 −0.0162280
\(970\) 0 0
\(971\) −26.5975 26.5975i −0.853554 0.853554i 0.137015 0.990569i \(-0.456249\pi\)
−0.990569 + 0.137015i \(0.956249\pi\)
\(972\) 0 0
\(973\) −40.2277 −1.28964
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.82754 2.82754i −0.0904610 0.0904610i 0.660428 0.750889i \(-0.270375\pi\)
−0.750889 + 0.660428i \(0.770375\pi\)
\(978\) 0 0
\(979\) −13.3776 13.3776i −0.427549 0.427549i
\(980\) 0 0
\(981\) 7.05520 7.05520i 0.225255 0.225255i
\(982\) 0 0
\(983\) −13.5389 + 13.5389i −0.431823 + 0.431823i −0.889248 0.457425i \(-0.848772\pi\)
0.457425 + 0.889248i \(0.348772\pi\)
\(984\) 0 0
\(985\) −29.7586 + 14.8793i −0.948188 + 0.474094i
\(986\) 0 0
\(987\) 44.2277i 1.40778i
\(988\) 0 0
\(989\) 19.8827 19.8827i 0.632234 0.632234i
\(990\) 0 0
\(991\) 12.9605i 0.411703i 0.978583 + 0.205851i \(0.0659964\pi\)
−0.978583 + 0.205851i \(0.934004\pi\)
\(992\) 0 0
\(993\) 8.92332 8.92332i 0.283173 0.283173i
\(994\) 0 0
\(995\) 18.4983 + 36.9966i 0.586435 + 1.17287i
\(996\) 0 0
\(997\) −22.2277 −0.703957 −0.351978 0.936008i \(-0.614491\pi\)
−0.351978 + 0.936008i \(0.614491\pi\)
\(998\) 0 0
\(999\) 1.88273i 0.0595671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bc.h.607.3 6
4.3 odd 2 1920.2.bc.g.607.1 6
5.3 odd 4 1920.2.y.h.223.3 6
8.3 odd 2 240.2.bc.d.67.2 yes 6
8.5 even 2 960.2.bc.d.367.3 6
16.3 odd 4 960.2.y.d.847.3 6
16.5 even 4 1920.2.y.g.1567.1 6
16.11 odd 4 1920.2.y.h.1567.3 6
16.13 even 4 240.2.y.d.187.3 yes 6
20.3 even 4 1920.2.y.g.223.1 6
24.11 even 2 720.2.bd.e.307.2 6
40.3 even 4 240.2.y.d.163.3 6
40.13 odd 4 960.2.y.d.943.3 6
48.29 odd 4 720.2.z.e.667.1 6
80.3 even 4 960.2.bc.d.463.3 6
80.13 odd 4 240.2.bc.d.43.2 yes 6
80.43 even 4 inner 1920.2.bc.h.1183.3 6
80.53 odd 4 1920.2.bc.g.1183.1 6
120.83 odd 4 720.2.z.e.163.1 6
240.173 even 4 720.2.bd.e.523.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.3 6 40.3 even 4
240.2.y.d.187.3 yes 6 16.13 even 4
240.2.bc.d.43.2 yes 6 80.13 odd 4
240.2.bc.d.67.2 yes 6 8.3 odd 2
720.2.z.e.163.1 6 120.83 odd 4
720.2.z.e.667.1 6 48.29 odd 4
720.2.bd.e.307.2 6 24.11 even 2
720.2.bd.e.523.2 6 240.173 even 4
960.2.y.d.847.3 6 16.3 odd 4
960.2.y.d.943.3 6 40.13 odd 4
960.2.bc.d.367.3 6 8.5 even 2
960.2.bc.d.463.3 6 80.3 even 4
1920.2.y.g.223.1 6 20.3 even 4
1920.2.y.g.1567.1 6 16.5 even 4
1920.2.y.h.223.3 6 5.3 odd 4
1920.2.y.h.1567.3 6 16.11 odd 4
1920.2.bc.g.607.1 6 4.3 odd 2
1920.2.bc.g.1183.1 6 80.53 odd 4
1920.2.bc.h.607.3 6 1.1 even 1 trivial
1920.2.bc.h.1183.3 6 80.43 even 4 inner