Properties

Label 960.2.bc.d.367.3
Level $960$
Weight $2$
Character 960.367
Analytic conductor $7.666$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(367,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 367.3
Root \(0.264658 + 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 960.367
Dual form 960.2.bc.d.463.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} +(3.24914 + 3.24914i) q^{7} -1.00000 q^{9} +(3.24914 + 3.24914i) q^{11} +(1.00000 + 2.00000i) q^{15} +(-0.0586332 - 0.0586332i) q^{17} +(-4.30777 - 4.30777i) q^{19} +(-3.24914 + 3.24914i) q^{21} +(-4.30777 + 4.30777i) q^{23} +(3.00000 - 4.00000i) q^{25} -1.00000i q^{27} +(1.00000 - 1.00000i) q^{29} -6.49828i q^{31} +(-3.24914 + 3.24914i) q^{33} +(9.74742 + 3.24914i) q^{35} +1.88273 q^{37} +4.00000i q^{41} +4.61555 q^{43} +(-2.00000 + 1.00000i) q^{45} +(-6.80605 + 6.80605i) q^{47} +14.1138i q^{49} +(0.0586332 - 0.0586332i) q^{51} -9.11383i q^{53} +(9.74742 + 3.24914i) q^{55} +(4.30777 - 4.30777i) q^{57} +(1.36641 - 1.36641i) q^{59} +(-2.05863 - 2.05863i) q^{61} +(-3.24914 - 3.24914i) q^{63} +12.3810 q^{67} +(-4.30777 - 4.30777i) q^{69} -8.99656 q^{71} +(1.11727 + 1.11727i) q^{73} +(4.00000 + 3.00000i) q^{75} +21.1138i q^{77} -8.99656 q^{79} +1.00000 q^{81} +4.99656i q^{83} +(-0.175899 - 0.0586332i) q^{85} +(1.00000 + 1.00000i) q^{87} +4.11727 q^{89} +6.49828 q^{93} +(-12.9233 - 4.30777i) q^{95} +(9.99656 + 9.99656i) q^{97} +(-3.24914 - 3.24914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{5} + 2 q^{7} - 6 q^{9} + 2 q^{11} + 6 q^{15} - 2 q^{17} - 10 q^{19} - 2 q^{21} - 10 q^{23} + 18 q^{25} + 6 q^{29} - 2 q^{33} + 6 q^{35} + 8 q^{37} - 4 q^{43} - 12 q^{45} + 10 q^{47} + 2 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 3.24914 + 3.24914i 1.22806 + 1.22806i 0.964697 + 0.263363i \(0.0848316\pi\)
0.263363 + 0.964697i \(0.415168\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.24914 + 3.24914i 0.979653 + 0.979653i 0.999797 0.0201443i \(-0.00641258\pi\)
−0.0201443 + 0.999797i \(0.506413\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 + 2.00000i 0.258199 + 0.516398i
\(16\) 0 0
\(17\) −0.0586332 0.0586332i −0.0142206 0.0142206i 0.699961 0.714181i \(-0.253201\pi\)
−0.714181 + 0.699961i \(0.753201\pi\)
\(18\) 0 0
\(19\) −4.30777 4.30777i −0.988271 0.988271i 0.0116609 0.999932i \(-0.496288\pi\)
−0.999932 + 0.0116609i \(0.996288\pi\)
\(20\) 0 0
\(21\) −3.24914 + 3.24914i −0.709021 + 0.709021i
\(22\) 0 0
\(23\) −4.30777 + 4.30777i −0.898233 + 0.898233i −0.995280 0.0970469i \(-0.969060\pi\)
0.0970469 + 0.995280i \(0.469060\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.00000 1.00000i 0.185695 0.185695i −0.608137 0.793832i \(-0.708083\pi\)
0.793832 + 0.608137i \(0.208083\pi\)
\(30\) 0 0
\(31\) 6.49828i 1.16713i −0.812068 0.583563i \(-0.801658\pi\)
0.812068 0.583563i \(-0.198342\pi\)
\(32\) 0 0
\(33\) −3.24914 + 3.24914i −0.565603 + 0.565603i
\(34\) 0 0
\(35\) 9.74742 + 3.24914i 1.64761 + 0.549205i
\(36\) 0 0
\(37\) 1.88273 0.309520 0.154760 0.987952i \(-0.450540\pi\)
0.154760 + 0.987952i \(0.450540\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) 4.61555 0.703864 0.351932 0.936025i \(-0.385525\pi\)
0.351932 + 0.936025i \(0.385525\pi\)
\(44\) 0 0
\(45\) −2.00000 + 1.00000i −0.298142 + 0.149071i
\(46\) 0 0
\(47\) −6.80605 + 6.80605i −0.992765 + 0.992765i −0.999974 0.00720889i \(-0.997705\pi\)
0.00720889 + 0.999974i \(0.497705\pi\)
\(48\) 0 0
\(49\) 14.1138i 2.01626i
\(50\) 0 0
\(51\) 0.0586332 0.0586332i 0.00821028 0.00821028i
\(52\) 0 0
\(53\) 9.11383i 1.25188i −0.779871 0.625940i \(-0.784715\pi\)
0.779871 0.625940i \(-0.215285\pi\)
\(54\) 0 0
\(55\) 9.74742 + 3.24914i 1.31434 + 0.438114i
\(56\) 0 0
\(57\) 4.30777 4.30777i 0.570579 0.570579i
\(58\) 0 0
\(59\) 1.36641 1.36641i 0.177891 0.177891i −0.612545 0.790436i \(-0.709854\pi\)
0.790436 + 0.612545i \(0.209854\pi\)
\(60\) 0 0
\(61\) −2.05863 2.05863i −0.263581 0.263581i 0.562926 0.826507i \(-0.309676\pi\)
−0.826507 + 0.562926i \(0.809676\pi\)
\(62\) 0 0
\(63\) −3.24914 3.24914i −0.409353 0.409353i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.3810 1.51258 0.756291 0.654236i \(-0.227010\pi\)
0.756291 + 0.654236i \(0.227010\pi\)
\(68\) 0 0
\(69\) −4.30777 4.30777i −0.518595 0.518595i
\(70\) 0 0
\(71\) −8.99656 −1.06770 −0.533848 0.845581i \(-0.679254\pi\)
−0.533848 + 0.845581i \(0.679254\pi\)
\(72\) 0 0
\(73\) 1.11727 + 1.11727i 0.130766 + 0.130766i 0.769461 0.638694i \(-0.220525\pi\)
−0.638694 + 0.769461i \(0.720525\pi\)
\(74\) 0 0
\(75\) 4.00000 + 3.00000i 0.461880 + 0.346410i
\(76\) 0 0
\(77\) 21.1138i 2.40614i
\(78\) 0 0
\(79\) −8.99656 −1.01219 −0.506096 0.862477i \(-0.668912\pi\)
−0.506096 + 0.862477i \(0.668912\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.99656i 0.548444i 0.961666 + 0.274222i \(0.0884203\pi\)
−0.961666 + 0.274222i \(0.911580\pi\)
\(84\) 0 0
\(85\) −0.175899 0.0586332i −0.0190790 0.00635966i
\(86\) 0 0
\(87\) 1.00000 + 1.00000i 0.107211 + 0.107211i
\(88\) 0 0
\(89\) 4.11727 0.436429 0.218215 0.975901i \(-0.429977\pi\)
0.218215 + 0.975901i \(0.429977\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.49828 0.673840
\(94\) 0 0
\(95\) −12.9233 4.30777i −1.32590 0.441968i
\(96\) 0 0
\(97\) 9.99656 + 9.99656i 1.01500 + 1.01500i 0.999886 + 0.0151113i \(0.00481026\pi\)
0.0151113 + 0.999886i \(0.495190\pi\)
\(98\) 0 0
\(99\) −3.24914 3.24914i −0.326551 0.326551i
\(100\) 0 0
\(101\) −2.88273 + 2.88273i −0.286843 + 0.286843i −0.835830 0.548988i \(-0.815013\pi\)
0.548988 + 0.835830i \(0.315013\pi\)
\(102\) 0 0
\(103\) −5.36641 + 5.36641i −0.528768 + 0.528768i −0.920205 0.391437i \(-0.871978\pi\)
0.391437 + 0.920205i \(0.371978\pi\)
\(104\) 0 0
\(105\) −3.24914 + 9.74742i −0.317084 + 0.951251i
\(106\) 0 0
\(107\) 17.2311i 1.66579i −0.553429 0.832896i \(-0.686681\pi\)
0.553429 0.832896i \(-0.313319\pi\)
\(108\) 0 0
\(109\) 7.05520 7.05520i 0.675765 0.675765i −0.283274 0.959039i \(-0.591421\pi\)
0.959039 + 0.283274i \(0.0914205\pi\)
\(110\) 0 0
\(111\) 1.88273i 0.178701i
\(112\) 0 0
\(113\) 2.05863 2.05863i 0.193660 0.193660i −0.603616 0.797276i \(-0.706274\pi\)
0.797276 + 0.603616i \(0.206274\pi\)
\(114\) 0 0
\(115\) −4.30777 + 12.9233i −0.401702 + 1.20511i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.381015i 0.0349276i
\(120\) 0 0
\(121\) 10.1138i 0.919439i
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 7.24914 7.24914i 0.643257 0.643257i −0.308098 0.951355i \(-0.599692\pi\)
0.951355 + 0.308098i \(0.0996923\pi\)
\(128\) 0 0
\(129\) 4.61555i 0.406376i
\(130\) 0 0
\(131\) −9.13187 + 9.13187i −0.797856 + 0.797856i −0.982757 0.184902i \(-0.940803\pi\)
0.184902 + 0.982757i \(0.440803\pi\)
\(132\) 0 0
\(133\) 27.9931i 2.42731i
\(134\) 0 0
\(135\) −1.00000 2.00000i −0.0860663 0.172133i
\(136\) 0 0
\(137\) 5.05520 5.05520i 0.431894 0.431894i −0.457378 0.889272i \(-0.651211\pi\)
0.889272 + 0.457378i \(0.151211\pi\)
\(138\) 0 0
\(139\) 6.19051 6.19051i 0.525072 0.525072i −0.394027 0.919099i \(-0.628918\pi\)
0.919099 + 0.394027i \(0.128918\pi\)
\(140\) 0 0
\(141\) −6.80605 6.80605i −0.573173 0.573173i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 3.00000i 0.0830455 0.249136i
\(146\) 0 0
\(147\) −14.1138 −1.16409
\(148\) 0 0
\(149\) −0.882734 0.882734i −0.0723164 0.0723164i 0.670024 0.742340i \(-0.266284\pi\)
−0.742340 + 0.670024i \(0.766284\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0.0586332 + 0.0586332i 0.00474021 + 0.00474021i
\(154\) 0 0
\(155\) −6.49828 12.9966i −0.521954 1.04391i
\(156\) 0 0
\(157\) 9.76547i 0.779369i −0.920948 0.389685i \(-0.872584\pi\)
0.920948 0.389685i \(-0.127416\pi\)
\(158\) 0 0
\(159\) 9.11383 0.722774
\(160\) 0 0
\(161\) −27.9931 −2.20617
\(162\) 0 0
\(163\) 20.9966i 1.64458i −0.569070 0.822289i \(-0.692697\pi\)
0.569070 0.822289i \(-0.307303\pi\)
\(164\) 0 0
\(165\) −3.24914 + 9.74742i −0.252945 + 0.758836i
\(166\) 0 0
\(167\) 2.42504 + 2.42504i 0.187655 + 0.187655i 0.794682 0.607026i \(-0.207638\pi\)
−0.607026 + 0.794682i \(0.707638\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 4.30777 + 4.30777i 0.329424 + 0.329424i
\(172\) 0 0
\(173\) −0.234533 −0.0178312 −0.00891559 0.999960i \(-0.502838\pi\)
−0.00891559 + 0.999960i \(0.502838\pi\)
\(174\) 0 0
\(175\) 22.7440 3.24914i 1.71928 0.245612i
\(176\) 0 0
\(177\) 1.36641 + 1.36641i 0.102705 + 0.102705i
\(178\) 0 0
\(179\) −5.13187 5.13187i −0.383574 0.383574i 0.488814 0.872388i \(-0.337430\pi\)
−0.872388 + 0.488814i \(0.837430\pi\)
\(180\) 0 0
\(181\) 0.0586332 0.0586332i 0.00435817 0.00435817i −0.704924 0.709283i \(-0.749019\pi\)
0.709283 + 0.704924i \(0.249019\pi\)
\(182\) 0 0
\(183\) 2.05863 2.05863i 0.152179 0.152179i
\(184\) 0 0
\(185\) 3.76547 1.88273i 0.276843 0.138421i
\(186\) 0 0
\(187\) 0.381015i 0.0278626i
\(188\) 0 0
\(189\) 3.24914 3.24914i 0.236340 0.236340i
\(190\) 0 0
\(191\) 20.6155i 1.49169i 0.666120 + 0.745844i \(0.267954\pi\)
−0.666120 + 0.745844i \(0.732046\pi\)
\(192\) 0 0
\(193\) 13.9966 13.9966i 1.00749 1.00749i 0.00752289 0.999972i \(-0.497605\pi\)
0.999972 0.00752289i \(-0.00239463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.8793 −1.06011 −0.530053 0.847965i \(-0.677828\pi\)
−0.530053 + 0.847965i \(0.677828\pi\)
\(198\) 0 0
\(199\) 18.4983i 1.31131i −0.755061 0.655654i \(-0.772393\pi\)
0.755061 0.655654i \(-0.227607\pi\)
\(200\) 0 0
\(201\) 12.3810i 0.873289i
\(202\) 0 0
\(203\) 6.49828 0.456090
\(204\) 0 0
\(205\) 4.00000 + 8.00000i 0.279372 + 0.558744i
\(206\) 0 0
\(207\) 4.30777 4.30777i 0.299411 0.299411i
\(208\) 0 0
\(209\) 27.9931i 1.93632i
\(210\) 0 0
\(211\) 8.92332 8.92332i 0.614307 0.614307i −0.329759 0.944065i \(-0.606967\pi\)
0.944065 + 0.329759i \(0.106967\pi\)
\(212\) 0 0
\(213\) 8.99656i 0.616434i
\(214\) 0 0
\(215\) 9.23109 4.61555i 0.629555 0.314778i
\(216\) 0 0
\(217\) 21.1138 21.1138i 1.43330 1.43330i
\(218\) 0 0
\(219\) −1.11727 + 1.11727i −0.0754979 + 0.0754979i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.1319 13.1319i −0.879375 0.879375i 0.114095 0.993470i \(-0.463603\pi\)
−0.993470 + 0.114095i \(0.963603\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) −1.50172 −0.0996726 −0.0498363 0.998757i \(-0.515870\pi\)
−0.0498363 + 0.998757i \(0.515870\pi\)
\(228\) 0 0
\(229\) 7.05520 + 7.05520i 0.466220 + 0.466220i 0.900688 0.434467i \(-0.143063\pi\)
−0.434467 + 0.900688i \(0.643063\pi\)
\(230\) 0 0
\(231\) −21.1138 −1.38919
\(232\) 0 0
\(233\) 9.05520 + 9.05520i 0.593226 + 0.593226i 0.938501 0.345276i \(-0.112215\pi\)
−0.345276 + 0.938501i \(0.612215\pi\)
\(234\) 0 0
\(235\) −6.80605 + 20.4182i −0.443978 + 1.33193i
\(236\) 0 0
\(237\) 8.99656i 0.584390i
\(238\) 0 0
\(239\) −16.9966 −1.09942 −0.549708 0.835357i \(-0.685261\pi\)
−0.549708 + 0.835357i \(0.685261\pi\)
\(240\) 0 0
\(241\) −23.9931 −1.54553 −0.772767 0.634690i \(-0.781128\pi\)
−0.772767 + 0.634690i \(0.781128\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 14.1138 + 28.2277i 0.901699 + 1.80340i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.99656 −0.316644
\(250\) 0 0
\(251\) 7.24914 + 7.24914i 0.457562 + 0.457562i 0.897854 0.440293i \(-0.145125\pi\)
−0.440293 + 0.897854i \(0.645125\pi\)
\(252\) 0 0
\(253\) −27.9931 −1.75991
\(254\) 0 0
\(255\) 0.0586332 0.175899i 0.00367175 0.0110153i
\(256\) 0 0
\(257\) −3.17246 3.17246i −0.197893 0.197893i 0.601203 0.799096i \(-0.294688\pi\)
−0.799096 + 0.601203i \(0.794688\pi\)
\(258\) 0 0
\(259\) 6.11727 + 6.11727i 0.380108 + 0.380108i
\(260\) 0 0
\(261\) −1.00000 + 1.00000i −0.0618984 + 0.0618984i
\(262\) 0 0
\(263\) 20.6888 20.6888i 1.27573 1.27573i 0.332689 0.943037i \(-0.392044\pi\)
0.943037 0.332689i \(-0.107956\pi\)
\(264\) 0 0
\(265\) −9.11383 18.2277i −0.559858 1.11972i
\(266\) 0 0
\(267\) 4.11727i 0.251973i
\(268\) 0 0
\(269\) −17.8793 + 17.8793i −1.09012 + 1.09012i −0.0946050 + 0.995515i \(0.530159\pi\)
−0.995515 + 0.0946050i \(0.969841\pi\)
\(270\) 0 0
\(271\) 18.4983i 1.12369i 0.827242 + 0.561845i \(0.189908\pi\)
−0.827242 + 0.561845i \(0.810092\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.7440 3.24914i 1.37151 0.195931i
\(276\) 0 0
\(277\) −16.1104 −0.967980 −0.483990 0.875074i \(-0.660813\pi\)
−0.483990 + 0.875074i \(0.660813\pi\)
\(278\) 0 0
\(279\) 6.49828i 0.389042i
\(280\) 0 0
\(281\) 10.1173i 0.603546i −0.953380 0.301773i \(-0.902422\pi\)
0.953380 0.301773i \(-0.0975784\pi\)
\(282\) 0 0
\(283\) 5.61211 0.333605 0.166803 0.985990i \(-0.446656\pi\)
0.166803 + 0.985990i \(0.446656\pi\)
\(284\) 0 0
\(285\) 4.30777 12.9233i 0.255170 0.765511i
\(286\) 0 0
\(287\) −12.9966 + 12.9966i −0.767163 + 0.767163i
\(288\) 0 0
\(289\) 16.9931i 0.999596i
\(290\) 0 0
\(291\) −9.99656 + 9.99656i −0.586009 + 0.586009i
\(292\) 0 0
\(293\) 20.2277i 1.18171i 0.806777 + 0.590856i \(0.201210\pi\)
−0.806777 + 0.590856i \(0.798790\pi\)
\(294\) 0 0
\(295\) 1.36641 4.09922i 0.0795553 0.238666i
\(296\) 0 0
\(297\) 3.24914 3.24914i 0.188534 0.188534i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 14.9966 + 14.9966i 0.864387 + 0.864387i
\(302\) 0 0
\(303\) −2.88273 2.88273i −0.165609 0.165609i
\(304\) 0 0
\(305\) −6.17590 2.05863i −0.353631 0.117877i
\(306\) 0 0
\(307\) −20.6155 −1.17659 −0.588296 0.808646i \(-0.700201\pi\)
−0.588296 + 0.808646i \(0.700201\pi\)
\(308\) 0 0
\(309\) −5.36641 5.36641i −0.305284 0.305284i
\(310\) 0 0
\(311\) −21.2311 −1.20390 −0.601952 0.798532i \(-0.705610\pi\)
−0.601952 + 0.798532i \(0.705610\pi\)
\(312\) 0 0
\(313\) 3.00000 + 3.00000i 0.169570 + 0.169570i 0.786790 0.617220i \(-0.211741\pi\)
−0.617220 + 0.786790i \(0.711741\pi\)
\(314\) 0 0
\(315\) −9.74742 3.24914i −0.549205 0.183068i
\(316\) 0 0
\(317\) 1.11383i 0.0625588i 0.999511 + 0.0312794i \(0.00995817\pi\)
−0.999511 + 0.0312794i \(0.990042\pi\)
\(318\) 0 0
\(319\) 6.49828 0.363834
\(320\) 0 0
\(321\) 17.2311 0.961746
\(322\) 0 0
\(323\) 0.505157i 0.0281077i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.05520 + 7.05520i 0.390153 + 0.390153i
\(328\) 0 0
\(329\) −44.2277 −2.43835
\(330\) 0 0
\(331\) −8.92332 8.92332i −0.490470 0.490470i 0.417984 0.908454i \(-0.362737\pi\)
−0.908454 + 0.417984i \(0.862737\pi\)
\(332\) 0 0
\(333\) −1.88273 −0.103173
\(334\) 0 0
\(335\) 24.7620 12.3810i 1.35289 0.676447i
\(336\) 0 0
\(337\) −2.00344 2.00344i −0.109134 0.109134i 0.650431 0.759565i \(-0.274588\pi\)
−0.759565 + 0.650431i \(0.774588\pi\)
\(338\) 0 0
\(339\) 2.05863 + 2.05863i 0.111810 + 0.111810i
\(340\) 0 0
\(341\) 21.1138 21.1138i 1.14338 1.14338i
\(342\) 0 0
\(343\) −23.1138 + 23.1138i −1.24803 + 1.24803i
\(344\) 0 0
\(345\) −12.9233 4.30777i −0.695768 0.231923i
\(346\) 0 0
\(347\) 0.234533i 0.0125904i −0.999980 0.00629519i \(-0.997996\pi\)
0.999980 0.00629519i \(-0.00200383\pi\)
\(348\) 0 0
\(349\) 21.1725 21.1725i 1.13334 1.13334i 0.143717 0.989619i \(-0.454094\pi\)
0.989619 0.143717i \(-0.0459055\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.0586332 + 0.0586332i −0.00312073 + 0.00312073i −0.708665 0.705545i \(-0.750702\pi\)
0.705545 + 0.708665i \(0.250702\pi\)
\(354\) 0 0
\(355\) −17.9931 + 8.99656i −0.954976 + 0.477488i
\(356\) 0 0
\(357\) 0.381015 0.0201654
\(358\) 0 0
\(359\) 9.84664i 0.519686i −0.965651 0.259843i \(-0.916329\pi\)
0.965651 0.259843i \(-0.0836708\pi\)
\(360\) 0 0
\(361\) 18.1138i 0.953359i
\(362\) 0 0
\(363\) −10.1138 −0.530838
\(364\) 0 0
\(365\) 3.35180 + 1.11727i 0.175441 + 0.0584804i
\(366\) 0 0
\(367\) 6.36297 6.36297i 0.332144 0.332144i −0.521256 0.853400i \(-0.674536\pi\)
0.853400 + 0.521256i \(0.174536\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) 29.6121 29.6121i 1.53738 1.53738i
\(372\) 0 0
\(373\) 28.2277i 1.46157i 0.682606 + 0.730786i \(0.260846\pi\)
−0.682606 + 0.730786i \(0.739154\pi\)
\(374\) 0 0
\(375\) 11.0000 + 2.00000i 0.568038 + 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −19.8026 + 19.8026i −1.01719 + 1.01719i −0.0173425 + 0.999850i \(0.505521\pi\)
−0.999850 + 0.0173425i \(0.994479\pi\)
\(380\) 0 0
\(381\) 7.24914 + 7.24914i 0.371385 + 0.371385i
\(382\) 0 0
\(383\) 7.69223 + 7.69223i 0.393054 + 0.393054i 0.875775 0.482720i \(-0.160351\pi\)
−0.482720 + 0.875775i \(0.660351\pi\)
\(384\) 0 0
\(385\) 21.1138 + 42.2277i 1.07606 + 2.15212i
\(386\) 0 0
\(387\) −4.61555 −0.234621
\(388\) 0 0
\(389\) −8.88273 8.88273i −0.450372 0.450372i 0.445106 0.895478i \(-0.353166\pi\)
−0.895478 + 0.445106i \(0.853166\pi\)
\(390\) 0 0
\(391\) 0.505157 0.0255469
\(392\) 0 0
\(393\) −9.13187 9.13187i −0.460642 0.460642i
\(394\) 0 0
\(395\) −17.9931 + 8.99656i −0.905332 + 0.452666i
\(396\) 0 0
\(397\) 8.11727i 0.407394i 0.979034 + 0.203697i \(0.0652957\pi\)
−0.979034 + 0.203697i \(0.934704\pi\)
\(398\) 0 0
\(399\) 27.9931 1.40141
\(400\) 0 0
\(401\) 26.1104 1.30389 0.651945 0.758266i \(-0.273953\pi\)
0.651945 + 0.758266i \(0.273953\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 6.11727 + 6.11727i 0.303222 + 0.303222i
\(408\) 0 0
\(409\) 2.65164 0.131115 0.0655576 0.997849i \(-0.479117\pi\)
0.0655576 + 0.997849i \(0.479117\pi\)
\(410\) 0 0
\(411\) 5.05520 + 5.05520i 0.249354 + 0.249354i
\(412\) 0 0
\(413\) 8.87930 0.436922
\(414\) 0 0
\(415\) 4.99656 + 9.99312i 0.245272 + 0.490543i
\(416\) 0 0
\(417\) 6.19051 + 6.19051i 0.303150 + 0.303150i
\(418\) 0 0
\(419\) 7.86469 + 7.86469i 0.384215 + 0.384215i 0.872618 0.488403i \(-0.162420\pi\)
−0.488403 + 0.872618i \(0.662420\pi\)
\(420\) 0 0
\(421\) −2.94480 + 2.94480i −0.143521 + 0.143521i −0.775217 0.631696i \(-0.782359\pi\)
0.631696 + 0.775217i \(0.282359\pi\)
\(422\) 0 0
\(423\) 6.80605 6.80605i 0.330922 0.330922i
\(424\) 0 0
\(425\) −0.410432 + 0.0586332i −0.0199089 + 0.00284413i
\(426\) 0 0
\(427\) 13.3776i 0.647386i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.3810i 1.36707i −0.729920 0.683533i \(-0.760443\pi\)
0.729920 0.683533i \(-0.239557\pi\)
\(432\) 0 0
\(433\) 12.1138 12.1138i 0.582153 0.582153i −0.353341 0.935495i \(-0.614954\pi\)
0.935495 + 0.353341i \(0.114954\pi\)
\(434\) 0 0
\(435\) 3.00000 + 1.00000i 0.143839 + 0.0479463i
\(436\) 0 0
\(437\) 37.1138 1.77540
\(438\) 0 0
\(439\) 14.7328i 0.703159i −0.936158 0.351579i \(-0.885645\pi\)
0.936158 0.351579i \(-0.114355\pi\)
\(440\) 0 0
\(441\) 14.1138i 0.672087i
\(442\) 0 0
\(443\) 39.2603 1.86531 0.932657 0.360765i \(-0.117484\pi\)
0.932657 + 0.360765i \(0.117484\pi\)
\(444\) 0 0
\(445\) 8.23453 4.11727i 0.390354 0.195177i
\(446\) 0 0
\(447\) 0.882734 0.882734i 0.0417519 0.0417519i
\(448\) 0 0
\(449\) 9.64820i 0.455327i 0.973740 + 0.227663i \(0.0731086\pi\)
−0.973740 + 0.227663i \(0.926891\pi\)
\(450\) 0 0
\(451\) −12.9966 + 12.9966i −0.611984 + 0.611984i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.9966 + 17.9966i −0.841844 + 0.841844i −0.989099 0.147255i \(-0.952956\pi\)
0.147255 + 0.989099i \(0.452956\pi\)
\(458\) 0 0
\(459\) −0.0586332 + 0.0586332i −0.00273676 + 0.00273676i
\(460\) 0 0
\(461\) −16.1138 16.1138i −0.750496 0.750496i 0.224076 0.974572i \(-0.428064\pi\)
−0.974572 + 0.224076i \(0.928064\pi\)
\(462\) 0 0
\(463\) 6.86813 + 6.86813i 0.319189 + 0.319189i 0.848456 0.529267i \(-0.177533\pi\)
−0.529267 + 0.848456i \(0.677533\pi\)
\(464\) 0 0
\(465\) 12.9966 6.49828i 0.602701 0.301351i
\(466\) 0 0
\(467\) 1.26719 0.0586384 0.0293192 0.999570i \(-0.490666\pi\)
0.0293192 + 0.999570i \(0.490666\pi\)
\(468\) 0 0
\(469\) 40.2277 + 40.2277i 1.85754 + 1.85754i
\(470\) 0 0
\(471\) 9.76547 0.449969
\(472\) 0 0
\(473\) 14.9966 + 14.9966i 0.689543 + 0.689543i
\(474\) 0 0
\(475\) −30.1544 + 4.30777i −1.38358 + 0.197654i
\(476\) 0 0
\(477\) 9.11383i 0.417294i
\(478\) 0 0
\(479\) −7.00344 −0.319995 −0.159998 0.987117i \(-0.551149\pi\)
−0.159998 + 0.987117i \(0.551149\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 27.9931i 1.27373i
\(484\) 0 0
\(485\) 29.9897 + 9.99656i 1.36176 + 0.453921i
\(486\) 0 0
\(487\) 25.2423 + 25.2423i 1.14384 + 1.14384i 0.987742 + 0.156094i \(0.0498903\pi\)
0.156094 + 0.987742i \(0.450110\pi\)
\(488\) 0 0
\(489\) 20.9966 0.949497
\(490\) 0 0
\(491\) −10.6336 10.6336i −0.479887 0.479887i 0.425208 0.905096i \(-0.360201\pi\)
−0.905096 + 0.425208i \(0.860201\pi\)
\(492\) 0 0
\(493\) −0.117266 −0.00528141
\(494\) 0 0
\(495\) −9.74742 3.24914i −0.438114 0.146038i
\(496\) 0 0
\(497\) −29.2311 29.2311i −1.31119 1.31119i
\(498\) 0 0
\(499\) −4.30777 4.30777i −0.192842 0.192842i 0.604081 0.796923i \(-0.293540\pi\)
−0.796923 + 0.604081i \(0.793540\pi\)
\(500\) 0 0
\(501\) −2.42504 + 2.42504i −0.108343 + 0.108343i
\(502\) 0 0
\(503\) −13.0698 + 13.0698i −0.582754 + 0.582754i −0.935659 0.352905i \(-0.885194\pi\)
0.352905 + 0.935659i \(0.385194\pi\)
\(504\) 0 0
\(505\) −2.88273 + 8.64820i −0.128280 + 0.384840i
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) −16.9931 + 16.9931i −0.753207 + 0.753207i −0.975076 0.221869i \(-0.928784\pi\)
0.221869 + 0.975076i \(0.428784\pi\)
\(510\) 0 0
\(511\) 7.26031i 0.321177i
\(512\) 0 0
\(513\) −4.30777 + 4.30777i −0.190193 + 0.190193i
\(514\) 0 0
\(515\) −5.36641 + 16.0992i −0.236472 + 0.709416i
\(516\) 0 0
\(517\) −44.2277 −1.94513
\(518\) 0 0
\(519\) 0.234533i 0.0102948i
\(520\) 0 0
\(521\) 14.3518i 0.628764i 0.949297 + 0.314382i \(0.101797\pi\)
−0.949297 + 0.314382i \(0.898203\pi\)
\(522\) 0 0
\(523\) −4.38101 −0.191568 −0.0957842 0.995402i \(-0.530536\pi\)
−0.0957842 + 0.995402i \(0.530536\pi\)
\(524\) 0 0
\(525\) 3.24914 + 22.7440i 0.141804 + 0.992629i
\(526\) 0 0
\(527\) −0.381015 + 0.381015i −0.0165973 + 0.0165973i
\(528\) 0 0
\(529\) 14.1138i 0.613645i
\(530\) 0 0
\(531\) −1.36641 + 1.36641i −0.0592970 + 0.0592970i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −17.2311 34.4622i −0.744965 1.48993i
\(536\) 0 0
\(537\) 5.13187 5.13187i 0.221457 0.221457i
\(538\) 0 0
\(539\) −45.8578 + 45.8578i −1.97524 + 1.97524i
\(540\) 0 0
\(541\) −13.4070 13.4070i −0.576412 0.576412i 0.357501 0.933913i \(-0.383629\pi\)
−0.933913 + 0.357501i \(0.883629\pi\)
\(542\) 0 0
\(543\) 0.0586332 + 0.0586332i 0.00251619 + 0.00251619i
\(544\) 0 0
\(545\) 7.05520 21.1656i 0.302211 0.906634i
\(546\) 0 0
\(547\) 19.3845 0.828819 0.414410 0.910090i \(-0.363988\pi\)
0.414410 + 0.910090i \(0.363988\pi\)
\(548\) 0 0
\(549\) 2.05863 + 2.05863i 0.0878603 + 0.0878603i
\(550\) 0 0
\(551\) −8.61555 −0.367035
\(552\) 0 0
\(553\) −29.2311 29.2311i −1.24303 1.24303i
\(554\) 0 0
\(555\) 1.88273 + 3.76547i 0.0799176 + 0.159835i
\(556\) 0 0
\(557\) 35.9931i 1.52508i 0.646942 + 0.762539i \(0.276047\pi\)
−0.646942 + 0.762539i \(0.723953\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.381015 0.0160865
\(562\) 0 0
\(563\) 8.23453i 0.347044i −0.984830 0.173522i \(-0.944485\pi\)
0.984830 0.173522i \(-0.0555148\pi\)
\(564\) 0 0
\(565\) 2.05863 6.17590i 0.0866073 0.259822i
\(566\) 0 0
\(567\) 3.24914 + 3.24914i 0.136451 + 0.136451i
\(568\) 0 0
\(569\) 15.8827 0.665839 0.332919 0.942955i \(-0.391966\pi\)
0.332919 + 0.942955i \(0.391966\pi\)
\(570\) 0 0
\(571\) 22.1905 + 22.1905i 0.928644 + 0.928644i 0.997618 0.0689746i \(-0.0219727\pi\)
−0.0689746 + 0.997618i \(0.521973\pi\)
\(572\) 0 0
\(573\) −20.6155 −0.861227
\(574\) 0 0
\(575\) 4.30777 + 30.1544i 0.179647 + 1.25753i
\(576\) 0 0
\(577\) 8.00344 + 8.00344i 0.333187 + 0.333187i 0.853796 0.520608i \(-0.174295\pi\)
−0.520608 + 0.853796i \(0.674295\pi\)
\(578\) 0 0
\(579\) 13.9966 + 13.9966i 0.581677 + 0.581677i
\(580\) 0 0
\(581\) −16.2345 + 16.2345i −0.673522 + 0.673522i
\(582\) 0 0
\(583\) 29.6121 29.6121i 1.22641 1.22641i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00344i 0.123965i 0.998077 + 0.0619826i \(0.0197423\pi\)
−0.998077 + 0.0619826i \(0.980258\pi\)
\(588\) 0 0
\(589\) −27.9931 + 27.9931i −1.15344 + 1.15344i
\(590\) 0 0
\(591\) 14.8793i 0.612052i
\(592\) 0 0
\(593\) −22.0518 + 22.0518i −0.905557 + 0.905557i −0.995910 0.0903527i \(-0.971201\pi\)
0.0903527 + 0.995910i \(0.471201\pi\)
\(594\) 0 0
\(595\) −0.381015 0.762030i −0.0156201 0.0312402i
\(596\) 0 0
\(597\) 18.4983 0.757084
\(598\) 0 0
\(599\) 17.8466i 0.729194i −0.931165 0.364597i \(-0.881207\pi\)
0.931165 0.364597i \(-0.118793\pi\)
\(600\) 0 0
\(601\) 44.4553i 1.81337i 0.421808 + 0.906685i \(0.361396\pi\)
−0.421808 + 0.906685i \(0.638604\pi\)
\(602\) 0 0
\(603\) −12.3810 −0.504194
\(604\) 0 0
\(605\) 10.1138 + 20.2277i 0.411186 + 0.822371i
\(606\) 0 0
\(607\) 22.5975 22.5975i 0.917204 0.917204i −0.0796209 0.996825i \(-0.525371\pi\)
0.996825 + 0.0796209i \(0.0253710\pi\)
\(608\) 0 0
\(609\) 6.49828i 0.263324i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.1173i 0.650970i −0.945547 0.325485i \(-0.894472\pi\)
0.945547 0.325485i \(-0.105528\pi\)
\(614\) 0 0
\(615\) −8.00000 + 4.00000i −0.322591 + 0.161296i
\(616\) 0 0
\(617\) 21.2897 21.2897i 0.857092 0.857092i −0.133902 0.990995i \(-0.542751\pi\)
0.990995 + 0.133902i \(0.0427509\pi\)
\(618\) 0 0
\(619\) 6.19051 6.19051i 0.248817 0.248817i −0.571668 0.820485i \(-0.693703\pi\)
0.820485 + 0.571668i \(0.193703\pi\)
\(620\) 0 0
\(621\) 4.30777 + 4.30777i 0.172865 + 0.172865i
\(622\) 0 0
\(623\) 13.3776 + 13.3776i 0.535961 + 0.535961i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 27.9931 1.11794
\(628\) 0 0
\(629\) −0.110391 0.110391i −0.00440156 0.00440156i
\(630\) 0 0
\(631\) 1.46563 0.0583457 0.0291729 0.999574i \(-0.490713\pi\)
0.0291729 + 0.999574i \(0.490713\pi\)
\(632\) 0 0
\(633\) 8.92332 + 8.92332i 0.354670 + 0.354670i
\(634\) 0 0
\(635\) 7.24914 21.7474i 0.287673 0.863020i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.99656 0.355898
\(640\) 0 0
\(641\) 43.9931 1.73762 0.868812 0.495142i \(-0.164884\pi\)
0.868812 + 0.495142i \(0.164884\pi\)
\(642\) 0 0
\(643\) 5.46563i 0.215543i −0.994176 0.107772i \(-0.965628\pi\)
0.994176 0.107772i \(-0.0343715\pi\)
\(644\) 0 0
\(645\) 4.61555 + 9.23109i 0.181737 + 0.363474i
\(646\) 0 0
\(647\) 28.1836 + 28.1836i 1.10801 + 1.10801i 0.993412 + 0.114601i \(0.0365591\pi\)
0.114601 + 0.993412i \(0.463441\pi\)
\(648\) 0 0
\(649\) 8.87930 0.348543
\(650\) 0 0
\(651\) 21.1138 + 21.1138i 0.827516 + 0.827516i
\(652\) 0 0
\(653\) −3.11383 −0.121854 −0.0609268 0.998142i \(-0.519406\pi\)
−0.0609268 + 0.998142i \(0.519406\pi\)
\(654\) 0 0
\(655\) −9.13187 + 27.3956i −0.356812 + 1.07044i
\(656\) 0 0
\(657\) −1.11727 1.11727i −0.0435887 0.0435887i
\(658\) 0 0
\(659\) 13.9820 + 13.9820i 0.544660 + 0.544660i 0.924891 0.380232i \(-0.124156\pi\)
−0.380232 + 0.924891i \(0.624156\pi\)
\(660\) 0 0
\(661\) 29.2897 29.2897i 1.13924 1.13924i 0.150651 0.988587i \(-0.451863\pi\)
0.988587 0.150651i \(-0.0481371\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.9931 55.9862i −1.08553 2.17105i
\(666\) 0 0
\(667\) 8.61555i 0.333595i
\(668\) 0 0
\(669\) 13.1319 13.1319i 0.507708 0.507708i
\(670\) 0 0
\(671\) 13.3776i 0.516436i
\(672\) 0 0
\(673\) −24.7586 + 24.7586i −0.954374 + 0.954374i −0.999004 0.0446300i \(-0.985789\pi\)
0.0446300 + 0.999004i \(0.485789\pi\)
\(674\) 0 0
\(675\) −4.00000 3.00000i −0.153960 0.115470i
\(676\) 0 0
\(677\) −22.8793 −0.879323 −0.439661 0.898164i \(-0.644902\pi\)
−0.439661 + 0.898164i \(0.644902\pi\)
\(678\) 0 0
\(679\) 64.9605i 2.49295i
\(680\) 0 0
\(681\) 1.50172i 0.0575460i
\(682\) 0 0
\(683\) −35.7294 −1.36715 −0.683573 0.729882i \(-0.739575\pi\)
−0.683573 + 0.729882i \(0.739575\pi\)
\(684\) 0 0
\(685\) 5.05520 15.1656i 0.193149 0.579447i
\(686\) 0 0
\(687\) −7.05520 + 7.05520i −0.269172 + 0.269172i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −22.4250 + 22.4250i −0.853089 + 0.853089i −0.990512 0.137424i \(-0.956118\pi\)
0.137424 + 0.990512i \(0.456118\pi\)
\(692\) 0 0
\(693\) 21.1138i 0.802048i
\(694\) 0 0
\(695\) 6.19051 18.5715i 0.234819 0.704458i
\(696\) 0 0
\(697\) 0.234533 0.234533i 0.00888356 0.00888356i
\(698\) 0 0
\(699\) −9.05520 + 9.05520i −0.342499 + 0.342499i
\(700\) 0 0
\(701\) −7.87930 7.87930i −0.297597 0.297597i 0.542475 0.840072i \(-0.317487\pi\)
−0.840072 + 0.542475i \(0.817487\pi\)
\(702\) 0 0
\(703\) −8.11039 8.11039i −0.305889 0.305889i
\(704\) 0 0
\(705\) −20.4182 6.80605i −0.768993 0.256331i
\(706\) 0 0
\(707\) −18.7328 −0.704520
\(708\) 0 0
\(709\) −17.9414 17.9414i −0.673802 0.673802i 0.284788 0.958590i \(-0.408077\pi\)
−0.958590 + 0.284788i \(0.908077\pi\)
\(710\) 0 0
\(711\) 8.99656 0.337397
\(712\) 0 0
\(713\) 27.9931 + 27.9931i 1.04835 + 1.04835i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.9966i 0.634748i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −34.8724 −1.29872
\(722\) 0 0
\(723\) 23.9931i 0.892314i
\(724\) 0 0
\(725\) −1.00000 7.00000i −0.0371391 0.259973i
\(726\) 0 0
\(727\) −0.281794 0.281794i −0.0104512 0.0104512i 0.701862 0.712313i \(-0.252352\pi\)
−0.712313 + 0.701862i \(0.752352\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −0.270624 0.270624i −0.0100094 0.0100094i
\(732\) 0 0
\(733\) 2.35180 0.0868657 0.0434328 0.999056i \(-0.486171\pi\)
0.0434328 + 0.999056i \(0.486171\pi\)
\(734\) 0 0
\(735\) −28.2277 + 14.1138i −1.04119 + 0.520596i
\(736\) 0 0
\(737\) 40.2277 + 40.2277i 1.48180 + 1.48180i
\(738\) 0 0
\(739\) −11.3112 11.3112i −0.416090 0.416090i 0.467764 0.883853i \(-0.345060\pi\)
−0.883853 + 0.467764i \(0.845060\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.4250 + 14.4250i −0.529203 + 0.529203i −0.920335 0.391131i \(-0.872084\pi\)
0.391131 + 0.920335i \(0.372084\pi\)
\(744\) 0 0
\(745\) −2.64820 0.882734i −0.0970226 0.0323409i
\(746\) 0 0
\(747\) 4.99656i 0.182815i
\(748\) 0 0
\(749\) 55.9862 55.9862i 2.04569 2.04569i
\(750\) 0 0
\(751\) 5.73625i 0.209319i 0.994508 + 0.104659i \(0.0333752\pi\)
−0.994508 + 0.104659i \(0.966625\pi\)
\(752\) 0 0
\(753\) −7.24914 + 7.24914i −0.264173 + 0.264173i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −12.3449 −0.448684 −0.224342 0.974510i \(-0.572023\pi\)
−0.224342 + 0.974510i \(0.572023\pi\)
\(758\) 0 0
\(759\) 27.9931i 1.01609i
\(760\) 0 0
\(761\) 31.8759i 1.15550i −0.816214 0.577749i \(-0.803931\pi\)
0.816214 0.577749i \(-0.196069\pi\)
\(762\) 0 0
\(763\) 45.8466 1.65976
\(764\) 0 0
\(765\) 0.175899 + 0.0586332i 0.00635966 + 0.00211989i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.87930i 0.103830i −0.998652 0.0519150i \(-0.983468\pi\)
0.998652 0.0519150i \(-0.0165325\pi\)
\(770\) 0 0
\(771\) 3.17246 3.17246i 0.114253 0.114253i
\(772\) 0 0
\(773\) 35.5760i 1.27958i −0.768550 0.639790i \(-0.779021\pi\)
0.768550 0.639790i \(-0.220979\pi\)
\(774\) 0 0
\(775\) −25.9931 19.4948i −0.933701 0.700275i
\(776\) 0 0
\(777\) −6.11727 + 6.11727i −0.219456 + 0.219456i
\(778\) 0 0
\(779\) 17.2311 17.2311i 0.617368 0.617368i
\(780\) 0 0
\(781\) −29.2311 29.2311i −1.04597 1.04597i
\(782\) 0 0
\(783\) −1.00000 1.00000i −0.0357371 0.0357371i
\(784\) 0 0
\(785\) −9.76547 19.5309i −0.348544 0.697089i
\(786\) 0 0
\(787\) −45.1430 −1.60918 −0.804588 0.593834i \(-0.797614\pi\)
−0.804588 + 0.593834i \(0.797614\pi\)
\(788\) 0 0
\(789\) 20.6888 + 20.6888i 0.736540 + 0.736540i
\(790\) 0 0
\(791\) 13.3776 0.475652
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 18.2277 9.11383i 0.646468 0.323234i
\(796\) 0 0
\(797\) 43.3415i 1.53523i −0.640909 0.767617i \(-0.721442\pi\)
0.640909 0.767617i \(-0.278558\pi\)
\(798\) 0 0
\(799\) 0.798121 0.0282355
\(800\) 0 0
\(801\) −4.11727 −0.145476
\(802\) 0 0
\(803\) 7.26031i 0.256211i
\(804\) 0 0
\(805\) −55.9862 + 27.9931i −1.97326 + 0.986628i
\(806\) 0 0
\(807\) −17.8793 17.8793i −0.629381 0.629381i
\(808\) 0 0
\(809\) −35.5241 −1.24896 −0.624480 0.781041i \(-0.714689\pi\)
−0.624480 + 0.781041i \(0.714689\pi\)
\(810\) 0 0
\(811\) −28.9233 28.9233i −1.01564 1.01564i −0.999876 0.0157594i \(-0.994983\pi\)
−0.0157594 0.999876i \(-0.505017\pi\)
\(812\) 0 0
\(813\) −18.4983 −0.648763
\(814\) 0 0
\(815\) −20.9966 41.9931i −0.735477 1.47095i
\(816\) 0 0
\(817\) −19.8827 19.8827i −0.695609 0.695609i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.6482 12.6482i 0.441425 0.441425i −0.451066 0.892491i \(-0.648956\pi\)
0.892491 + 0.451066i \(0.148956\pi\)
\(822\) 0 0
\(823\) −29.7113 + 29.7113i −1.03567 + 1.03567i −0.0363321 + 0.999340i \(0.511567\pi\)
−0.999340 + 0.0363321i \(0.988433\pi\)
\(824\) 0 0
\(825\) 3.24914 + 22.7440i 0.113121 + 0.791844i
\(826\) 0 0
\(827\) 18.2277i 0.633838i −0.948453 0.316919i \(-0.897352\pi\)
0.948453 0.316919i \(-0.102648\pi\)
\(828\) 0 0
\(829\) 10.8207 10.8207i 0.375817 0.375817i −0.493773 0.869591i \(-0.664383\pi\)
0.869591 + 0.493773i \(0.164383\pi\)
\(830\) 0 0
\(831\) 16.1104i 0.558863i
\(832\) 0 0
\(833\) 0.827538 0.827538i 0.0286725 0.0286725i
\(834\) 0 0
\(835\) 7.27512 + 2.42504i 0.251766 + 0.0839220i
\(836\) 0 0
\(837\) −6.49828 −0.224613
\(838\) 0 0
\(839\) 6.84320i 0.236254i 0.992999 + 0.118127i \(0.0376889\pi\)
−0.992999 + 0.118127i \(0.962311\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) 10.1173 0.348457
\(844\) 0 0
\(845\) −26.0000 + 13.0000i −0.894427 + 0.447214i
\(846\) 0 0
\(847\) −32.8613 + 32.8613i −1.12913 + 1.12913i
\(848\) 0 0
\(849\) 5.61211i 0.192607i
\(850\) 0 0
\(851\) −8.11039 + 8.11039i −0.278021 + 0.278021i
\(852\) 0 0
\(853\) 36.1173i 1.23663i 0.785930 + 0.618316i \(0.212185\pi\)
−0.785930 + 0.618316i \(0.787815\pi\)
\(854\) 0 0
\(855\) 12.9233 + 4.30777i 0.441968 + 0.147323i
\(856\) 0 0
\(857\) −8.93793 + 8.93793i −0.305314 + 0.305314i −0.843089 0.537775i \(-0.819265\pi\)
0.537775 + 0.843089i \(0.319265\pi\)
\(858\) 0 0
\(859\) 39.7665 39.7665i 1.35682 1.35682i 0.479003 0.877813i \(-0.340998\pi\)
0.877813 0.479003i \(-0.159002\pi\)
\(860\) 0 0
\(861\) −12.9966 12.9966i −0.442922 0.442922i
\(862\) 0 0
\(863\) 10.8061 + 10.8061i 0.367842 + 0.367842i 0.866690 0.498847i \(-0.166243\pi\)
−0.498847 + 0.866690i \(0.666243\pi\)
\(864\) 0 0
\(865\) −0.469065 + 0.234533i −0.0159487 + 0.00797435i
\(866\) 0 0
\(867\) 16.9931 0.577117
\(868\) 0 0
\(869\) −29.2311 29.2311i −0.991597 0.991597i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −9.99656 9.99656i −0.338332 0.338332i
\(874\) 0 0
\(875\) 42.2388 29.2423i 1.42793 0.988569i
\(876\) 0 0
\(877\) 14.2345i 0.480666i 0.970690 + 0.240333i \(0.0772566\pi\)
−0.970690 + 0.240333i \(0.922743\pi\)
\(878\) 0 0
\(879\) −20.2277 −0.682262
\(880\) 0 0
\(881\) 14.3449 0.483293 0.241646 0.970364i \(-0.422313\pi\)
0.241646 + 0.970364i \(0.422313\pi\)
\(882\) 0 0
\(883\) 58.7552i 1.97727i 0.150341 + 0.988634i \(0.451963\pi\)
−0.150341 + 0.988634i \(0.548037\pi\)
\(884\) 0 0
\(885\) 4.09922 + 1.36641i 0.137794 + 0.0459313i
\(886\) 0 0
\(887\) 12.3078 + 12.3078i 0.413255 + 0.413255i 0.882871 0.469616i \(-0.155608\pi\)
−0.469616 + 0.882871i \(0.655608\pi\)
\(888\) 0 0
\(889\) 47.1070 1.57992
\(890\) 0 0
\(891\) 3.24914 + 3.24914i 0.108850 + 0.108850i
\(892\) 0 0
\(893\) 58.6379 1.96224
\(894\) 0 0
\(895\) −15.3956 5.13187i −0.514619 0.171540i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.49828 6.49828i −0.216730 0.216730i
\(900\) 0 0
\(901\) −0.534373 + 0.534373i −0.0178025 + 0.0178025i
\(902\) 0 0
\(903\) −14.9966 + 14.9966i −0.499054 + 0.499054i
\(904\) 0 0
\(905\) 0.0586332 0.175899i 0.00194903 0.00584710i
\(906\) 0 0
\(907\) 8.23453i 0.273423i −0.990611 0.136712i \(-0.956347\pi\)
0.990611 0.136712i \(-0.0436534\pi\)
\(908\) 0 0
\(909\) 2.88273 2.88273i 0.0956142 0.0956142i
\(910\) 0 0
\(911\) 42.6087i 1.41169i −0.708367 0.705844i \(-0.750568\pi\)
0.708367 0.705844i \(-0.249432\pi\)
\(912\) 0 0
\(913\) −16.2345 + 16.2345i −0.537285 + 0.537285i
\(914\) 0 0
\(915\) 2.05863 6.17590i 0.0680563 0.204169i
\(916\) 0 0
\(917\) −59.3415 −1.95963
\(918\) 0 0
\(919\) 31.2603i 1.03118i −0.856835 0.515591i \(-0.827572\pi\)
0.856835 0.515591i \(-0.172428\pi\)
\(920\) 0 0
\(921\) 20.6155i 0.679305i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 5.64820 7.53093i 0.185712 0.247616i
\(926\) 0 0
\(927\) 5.36641 5.36641i 0.176256 0.176256i
\(928\) 0 0
\(929\) 54.5726i 1.79047i 0.445596 + 0.895234i \(0.352992\pi\)
−0.445596 + 0.895234i \(0.647008\pi\)
\(930\) 0 0
\(931\) 60.7992 60.7992i 1.99261 1.99261i
\(932\) 0 0
\(933\) 21.2311i 0.695075i
\(934\) 0 0
\(935\) −0.381015 0.762030i −0.0124605 0.0249210i
\(936\) 0 0
\(937\) 21.2277 21.2277i 0.693477 0.693477i −0.269518 0.962995i \(-0.586864\pi\)
0.962995 + 0.269518i \(0.0868644\pi\)
\(938\) 0 0
\(939\) −3.00000 + 3.00000i −0.0979013 + 0.0979013i
\(940\) 0 0
\(941\) 7.99656 + 7.99656i 0.260680 + 0.260680i 0.825330 0.564650i \(-0.190989\pi\)
−0.564650 + 0.825330i \(0.690989\pi\)
\(942\) 0 0
\(943\) −17.2311 17.2311i −0.561122 0.561122i
\(944\) 0 0
\(945\) 3.24914 9.74742i 0.105695 0.317084i
\(946\) 0 0
\(947\) −41.7225 −1.35580 −0.677900 0.735155i \(-0.737110\pi\)
−0.677900 + 0.735155i \(0.737110\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.11383 −0.0361184
\(952\) 0 0
\(953\) 20.0586 + 20.0586i 0.649763 + 0.649763i 0.952936 0.303173i \(-0.0980459\pi\)
−0.303173 + 0.952936i \(0.598046\pi\)
\(954\) 0 0
\(955\) 20.6155 + 41.2311i 0.667103 + 1.33421i
\(956\) 0 0
\(957\) 6.49828i 0.210060i
\(958\) 0 0
\(959\) 32.8501 1.06078
\(960\) 0 0
\(961\) −11.2277 −0.362182
\(962\) 0 0
\(963\) 17.2311i 0.555264i
\(964\) 0 0
\(965\) 13.9966 41.9897i 0.450565 1.35170i
\(966\) 0 0
\(967\) −38.8544 38.8544i −1.24947 1.24947i −0.955953 0.293519i \(-0.905174\pi\)
−0.293519 0.955953i \(-0.594826\pi\)
\(968\) 0 0
\(969\) −0.505157 −0.0162280
\(970\) 0 0
\(971\) 26.5975 + 26.5975i 0.853554 + 0.853554i 0.990569 0.137015i \(-0.0437507\pi\)
−0.137015 + 0.990569i \(0.543751\pi\)
\(972\) 0 0
\(973\) 40.2277 1.28964
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.82754 2.82754i −0.0904610 0.0904610i 0.660428 0.750889i \(-0.270375\pi\)
−0.750889 + 0.660428i \(0.770375\pi\)
\(978\) 0 0
\(979\) 13.3776 + 13.3776i 0.427549 + 0.427549i
\(980\) 0 0
\(981\) −7.05520 + 7.05520i −0.225255 + 0.225255i
\(982\) 0 0
\(983\) −13.5389 + 13.5389i −0.431823 + 0.431823i −0.889248 0.457425i \(-0.848772\pi\)
0.457425 + 0.889248i \(0.348772\pi\)
\(984\) 0 0
\(985\) −29.7586 + 14.8793i −0.948188 + 0.474094i
\(986\) 0 0
\(987\) 44.2277i 1.40778i
\(988\) 0 0
\(989\) −19.8827 + 19.8827i −0.632234 + 0.632234i
\(990\) 0 0
\(991\) 12.9605i 0.411703i 0.978583 + 0.205851i \(0.0659964\pi\)
−0.978583 + 0.205851i \(0.934004\pi\)
\(992\) 0 0
\(993\) 8.92332 8.92332i 0.283173 0.283173i
\(994\) 0 0
\(995\) −18.4983 36.9966i −0.586435 1.17287i
\(996\) 0 0
\(997\) 22.2277 0.703957 0.351978 0.936008i \(-0.385509\pi\)
0.351978 + 0.936008i \(0.385509\pi\)
\(998\) 0 0
\(999\) 1.88273i 0.0595671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.d.367.3 6
4.3 odd 2 240.2.bc.d.67.2 yes 6
5.3 odd 4 960.2.y.d.943.3 6
8.3 odd 2 1920.2.bc.g.607.1 6
8.5 even 2 1920.2.bc.h.607.3 6
12.11 even 2 720.2.bd.e.307.2 6
16.3 odd 4 1920.2.y.h.1567.3 6
16.5 even 4 240.2.y.d.187.3 yes 6
16.11 odd 4 960.2.y.d.847.3 6
16.13 even 4 1920.2.y.g.1567.1 6
20.3 even 4 240.2.y.d.163.3 6
40.3 even 4 1920.2.y.g.223.1 6
40.13 odd 4 1920.2.y.h.223.3 6
48.5 odd 4 720.2.z.e.667.1 6
60.23 odd 4 720.2.z.e.163.1 6
80.3 even 4 1920.2.bc.h.1183.3 6
80.13 odd 4 1920.2.bc.g.1183.1 6
80.43 even 4 inner 960.2.bc.d.463.3 6
80.53 odd 4 240.2.bc.d.43.2 yes 6
240.53 even 4 720.2.bd.e.523.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.3 6 20.3 even 4
240.2.y.d.187.3 yes 6 16.5 even 4
240.2.bc.d.43.2 yes 6 80.53 odd 4
240.2.bc.d.67.2 yes 6 4.3 odd 2
720.2.z.e.163.1 6 60.23 odd 4
720.2.z.e.667.1 6 48.5 odd 4
720.2.bd.e.307.2 6 12.11 even 2
720.2.bd.e.523.2 6 240.53 even 4
960.2.y.d.847.3 6 16.11 odd 4
960.2.y.d.943.3 6 5.3 odd 4
960.2.bc.d.367.3 6 1.1 even 1 trivial
960.2.bc.d.463.3 6 80.43 even 4 inner
1920.2.y.g.223.1 6 40.3 even 4
1920.2.y.g.1567.1 6 16.13 even 4
1920.2.y.h.223.3 6 40.13 odd 4
1920.2.y.h.1567.3 6 16.3 odd 4
1920.2.bc.g.607.1 6 8.3 odd 2
1920.2.bc.g.1183.1 6 80.13 odd 4
1920.2.bc.h.607.3 6 8.5 even 2
1920.2.bc.h.1183.3 6 80.3 even 4