Properties

Label 1920.2.bc.j.1183.1
Level $1920$
Weight $2$
Character 1920.1183
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(607,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1183.1
Root \(-1.20803 + 0.735291i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1183
Dual form 1920.2.bc.j.607.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.54804 + 1.61356i) q^{5} +(-0.143894 + 0.143894i) q^{7} -1.00000 q^{9} +(0.749545 - 0.749545i) q^{11} -3.29132 q^{13} +(-1.61356 - 1.54804i) q^{15} +(1.35709 - 1.35709i) q^{17} +(-4.25468 + 4.25468i) q^{19} +(-0.143894 - 0.143894i) q^{21} +(-0.837388 - 0.837388i) q^{23} +(-0.207170 - 4.99571i) q^{25} -1.00000i q^{27} +(-2.77462 - 2.77462i) q^{29} -6.60915i q^{31} +(0.749545 + 0.749545i) q^{33} +(-0.00942893 - 0.454934i) q^{35} +10.0194 q^{37} -3.29132i q^{39} +1.72608i q^{41} -4.17171 q^{43} +(1.54804 - 1.61356i) q^{45} +(-8.54502 - 8.54502i) q^{47} +6.95859i q^{49} +(1.35709 + 1.35709i) q^{51} +5.05524i q^{53} +(0.0491155 + 2.36976i) q^{55} +(-4.25468 - 4.25468i) q^{57} +(-3.08237 - 3.08237i) q^{59} +(5.00346 - 5.00346i) q^{61} +(0.143894 - 0.143894i) q^{63} +(5.09507 - 5.31074i) q^{65} -4.26739 q^{67} +(0.837388 - 0.837388i) q^{69} -13.2111 q^{71} +(11.6889 - 11.6889i) q^{73} +(4.99571 - 0.207170i) q^{75} +0.215710i q^{77} +9.95558 q^{79} +1.00000 q^{81} -10.0134i q^{83} +(0.0889259 + 4.29056i) q^{85} +(2.77462 - 2.77462i) q^{87} -5.76005 q^{89} +(0.473599 - 0.473599i) q^{91} +6.60915 q^{93} +(-0.278797 - 13.4516i) q^{95} +(11.7668 - 11.7668i) q^{97} +(-0.749545 + 0.749545i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} + 4 q^{7} - 16 q^{9} + 8 q^{13} - 4 q^{15} - 8 q^{17} - 8 q^{19} + 4 q^{21} - 32 q^{25} + 12 q^{29} + 12 q^{35} + 24 q^{37} + 24 q^{43} - 8 q^{45} - 32 q^{47} - 8 q^{51} + 4 q^{55} - 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.54804 + 1.61356i −0.692303 + 0.721607i
\(6\) 0 0
\(7\) −0.143894 + 0.143894i −0.0543867 + 0.0543867i −0.733777 0.679390i \(-0.762244\pi\)
0.679390 + 0.733777i \(0.262244\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.749545 0.749545i 0.225996 0.225996i −0.585021 0.811018i \(-0.698914\pi\)
0.811018 + 0.585021i \(0.198914\pi\)
\(12\) 0 0
\(13\) −3.29132 −0.912847 −0.456423 0.889763i \(-0.650870\pi\)
−0.456423 + 0.889763i \(0.650870\pi\)
\(14\) 0 0
\(15\) −1.61356 1.54804i −0.416620 0.399701i
\(16\) 0 0
\(17\) 1.35709 1.35709i 0.329142 0.329142i −0.523118 0.852260i \(-0.675231\pi\)
0.852260 + 0.523118i \(0.175231\pi\)
\(18\) 0 0
\(19\) −4.25468 + 4.25468i −0.976091 + 0.976091i −0.999721 0.0236300i \(-0.992478\pi\)
0.0236300 + 0.999721i \(0.492478\pi\)
\(20\) 0 0
\(21\) −0.143894 0.143894i −0.0314002 0.0314002i
\(22\) 0 0
\(23\) −0.837388 0.837388i −0.174608 0.174608i 0.614393 0.789000i \(-0.289401\pi\)
−0.789000 + 0.614393i \(0.789401\pi\)
\(24\) 0 0
\(25\) −0.207170 4.99571i −0.0414341 0.999141i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.77462 2.77462i −0.515234 0.515234i 0.400891 0.916126i \(-0.368701\pi\)
−0.916126 + 0.400891i \(0.868701\pi\)
\(30\) 0 0
\(31\) 6.60915i 1.18704i −0.804820 0.593520i \(-0.797738\pi\)
0.804820 0.593520i \(-0.202262\pi\)
\(32\) 0 0
\(33\) 0.749545 + 0.749545i 0.130479 + 0.130479i
\(34\) 0 0
\(35\) −0.00942893 0.454934i −0.00159378 0.0768979i
\(36\) 0 0
\(37\) 10.0194 1.64717 0.823586 0.567191i \(-0.191970\pi\)
0.823586 + 0.567191i \(0.191970\pi\)
\(38\) 0 0
\(39\) 3.29132i 0.527032i
\(40\) 0 0
\(41\) 1.72608i 0.269569i 0.990875 + 0.134784i \(0.0430342\pi\)
−0.990875 + 0.134784i \(0.956966\pi\)
\(42\) 0 0
\(43\) −4.17171 −0.636180 −0.318090 0.948061i \(-0.603041\pi\)
−0.318090 + 0.948061i \(0.603041\pi\)
\(44\) 0 0
\(45\) 1.54804 1.61356i 0.230768 0.240536i
\(46\) 0 0
\(47\) −8.54502 8.54502i −1.24642 1.24642i −0.957290 0.289128i \(-0.906635\pi\)
−0.289128 0.957290i \(-0.593365\pi\)
\(48\) 0 0
\(49\) 6.95859i 0.994084i
\(50\) 0 0
\(51\) 1.35709 + 1.35709i 0.190030 + 0.190030i
\(52\) 0 0
\(53\) 5.05524i 0.694391i 0.937793 + 0.347196i \(0.112866\pi\)
−0.937793 + 0.347196i \(0.887134\pi\)
\(54\) 0 0
\(55\) 0.0491155 + 2.36976i 0.00662273 + 0.319538i
\(56\) 0 0
\(57\) −4.25468 4.25468i −0.563546 0.563546i
\(58\) 0 0
\(59\) −3.08237 3.08237i −0.401290 0.401290i 0.477398 0.878687i \(-0.341580\pi\)
−0.878687 + 0.477398i \(0.841580\pi\)
\(60\) 0 0
\(61\) 5.00346 5.00346i 0.640627 0.640627i −0.310083 0.950710i \(-0.600357\pi\)
0.950710 + 0.310083i \(0.100357\pi\)
\(62\) 0 0
\(63\) 0.143894 0.143894i 0.0181289 0.0181289i
\(64\) 0 0
\(65\) 5.09507 5.31074i 0.631966 0.658717i
\(66\) 0 0
\(67\) −4.26739 −0.521345 −0.260672 0.965427i \(-0.583944\pi\)
−0.260672 + 0.965427i \(0.583944\pi\)
\(68\) 0 0
\(69\) 0.837388 0.837388i 0.100810 0.100810i
\(70\) 0 0
\(71\) −13.2111 −1.56786 −0.783932 0.620846i \(-0.786789\pi\)
−0.783932 + 0.620846i \(0.786789\pi\)
\(72\) 0 0
\(73\) 11.6889 11.6889i 1.36808 1.36808i 0.504904 0.863175i \(-0.331528\pi\)
0.863175 0.504904i \(-0.168472\pi\)
\(74\) 0 0
\(75\) 4.99571 0.207170i 0.576854 0.0239220i
\(76\) 0 0
\(77\) 0.215710i 0.0245824i
\(78\) 0 0
\(79\) 9.95558 1.12009 0.560045 0.828462i \(-0.310784\pi\)
0.560045 + 0.828462i \(0.310784\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.0134i 1.09912i −0.835455 0.549559i \(-0.814796\pi\)
0.835455 0.549559i \(-0.185204\pi\)
\(84\) 0 0
\(85\) 0.0889259 + 4.29056i 0.00964537 + 0.465377i
\(86\) 0 0
\(87\) 2.77462 2.77462i 0.297471 0.297471i
\(88\) 0 0
\(89\) −5.76005 −0.610564 −0.305282 0.952262i \(-0.598751\pi\)
−0.305282 + 0.952262i \(0.598751\pi\)
\(90\) 0 0
\(91\) 0.473599 0.473599i 0.0496467 0.0496467i
\(92\) 0 0
\(93\) 6.60915 0.685337
\(94\) 0 0
\(95\) −0.278797 13.4516i −0.0286040 1.38010i
\(96\) 0 0
\(97\) 11.7668 11.7668i 1.19474 1.19474i 0.219021 0.975720i \(-0.429714\pi\)
0.975720 0.219021i \(-0.0702865\pi\)
\(98\) 0 0
\(99\) −0.749545 + 0.749545i −0.0753321 + 0.0753321i
\(100\) 0 0
\(101\) 1.29314 + 1.29314i 0.128672 + 0.128672i 0.768510 0.639838i \(-0.220998\pi\)
−0.639838 + 0.768510i \(0.720998\pi\)
\(102\) 0 0
\(103\) 11.2892 + 11.2892i 1.11236 + 1.11236i 0.992830 + 0.119532i \(0.0381393\pi\)
0.119532 + 0.992830i \(0.461861\pi\)
\(104\) 0 0
\(105\) 0.454934 0.00942893i 0.0443970 0.000920169i
\(106\) 0 0
\(107\) 1.39451i 0.134812i −0.997726 0.0674060i \(-0.978528\pi\)
0.997726 0.0674060i \(-0.0214723\pi\)
\(108\) 0 0
\(109\) −4.55325 4.55325i −0.436123 0.436123i 0.454582 0.890705i \(-0.349789\pi\)
−0.890705 + 0.454582i \(0.849789\pi\)
\(110\) 0 0
\(111\) 10.0194i 0.950995i
\(112\) 0 0
\(113\) −11.4501 11.4501i −1.07714 1.07714i −0.996765 0.0803726i \(-0.974389\pi\)
−0.0803726 0.996765i \(-0.525611\pi\)
\(114\) 0 0
\(115\) 2.64749 0.0548716i 0.246879 0.00511680i
\(116\) 0 0
\(117\) 3.29132 0.304282
\(118\) 0 0
\(119\) 0.390552i 0.0358018i
\(120\) 0 0
\(121\) 9.87636i 0.897851i
\(122\) 0 0
\(123\) −1.72608 −0.155636
\(124\) 0 0
\(125\) 8.38159 + 7.39925i 0.749672 + 0.661809i
\(126\) 0 0
\(127\) −4.94562 4.94562i −0.438853 0.438853i 0.452773 0.891626i \(-0.350435\pi\)
−0.891626 + 0.452773i \(0.850435\pi\)
\(128\) 0 0
\(129\) 4.17171i 0.367299i
\(130\) 0 0
\(131\) −12.7313 12.7313i −1.11234 1.11234i −0.992833 0.119509i \(-0.961868\pi\)
−0.119509 0.992833i \(-0.538132\pi\)
\(132\) 0 0
\(133\) 1.22444i 0.106173i
\(134\) 0 0
\(135\) 1.61356 + 1.54804i 0.138873 + 0.133234i
\(136\) 0 0
\(137\) 6.06032 + 6.06032i 0.517768 + 0.517768i 0.916896 0.399127i \(-0.130687\pi\)
−0.399127 + 0.916896i \(0.630687\pi\)
\(138\) 0 0
\(139\) −10.3543 10.3543i −0.878239 0.878239i 0.115114 0.993352i \(-0.463277\pi\)
−0.993352 + 0.115114i \(0.963277\pi\)
\(140\) 0 0
\(141\) 8.54502 8.54502i 0.719620 0.719620i
\(142\) 0 0
\(143\) −2.46699 + 2.46699i −0.206300 + 0.206300i
\(144\) 0 0
\(145\) 8.77224 0.181813i 0.728495 0.0150987i
\(146\) 0 0
\(147\) −6.95859 −0.573935
\(148\) 0 0
\(149\) 0.485009 0.485009i 0.0397335 0.0397335i −0.686961 0.726694i \(-0.741056\pi\)
0.726694 + 0.686961i \(0.241056\pi\)
\(150\) 0 0
\(151\) −6.47302 −0.526767 −0.263383 0.964691i \(-0.584838\pi\)
−0.263383 + 0.964691i \(0.584838\pi\)
\(152\) 0 0
\(153\) −1.35709 + 1.35709i −0.109714 + 0.109714i
\(154\) 0 0
\(155\) 10.6643 + 10.2312i 0.856576 + 0.821790i
\(156\) 0 0
\(157\) 11.7463i 0.937455i −0.883343 0.468728i \(-0.844713\pi\)
0.883343 0.468728i \(-0.155287\pi\)
\(158\) 0 0
\(159\) −5.05524 −0.400907
\(160\) 0 0
\(161\) 0.240990 0.0189926
\(162\) 0 0
\(163\) 1.87143i 0.146582i 0.997311 + 0.0732908i \(0.0233501\pi\)
−0.997311 + 0.0732908i \(0.976650\pi\)
\(164\) 0 0
\(165\) −2.36976 + 0.0491155i −0.184486 + 0.00382364i
\(166\) 0 0
\(167\) −4.79897 + 4.79897i −0.371355 + 0.371355i −0.867971 0.496615i \(-0.834576\pi\)
0.496615 + 0.867971i \(0.334576\pi\)
\(168\) 0 0
\(169\) −2.16724 −0.166711
\(170\) 0 0
\(171\) 4.25468 4.25468i 0.325364 0.325364i
\(172\) 0 0
\(173\) −12.8446 −0.976560 −0.488280 0.872687i \(-0.662375\pi\)
−0.488280 + 0.872687i \(0.662375\pi\)
\(174\) 0 0
\(175\) 0.748661 + 0.689040i 0.0565934 + 0.0520865i
\(176\) 0 0
\(177\) 3.08237 3.08237i 0.231685 0.231685i
\(178\) 0 0
\(179\) 3.47791 3.47791i 0.259951 0.259951i −0.565083 0.825034i \(-0.691156\pi\)
0.825034 + 0.565083i \(0.191156\pi\)
\(180\) 0 0
\(181\) −16.3185 16.3185i −1.21295 1.21295i −0.970053 0.242893i \(-0.921903\pi\)
−0.242893 0.970053i \(-0.578097\pi\)
\(182\) 0 0
\(183\) 5.00346 + 5.00346i 0.369866 + 0.369866i
\(184\) 0 0
\(185\) −15.5103 + 16.1669i −1.14034 + 1.18861i
\(186\) 0 0
\(187\) 2.03439i 0.148770i
\(188\) 0 0
\(189\) 0.143894 + 0.143894i 0.0104667 + 0.0104667i
\(190\) 0 0
\(191\) 21.5483i 1.55918i 0.626289 + 0.779591i \(0.284573\pi\)
−0.626289 + 0.779591i \(0.715427\pi\)
\(192\) 0 0
\(193\) 11.3161 + 11.3161i 0.814552 + 0.814552i 0.985313 0.170760i \(-0.0546224\pi\)
−0.170760 + 0.985313i \(0.554622\pi\)
\(194\) 0 0
\(195\) 5.31074 + 5.09507i 0.380310 + 0.364866i
\(196\) 0 0
\(197\) 23.3109 1.66083 0.830417 0.557142i \(-0.188102\pi\)
0.830417 + 0.557142i \(0.188102\pi\)
\(198\) 0 0
\(199\) 2.14992i 0.152404i 0.997092 + 0.0762018i \(0.0242793\pi\)
−0.997092 + 0.0762018i \(0.975721\pi\)
\(200\) 0 0
\(201\) 4.26739i 0.300999i
\(202\) 0 0
\(203\) 0.798501 0.0560438
\(204\) 0 0
\(205\) −2.78514 2.67204i −0.194523 0.186623i
\(206\) 0 0
\(207\) 0.837388 + 0.837388i 0.0582025 + 0.0582025i
\(208\) 0 0
\(209\) 6.37815i 0.441186i
\(210\) 0 0
\(211\) 6.27270 + 6.27270i 0.431830 + 0.431830i 0.889251 0.457420i \(-0.151226\pi\)
−0.457420 + 0.889251i \(0.651226\pi\)
\(212\) 0 0
\(213\) 13.2111i 0.905207i
\(214\) 0 0
\(215\) 6.45796 6.73132i 0.440429 0.459072i
\(216\) 0 0
\(217\) 0.951015 + 0.951015i 0.0645591 + 0.0645591i
\(218\) 0 0
\(219\) 11.6889 + 11.6889i 0.789861 + 0.789861i
\(220\) 0 0
\(221\) −4.46660 + 4.46660i −0.300456 + 0.300456i
\(222\) 0 0
\(223\) −5.00009 + 5.00009i −0.334831 + 0.334831i −0.854418 0.519587i \(-0.826086\pi\)
0.519587 + 0.854418i \(0.326086\pi\)
\(224\) 0 0
\(225\) 0.207170 + 4.99571i 0.0138114 + 0.333047i
\(226\) 0 0
\(227\) −22.5630 −1.49756 −0.748778 0.662821i \(-0.769359\pi\)
−0.748778 + 0.662821i \(0.769359\pi\)
\(228\) 0 0
\(229\) −6.83720 + 6.83720i −0.451815 + 0.451815i −0.895957 0.444142i \(-0.853509\pi\)
0.444142 + 0.895957i \(0.353509\pi\)
\(230\) 0 0
\(231\) −0.215710 −0.0141926
\(232\) 0 0
\(233\) −3.10894 + 3.10894i −0.203673 + 0.203673i −0.801572 0.597899i \(-0.796003\pi\)
0.597899 + 0.801572i \(0.296003\pi\)
\(234\) 0 0
\(235\) 27.0159 0.559930i 1.76232 0.0365258i
\(236\) 0 0
\(237\) 9.95558i 0.646685i
\(238\) 0 0
\(239\) 11.0671 0.715873 0.357937 0.933746i \(-0.383480\pi\)
0.357937 + 0.933746i \(0.383480\pi\)
\(240\) 0 0
\(241\) −23.4743 −1.51211 −0.756056 0.654507i \(-0.772876\pi\)
−0.756056 + 0.654507i \(0.772876\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −11.2281 10.7721i −0.717338 0.688207i
\(246\) 0 0
\(247\) 14.0035 14.0035i 0.891021 0.891021i
\(248\) 0 0
\(249\) 10.0134 0.634576
\(250\) 0 0
\(251\) −1.76187 + 1.76187i −0.111209 + 0.111209i −0.760521 0.649313i \(-0.775057\pi\)
0.649313 + 0.760521i \(0.275057\pi\)
\(252\) 0 0
\(253\) −1.25532 −0.0789213
\(254\) 0 0
\(255\) −4.29056 + 0.0889259i −0.268685 + 0.00556875i
\(256\) 0 0
\(257\) −4.05693 + 4.05693i −0.253064 + 0.253064i −0.822226 0.569162i \(-0.807268\pi\)
0.569162 + 0.822226i \(0.307268\pi\)
\(258\) 0 0
\(259\) −1.44172 + 1.44172i −0.0895842 + 0.0895842i
\(260\) 0 0
\(261\) 2.77462 + 2.77462i 0.171745 + 0.171745i
\(262\) 0 0
\(263\) −22.2576 22.2576i −1.37246 1.37246i −0.856784 0.515676i \(-0.827541\pi\)
−0.515676 0.856784i \(-0.672459\pi\)
\(264\) 0 0
\(265\) −8.15695 7.82570i −0.501078 0.480729i
\(266\) 0 0
\(267\) 5.76005i 0.352509i
\(268\) 0 0
\(269\) −11.9600 11.9600i −0.729217 0.729217i 0.241247 0.970464i \(-0.422444\pi\)
−0.970464 + 0.241247i \(0.922444\pi\)
\(270\) 0 0
\(271\) 15.7162i 0.954691i 0.878716 + 0.477346i \(0.158401\pi\)
−0.878716 + 0.477346i \(0.841599\pi\)
\(272\) 0 0
\(273\) 0.473599 + 0.473599i 0.0286635 + 0.0286635i
\(274\) 0 0
\(275\) −3.89979 3.58922i −0.235166 0.216438i
\(276\) 0 0
\(277\) −4.59363 −0.276004 −0.138002 0.990432i \(-0.544068\pi\)
−0.138002 + 0.990432i \(0.544068\pi\)
\(278\) 0 0
\(279\) 6.60915i 0.395680i
\(280\) 0 0
\(281\) 20.5117i 1.22363i 0.791002 + 0.611814i \(0.209560\pi\)
−0.791002 + 0.611814i \(0.790440\pi\)
\(282\) 0 0
\(283\) −28.8990 −1.71787 −0.858933 0.512088i \(-0.828872\pi\)
−0.858933 + 0.512088i \(0.828872\pi\)
\(284\) 0 0
\(285\) 13.4516 0.278797i 0.796804 0.0165145i
\(286\) 0 0
\(287\) −0.248372 0.248372i −0.0146610 0.0146610i
\(288\) 0 0
\(289\) 13.3166i 0.783332i
\(290\) 0 0
\(291\) 11.7668 + 11.7668i 0.689784 + 0.689784i
\(292\) 0 0
\(293\) 8.86723i 0.518029i −0.965873 0.259014i \(-0.916602\pi\)
0.965873 0.259014i \(-0.0833977\pi\)
\(294\) 0 0
\(295\) 9.74521 0.201978i 0.567388 0.0117596i
\(296\) 0 0
\(297\) −0.749545 0.749545i −0.0434930 0.0434930i
\(298\) 0 0
\(299\) 2.75611 + 2.75611i 0.159390 + 0.159390i
\(300\) 0 0
\(301\) 0.600283 0.600283i 0.0345997 0.0345997i
\(302\) 0 0
\(303\) −1.29314 + 1.29314i −0.0742890 + 0.0742890i
\(304\) 0 0
\(305\) 0.327862 + 15.8189i 0.0187733 + 0.905789i
\(306\) 0 0
\(307\) 14.1518 0.807684 0.403842 0.914829i \(-0.367675\pi\)
0.403842 + 0.914829i \(0.367675\pi\)
\(308\) 0 0
\(309\) −11.2892 + 11.2892i −0.642222 + 0.642222i
\(310\) 0 0
\(311\) −7.15165 −0.405533 −0.202766 0.979227i \(-0.564993\pi\)
−0.202766 + 0.979227i \(0.564993\pi\)
\(312\) 0 0
\(313\) 5.98016 5.98016i 0.338019 0.338019i −0.517602 0.855621i \(-0.673175\pi\)
0.855621 + 0.517602i \(0.173175\pi\)
\(314\) 0 0
\(315\) 0.00942893 + 0.454934i 0.000531260 + 0.0256326i
\(316\) 0 0
\(317\) 7.76996i 0.436404i 0.975904 + 0.218202i \(0.0700192\pi\)
−0.975904 + 0.218202i \(0.929981\pi\)
\(318\) 0 0
\(319\) −4.15941 −0.232882
\(320\) 0 0
\(321\) 1.39451 0.0778338
\(322\) 0 0
\(323\) 11.5479i 0.642544i
\(324\) 0 0
\(325\) 0.681863 + 16.4424i 0.0378229 + 0.912063i
\(326\) 0 0
\(327\) 4.55325 4.55325i 0.251795 0.251795i
\(328\) 0 0
\(329\) 2.45915 0.135577
\(330\) 0 0
\(331\) −0.751395 + 0.751395i −0.0413004 + 0.0413004i −0.727455 0.686155i \(-0.759297\pi\)
0.686155 + 0.727455i \(0.259297\pi\)
\(332\) 0 0
\(333\) −10.0194 −0.549057
\(334\) 0 0
\(335\) 6.60607 6.88570i 0.360928 0.376206i
\(336\) 0 0
\(337\) −0.379414 + 0.379414i −0.0206680 + 0.0206680i −0.717365 0.696697i \(-0.754652\pi\)
0.696697 + 0.717365i \(0.254652\pi\)
\(338\) 0 0
\(339\) 11.4501 11.4501i 0.621886 0.621886i
\(340\) 0 0
\(341\) −4.95386 4.95386i −0.268266 0.268266i
\(342\) 0 0
\(343\) −2.00855 2.00855i −0.108452 0.108452i
\(344\) 0 0
\(345\) 0.0548716 + 2.64749i 0.00295419 + 0.142536i
\(346\) 0 0
\(347\) 16.7455i 0.898947i −0.893294 0.449473i \(-0.851612\pi\)
0.893294 0.449473i \(-0.148388\pi\)
\(348\) 0 0
\(349\) 21.0019 + 21.0019i 1.12421 + 1.12421i 0.991102 + 0.133104i \(0.0424944\pi\)
0.133104 + 0.991102i \(0.457506\pi\)
\(350\) 0 0
\(351\) 3.29132i 0.175677i
\(352\) 0 0
\(353\) −9.02933 9.02933i −0.480583 0.480583i 0.424735 0.905318i \(-0.360367\pi\)
−0.905318 + 0.424735i \(0.860367\pi\)
\(354\) 0 0
\(355\) 20.4512 21.3169i 1.08544 1.13138i
\(356\) 0 0
\(357\) −0.390552 −0.0206702
\(358\) 0 0
\(359\) 12.2651i 0.647326i 0.946172 + 0.323663i \(0.104914\pi\)
−0.946172 + 0.323663i \(0.895086\pi\)
\(360\) 0 0
\(361\) 17.2046i 0.905506i
\(362\) 0 0
\(363\) −9.87636 −0.518375
\(364\) 0 0
\(365\) 0.765938 + 36.9555i 0.0400910 + 1.93434i
\(366\) 0 0
\(367\) −1.25485 1.25485i −0.0655025 0.0655025i 0.673597 0.739099i \(-0.264749\pi\)
−0.739099 + 0.673597i \(0.764749\pi\)
\(368\) 0 0
\(369\) 1.72608i 0.0898563i
\(370\) 0 0
\(371\) −0.727417 0.727417i −0.0377656 0.0377656i
\(372\) 0 0
\(373\) 8.25732i 0.427548i −0.976883 0.213774i \(-0.931424\pi\)
0.976883 0.213774i \(-0.0685756\pi\)
\(374\) 0 0
\(375\) −7.39925 + 8.38159i −0.382096 + 0.432824i
\(376\) 0 0
\(377\) 9.13216 + 9.13216i 0.470330 + 0.470330i
\(378\) 0 0
\(379\) −1.03027 1.03027i −0.0529214 0.0529214i 0.680151 0.733072i \(-0.261914\pi\)
−0.733072 + 0.680151i \(0.761914\pi\)
\(380\) 0 0
\(381\) 4.94562 4.94562i 0.253372 0.253372i
\(382\) 0 0
\(383\) 12.3374 12.3374i 0.630413 0.630413i −0.317759 0.948172i \(-0.602930\pi\)
0.948172 + 0.317759i \(0.102930\pi\)
\(384\) 0 0
\(385\) −0.348061 0.333926i −0.0177388 0.0170184i
\(386\) 0 0
\(387\) 4.17171 0.212060
\(388\) 0 0
\(389\) −12.8354 + 12.8354i −0.650781 + 0.650781i −0.953181 0.302400i \(-0.902212\pi\)
0.302400 + 0.953181i \(0.402212\pi\)
\(390\) 0 0
\(391\) −2.27282 −0.114941
\(392\) 0 0
\(393\) 12.7313 12.7313i 0.642211 0.642211i
\(394\) 0 0
\(395\) −15.4116 + 16.0640i −0.775442 + 0.808266i
\(396\) 0 0
\(397\) 14.3934i 0.722383i 0.932492 + 0.361191i \(0.117630\pi\)
−0.932492 + 0.361191i \(0.882370\pi\)
\(398\) 0 0
\(399\) 1.22444 0.0612988
\(400\) 0 0
\(401\) −37.4272 −1.86902 −0.934512 0.355932i \(-0.884164\pi\)
−0.934512 + 0.355932i \(0.884164\pi\)
\(402\) 0 0
\(403\) 21.7528i 1.08358i
\(404\) 0 0
\(405\) −1.54804 + 1.61356i −0.0769225 + 0.0801786i
\(406\) 0 0
\(407\) 7.50996 7.50996i 0.372255 0.372255i
\(408\) 0 0
\(409\) −8.19166 −0.405052 −0.202526 0.979277i \(-0.564915\pi\)
−0.202526 + 0.979277i \(0.564915\pi\)
\(410\) 0 0
\(411\) −6.06032 + 6.06032i −0.298934 + 0.298934i
\(412\) 0 0
\(413\) 0.887066 0.0436497
\(414\) 0 0
\(415\) 16.1573 + 15.5012i 0.793131 + 0.760922i
\(416\) 0 0
\(417\) 10.3543 10.3543i 0.507051 0.507051i
\(418\) 0 0
\(419\) 22.2183 22.2183i 1.08544 1.08544i 0.0894455 0.995992i \(-0.471491\pi\)
0.995992 0.0894455i \(-0.0285095\pi\)
\(420\) 0 0
\(421\) 2.75098 + 2.75098i 0.134074 + 0.134074i 0.770959 0.636885i \(-0.219777\pi\)
−0.636885 + 0.770959i \(0.719777\pi\)
\(422\) 0 0
\(423\) 8.54502 + 8.54502i 0.415473 + 0.415473i
\(424\) 0 0
\(425\) −7.06075 6.49845i −0.342497 0.315221i
\(426\) 0 0
\(427\) 1.43993i 0.0696832i
\(428\) 0 0
\(429\) −2.46699 2.46699i −0.119107 0.119107i
\(430\) 0 0
\(431\) 5.32770i 0.256626i 0.991734 + 0.128313i \(0.0409563\pi\)
−0.991734 + 0.128313i \(0.959044\pi\)
\(432\) 0 0
\(433\) −3.38866 3.38866i −0.162849 0.162849i 0.620979 0.783827i \(-0.286735\pi\)
−0.783827 + 0.620979i \(0.786735\pi\)
\(434\) 0 0
\(435\) 0.181813 + 8.77224i 0.00871726 + 0.420597i
\(436\) 0 0
\(437\) 7.12564 0.340866
\(438\) 0 0
\(439\) 5.99801i 0.286269i 0.989703 + 0.143135i \(0.0457182\pi\)
−0.989703 + 0.143135i \(0.954282\pi\)
\(440\) 0 0
\(441\) 6.95859i 0.331361i
\(442\) 0 0
\(443\) −13.3394 −0.633773 −0.316887 0.948463i \(-0.602637\pi\)
−0.316887 + 0.948463i \(0.602637\pi\)
\(444\) 0 0
\(445\) 8.91676 9.29420i 0.422695 0.440587i
\(446\) 0 0
\(447\) 0.485009 + 0.485009i 0.0229401 + 0.0229401i
\(448\) 0 0
\(449\) 29.7201i 1.40258i 0.712877 + 0.701289i \(0.247392\pi\)
−0.712877 + 0.701289i \(0.752608\pi\)
\(450\) 0 0
\(451\) 1.29378 + 1.29378i 0.0609216 + 0.0609216i
\(452\) 0 0
\(453\) 6.47302i 0.304129i
\(454\) 0 0
\(455\) 0.0310336 + 1.49733i 0.00145488 + 0.0701960i
\(456\) 0 0
\(457\) 13.8443 + 13.8443i 0.647611 + 0.647611i 0.952415 0.304804i \(-0.0985910\pi\)
−0.304804 + 0.952415i \(0.598591\pi\)
\(458\) 0 0
\(459\) −1.35709 1.35709i −0.0633433 0.0633433i
\(460\) 0 0
\(461\) −23.8766 + 23.8766i −1.11205 + 1.11205i −0.119172 + 0.992874i \(0.538024\pi\)
−0.992874 + 0.119172i \(0.961976\pi\)
\(462\) 0 0
\(463\) −10.5750 + 10.5750i −0.491463 + 0.491463i −0.908767 0.417304i \(-0.862975\pi\)
0.417304 + 0.908767i \(0.362975\pi\)
\(464\) 0 0
\(465\) −10.2312 + 10.6643i −0.474461 + 0.494544i
\(466\) 0 0
\(467\) 30.0161 1.38898 0.694491 0.719502i \(-0.255630\pi\)
0.694491 + 0.719502i \(0.255630\pi\)
\(468\) 0 0
\(469\) 0.614050 0.614050i 0.0283542 0.0283542i
\(470\) 0 0
\(471\) 11.7463 0.541240
\(472\) 0 0
\(473\) −3.12689 + 3.12689i −0.143774 + 0.143774i
\(474\) 0 0
\(475\) 22.1366 + 20.3737i 1.01570 + 0.934809i
\(476\) 0 0
\(477\) 5.05524i 0.231464i
\(478\) 0 0
\(479\) 21.9152 1.00133 0.500665 0.865641i \(-0.333089\pi\)
0.500665 + 0.865641i \(0.333089\pi\)
\(480\) 0 0
\(481\) −32.9769 −1.50362
\(482\) 0 0
\(483\) 0.240990i 0.0109654i
\(484\) 0 0
\(485\) 0.771047 + 37.2020i 0.0350114 + 1.68926i
\(486\) 0 0
\(487\) 5.66360 5.66360i 0.256642 0.256642i −0.567045 0.823687i \(-0.691913\pi\)
0.823687 + 0.567045i \(0.191913\pi\)
\(488\) 0 0
\(489\) −1.87143 −0.0846289
\(490\) 0 0
\(491\) −25.4744 + 25.4744i −1.14964 + 1.14964i −0.163018 + 0.986623i \(0.552123\pi\)
−0.986623 + 0.163018i \(0.947877\pi\)
\(492\) 0 0
\(493\) −7.53080 −0.339170
\(494\) 0 0
\(495\) −0.0491155 2.36976i −0.00220758 0.106513i
\(496\) 0 0
\(497\) 1.90099 1.90099i 0.0852709 0.0852709i
\(498\) 0 0
\(499\) −18.8209 + 18.8209i −0.842537 + 0.842537i −0.989188 0.146651i \(-0.953151\pi\)
0.146651 + 0.989188i \(0.453151\pi\)
\(500\) 0 0
\(501\) −4.79897 4.79897i −0.214402 0.214402i
\(502\) 0 0
\(503\) −7.85721 7.85721i −0.350336 0.350336i 0.509899 0.860234i \(-0.329683\pi\)
−0.860234 + 0.509899i \(0.829683\pi\)
\(504\) 0 0
\(505\) −4.08839 + 0.0847357i −0.181931 + 0.00377069i
\(506\) 0 0
\(507\) 2.16724i 0.0962507i
\(508\) 0 0
\(509\) −10.1248 10.1248i −0.448776 0.448776i 0.446171 0.894948i \(-0.352787\pi\)
−0.894948 + 0.446171i \(0.852787\pi\)
\(510\) 0 0
\(511\) 3.36391i 0.148811i
\(512\) 0 0
\(513\) 4.25468 + 4.25468i 0.187849 + 0.187849i
\(514\) 0 0
\(515\) −35.6920 + 0.739751i −1.57278 + 0.0325973i
\(516\) 0 0
\(517\) −12.8097 −0.563372
\(518\) 0 0
\(519\) 12.8446i 0.563817i
\(520\) 0 0
\(521\) 37.3503i 1.63634i −0.574973 0.818172i \(-0.694987\pi\)
0.574973 0.818172i \(-0.305013\pi\)
\(522\) 0 0
\(523\) 8.27258 0.361735 0.180867 0.983507i \(-0.442110\pi\)
0.180867 + 0.983507i \(0.442110\pi\)
\(524\) 0 0
\(525\) −0.689040 + 0.748661i −0.0300722 + 0.0326742i
\(526\) 0 0
\(527\) −8.96919 8.96919i −0.390704 0.390704i
\(528\) 0 0
\(529\) 21.5976i 0.939024i
\(530\) 0 0
\(531\) 3.08237 + 3.08237i 0.133763 + 0.133763i
\(532\) 0 0
\(533\) 5.68108i 0.246075i
\(534\) 0 0
\(535\) 2.25012 + 2.15875i 0.0972814 + 0.0933308i
\(536\) 0 0
\(537\) 3.47791 + 3.47791i 0.150083 + 0.150083i
\(538\) 0 0
\(539\) 5.21578 + 5.21578i 0.224659 + 0.224659i
\(540\) 0 0
\(541\) −11.1960 + 11.1960i −0.481352 + 0.481352i −0.905563 0.424211i \(-0.860551\pi\)
0.424211 + 0.905563i \(0.360551\pi\)
\(542\) 0 0
\(543\) 16.3185 16.3185i 0.700295 0.700295i
\(544\) 0 0
\(545\) 14.3956 0.298361i 0.616638 0.0127804i
\(546\) 0 0
\(547\) 26.6966 1.14147 0.570733 0.821136i \(-0.306659\pi\)
0.570733 + 0.821136i \(0.306659\pi\)
\(548\) 0 0
\(549\) −5.00346 + 5.00346i −0.213542 + 0.213542i
\(550\) 0 0
\(551\) 23.6103 1.00583
\(552\) 0 0
\(553\) −1.43255 + 1.43255i −0.0609180 + 0.0609180i
\(554\) 0 0
\(555\) −16.1669 15.5103i −0.686245 0.658377i
\(556\) 0 0
\(557\) 0.715510i 0.0303171i −0.999885 0.0151586i \(-0.995175\pi\)
0.999885 0.0151586i \(-0.00482531\pi\)
\(558\) 0 0
\(559\) 13.7304 0.580735
\(560\) 0 0
\(561\) 2.03439 0.0858922
\(562\) 0 0
\(563\) 16.6892i 0.703364i 0.936119 + 0.351682i \(0.114390\pi\)
−0.936119 + 0.351682i \(0.885610\pi\)
\(564\) 0 0
\(565\) 36.2007 0.750294i 1.52298 0.0315651i
\(566\) 0 0
\(567\) −0.143894 + 0.143894i −0.00604297 + 0.00604297i
\(568\) 0 0
\(569\) 23.0249 0.965253 0.482626 0.875826i \(-0.339683\pi\)
0.482626 + 0.875826i \(0.339683\pi\)
\(570\) 0 0
\(571\) −7.65518 + 7.65518i −0.320359 + 0.320359i −0.848905 0.528546i \(-0.822738\pi\)
0.528546 + 0.848905i \(0.322738\pi\)
\(572\) 0 0
\(573\) −21.5483 −0.900194
\(574\) 0 0
\(575\) −4.00986 + 4.35683i −0.167223 + 0.181692i
\(576\) 0 0
\(577\) 22.0343 22.0343i 0.917298 0.917298i −0.0795337 0.996832i \(-0.525343\pi\)
0.996832 + 0.0795337i \(0.0253431\pi\)
\(578\) 0 0
\(579\) −11.3161 + 11.3161i −0.470282 + 0.470282i
\(580\) 0 0
\(581\) 1.44087 + 1.44087i 0.0597774 + 0.0597774i
\(582\) 0 0
\(583\) 3.78913 + 3.78913i 0.156930 + 0.156930i
\(584\) 0 0
\(585\) −5.09507 + 5.31074i −0.210655 + 0.219572i
\(586\) 0 0
\(587\) 22.5696i 0.931547i −0.884904 0.465773i \(-0.845776\pi\)
0.884904 0.465773i \(-0.154224\pi\)
\(588\) 0 0
\(589\) 28.1198 + 28.1198i 1.15866 + 1.15866i
\(590\) 0 0
\(591\) 23.3109i 0.958883i
\(592\) 0 0
\(593\) −26.4172 26.4172i −1.08482 1.08482i −0.996052 0.0887706i \(-0.971706\pi\)
−0.0887706 0.996052i \(-0.528294\pi\)
\(594\) 0 0
\(595\) −0.630180 0.604589i −0.0258349 0.0247857i
\(596\) 0 0
\(597\) −2.14992 −0.0879902
\(598\) 0 0
\(599\) 17.4693i 0.713775i 0.934147 + 0.356888i \(0.116162\pi\)
−0.934147 + 0.356888i \(0.883838\pi\)
\(600\) 0 0
\(601\) 25.8843i 1.05584i 0.849294 + 0.527921i \(0.177028\pi\)
−0.849294 + 0.527921i \(0.822972\pi\)
\(602\) 0 0
\(603\) 4.26739 0.173782
\(604\) 0 0
\(605\) −15.9361 15.2890i −0.647896 0.621585i
\(606\) 0 0
\(607\) −22.7204 22.7204i −0.922193 0.922193i 0.0749912 0.997184i \(-0.476107\pi\)
−0.997184 + 0.0749912i \(0.976107\pi\)
\(608\) 0 0
\(609\) 0.798501i 0.0323569i
\(610\) 0 0
\(611\) 28.1243 + 28.1243i 1.13779 + 1.13779i
\(612\) 0 0
\(613\) 0.840532i 0.0339488i 0.999856 + 0.0169744i \(0.00540337\pi\)
−0.999856 + 0.0169744i \(0.994597\pi\)
\(614\) 0 0
\(615\) 2.67204 2.78514i 0.107747 0.112308i
\(616\) 0 0
\(617\) −7.18912 7.18912i −0.289423 0.289423i 0.547429 0.836852i \(-0.315607\pi\)
−0.836852 + 0.547429i \(0.815607\pi\)
\(618\) 0 0
\(619\) 31.9741 + 31.9741i 1.28515 + 1.28515i 0.937700 + 0.347447i \(0.112951\pi\)
0.347447 + 0.937700i \(0.387049\pi\)
\(620\) 0 0
\(621\) −0.837388 + 0.837388i −0.0336032 + 0.0336032i
\(622\) 0 0
\(623\) 0.828834 0.828834i 0.0332065 0.0332065i
\(624\) 0 0
\(625\) −24.9142 + 2.06992i −0.996566 + 0.0827970i
\(626\) 0 0
\(627\) −6.37815 −0.254719
\(628\) 0 0
\(629\) 13.5971 13.5971i 0.542153 0.542153i
\(630\) 0 0
\(631\) −28.2004 −1.12264 −0.561320 0.827599i \(-0.689706\pi\)
−0.561320 + 0.827599i \(0.689706\pi\)
\(632\) 0 0
\(633\) −6.27270 + 6.27270i −0.249317 + 0.249317i
\(634\) 0 0
\(635\) 15.6361 0.324072i 0.620498 0.0128604i
\(636\) 0 0
\(637\) 22.9029i 0.907446i
\(638\) 0 0
\(639\) 13.2111 0.522621
\(640\) 0 0
\(641\) 36.6103 1.44602 0.723011 0.690837i \(-0.242758\pi\)
0.723011 + 0.690837i \(0.242758\pi\)
\(642\) 0 0
\(643\) 13.4647i 0.530996i 0.964111 + 0.265498i \(0.0855364\pi\)
−0.964111 + 0.265498i \(0.914464\pi\)
\(644\) 0 0
\(645\) 6.73132 + 6.45796i 0.265045 + 0.254282i
\(646\) 0 0
\(647\) −23.4382 + 23.4382i −0.921451 + 0.921451i −0.997132 0.0756812i \(-0.975887\pi\)
0.0756812 + 0.997132i \(0.475887\pi\)
\(648\) 0 0
\(649\) −4.62075 −0.181380
\(650\) 0 0
\(651\) −0.951015 + 0.951015i −0.0372732 + 0.0372732i
\(652\) 0 0
\(653\) −15.0338 −0.588318 −0.294159 0.955756i \(-0.595040\pi\)
−0.294159 + 0.955756i \(0.595040\pi\)
\(654\) 0 0
\(655\) 40.2514 0.834247i 1.57275 0.0325967i
\(656\) 0 0
\(657\) −11.6889 + 11.6889i −0.456027 + 0.456027i
\(658\) 0 0
\(659\) 12.8233 12.8233i 0.499524 0.499524i −0.411766 0.911290i \(-0.635088\pi\)
0.911290 + 0.411766i \(0.135088\pi\)
\(660\) 0 0
\(661\) −22.6599 22.6599i −0.881369 0.881369i 0.112305 0.993674i \(-0.464177\pi\)
−0.993674 + 0.112305i \(0.964177\pi\)
\(662\) 0 0
\(663\) −4.46660 4.46660i −0.173468 0.173468i
\(664\) 0 0
\(665\) 1.97572 + 1.89548i 0.0766150 + 0.0735036i
\(666\) 0 0
\(667\) 4.64687i 0.179928i
\(668\) 0 0
\(669\) −5.00009 5.00009i −0.193315 0.193315i
\(670\) 0 0
\(671\) 7.50063i 0.289559i
\(672\) 0 0
\(673\) 18.5901 + 18.5901i 0.716595 + 0.716595i 0.967906 0.251311i \(-0.0808617\pi\)
−0.251311 + 0.967906i \(0.580862\pi\)
\(674\) 0 0
\(675\) −4.99571 + 0.207170i −0.192285 + 0.00797399i
\(676\) 0 0
\(677\) −1.52496 −0.0586089 −0.0293044 0.999571i \(-0.509329\pi\)
−0.0293044 + 0.999571i \(0.509329\pi\)
\(678\) 0 0
\(679\) 3.38635i 0.129956i
\(680\) 0 0
\(681\) 22.5630i 0.864614i
\(682\) 0 0
\(683\) 3.77382 0.144401 0.0722006 0.997390i \(-0.476998\pi\)
0.0722006 + 0.997390i \(0.476998\pi\)
\(684\) 0 0
\(685\) −19.1603 + 0.397115i −0.732078 + 0.0151730i
\(686\) 0 0
\(687\) −6.83720 6.83720i −0.260856 0.260856i
\(688\) 0 0
\(689\) 16.6384i 0.633873i
\(690\) 0 0
\(691\) −15.9624 15.9624i −0.607239 0.607239i 0.334984 0.942224i \(-0.391269\pi\)
−0.942224 + 0.334984i \(0.891269\pi\)
\(692\) 0 0
\(693\) 0.215710i 0.00819413i
\(694\) 0 0
\(695\) 32.7361 0.678486i 1.24175 0.0257364i
\(696\) 0 0
\(697\) 2.34244 + 2.34244i 0.0887263 + 0.0887263i
\(698\) 0 0
\(699\) −3.10894 3.10894i −0.117591 0.117591i
\(700\) 0 0
\(701\) 20.1411 20.1411i 0.760717 0.760717i −0.215735 0.976452i \(-0.569215\pi\)
0.976452 + 0.215735i \(0.0692146\pi\)
\(702\) 0 0
\(703\) −42.6292 + 42.6292i −1.60779 + 1.60779i
\(704\) 0 0
\(705\) 0.559930 + 27.0159i 0.0210882 + 1.01748i
\(706\) 0 0
\(707\) −0.372149 −0.0139961
\(708\) 0 0
\(709\) 8.20276 8.20276i 0.308061 0.308061i −0.536096 0.844157i \(-0.680101\pi\)
0.844157 + 0.536096i \(0.180101\pi\)
\(710\) 0 0
\(711\) −9.95558 −0.373364
\(712\) 0 0
\(713\) −5.53443 + 5.53443i −0.207266 + 0.207266i
\(714\) 0 0
\(715\) −0.161655 7.79963i −0.00604554 0.291690i
\(716\) 0 0
\(717\) 11.0671i 0.413310i
\(718\) 0 0
\(719\) −23.6655 −0.882576 −0.441288 0.897366i \(-0.645478\pi\)
−0.441288 + 0.897366i \(0.645478\pi\)
\(720\) 0 0
\(721\) −3.24890 −0.120995
\(722\) 0 0
\(723\) 23.4743i 0.873018i
\(724\) 0 0
\(725\) −13.2864 + 14.4360i −0.493444 + 0.536140i
\(726\) 0 0
\(727\) 1.68416 1.68416i 0.0624622 0.0624622i −0.675186 0.737648i \(-0.735936\pi\)
0.737648 + 0.675186i \(0.235936\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −5.66137 + 5.66137i −0.209393 + 0.209393i
\(732\) 0 0
\(733\) 48.4131 1.78818 0.894089 0.447889i \(-0.147824\pi\)
0.894089 + 0.447889i \(0.147824\pi\)
\(734\) 0 0
\(735\) 10.7721 11.2281i 0.397337 0.414155i
\(736\) 0 0
\(737\) −3.19860 + 3.19860i −0.117822 + 0.117822i
\(738\) 0 0
\(739\) −2.35313 + 2.35313i −0.0865612 + 0.0865612i −0.749062 0.662500i \(-0.769495\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(740\) 0 0
\(741\) 14.0035 + 14.0035i 0.514431 + 0.514431i
\(742\) 0 0
\(743\) −17.6788 17.6788i −0.648571 0.648571i 0.304076 0.952648i \(-0.401652\pi\)
−0.952648 + 0.304076i \(0.901652\pi\)
\(744\) 0 0
\(745\) 0.0317812 + 1.53340i 0.00116437 + 0.0561796i
\(746\) 0 0
\(747\) 10.0134i 0.366373i
\(748\) 0 0
\(749\) 0.200661 + 0.200661i 0.00733198 + 0.00733198i
\(750\) 0 0
\(751\) 40.8647i 1.49117i −0.666409 0.745587i \(-0.732169\pi\)
0.666409 0.745587i \(-0.267831\pi\)
\(752\) 0 0
\(753\) −1.76187 1.76187i −0.0642063 0.0642063i
\(754\) 0 0
\(755\) 10.0205 10.4446i 0.364682 0.380119i
\(756\) 0 0
\(757\) 24.6892 0.897345 0.448673 0.893696i \(-0.351897\pi\)
0.448673 + 0.893696i \(0.351897\pi\)
\(758\) 0 0
\(759\) 1.25532i 0.0455652i
\(760\) 0 0
\(761\) 6.54343i 0.237199i −0.992942 0.118600i \(-0.962160\pi\)
0.992942 0.118600i \(-0.0378405\pi\)
\(762\) 0 0
\(763\) 1.31037 0.0474385
\(764\) 0 0
\(765\) −0.0889259 4.29056i −0.00321512 0.155126i
\(766\) 0 0
\(767\) 10.1450 + 10.1450i 0.366316 + 0.366316i
\(768\) 0 0
\(769\) 26.2710i 0.947357i 0.880698 + 0.473678i \(0.157074\pi\)
−0.880698 + 0.473678i \(0.842926\pi\)
\(770\) 0 0
\(771\) −4.05693 4.05693i −0.146107 0.146107i
\(772\) 0 0
\(773\) 9.19242i 0.330628i 0.986241 + 0.165314i \(0.0528638\pi\)
−0.986241 + 0.165314i \(0.947136\pi\)
\(774\) 0 0
\(775\) −33.0174 + 1.36922i −1.18602 + 0.0491839i
\(776\) 0 0
\(777\) −1.44172 1.44172i −0.0517215 0.0517215i
\(778\) 0 0
\(779\) −7.34393 7.34393i −0.263124 0.263124i
\(780\) 0 0
\(781\) −9.90228 + 9.90228i −0.354332 + 0.354332i
\(782\) 0 0
\(783\) −2.77462 + 2.77462i −0.0991569 + 0.0991569i
\(784\) 0 0
\(785\) 18.9534 + 18.1837i 0.676475 + 0.649003i
\(786\) 0 0
\(787\) −20.9534 −0.746908 −0.373454 0.927649i \(-0.621827\pi\)
−0.373454 + 0.927649i \(0.621827\pi\)
\(788\) 0 0
\(789\) 22.2576 22.2576i 0.792390 0.792390i
\(790\) 0 0
\(791\) 3.29520 0.117164
\(792\) 0 0
\(793\) −16.4680 + 16.4680i −0.584794 + 0.584794i
\(794\) 0 0
\(795\) 7.82570 8.15695i 0.277549 0.289297i
\(796\) 0 0
\(797\) 25.5883i 0.906384i −0.891413 0.453192i \(-0.850285\pi\)
0.891413 0.453192i \(-0.149715\pi\)
\(798\) 0 0
\(799\) −23.1926 −0.820497
\(800\) 0 0
\(801\) 5.76005 0.203521
\(802\) 0 0
\(803\) 17.5227i 0.618362i
\(804\) 0 0
\(805\) −0.373061 + 0.388852i −0.0131487 + 0.0137052i
\(806\) 0 0
\(807\) 11.9600 11.9600i 0.421014 0.421014i
\(808\) 0 0
\(809\) 4.93002 0.173330 0.0866652 0.996237i \(-0.472379\pi\)
0.0866652 + 0.996237i \(0.472379\pi\)
\(810\) 0 0
\(811\) 35.3133 35.3133i 1.24002 1.24002i 0.280025 0.959993i \(-0.409657\pi\)
0.959993 0.280025i \(-0.0903426\pi\)
\(812\) 0 0
\(813\) −15.7162 −0.551191
\(814\) 0 0
\(815\) −3.01967 2.89704i −0.105774 0.101479i
\(816\) 0 0
\(817\) 17.7493 17.7493i 0.620970 0.620970i
\(818\) 0 0
\(819\) −0.473599 + 0.473599i −0.0165489 + 0.0165489i
\(820\) 0 0
\(821\) −36.2490 36.2490i −1.26510 1.26510i −0.948589 0.316509i \(-0.897489\pi\)
−0.316509 0.948589i \(-0.602511\pi\)
\(822\) 0 0
\(823\) −23.0235 23.0235i −0.802548 0.802548i 0.180945 0.983493i \(-0.442084\pi\)
−0.983493 + 0.180945i \(0.942084\pi\)
\(824\) 0 0
\(825\) 3.58922 3.89979i 0.124961 0.135773i
\(826\) 0 0
\(827\) 44.8863i 1.56085i −0.625250 0.780424i \(-0.715003\pi\)
0.625250 0.780424i \(-0.284997\pi\)
\(828\) 0 0
\(829\) 7.27338 + 7.27338i 0.252615 + 0.252615i 0.822042 0.569427i \(-0.192835\pi\)
−0.569427 + 0.822042i \(0.692835\pi\)
\(830\) 0 0
\(831\) 4.59363i 0.159351i
\(832\) 0 0
\(833\) 9.44340 + 9.44340i 0.327195 + 0.327195i
\(834\) 0 0
\(835\) −0.314462 15.1724i −0.0108824 0.525063i
\(836\) 0 0
\(837\) −6.60915 −0.228446
\(838\) 0 0
\(839\) 6.23853i 0.215378i 0.994185 + 0.107689i \(0.0343451\pi\)
−0.994185 + 0.107689i \(0.965655\pi\)
\(840\) 0 0
\(841\) 13.6029i 0.469067i
\(842\) 0 0
\(843\) −20.5117 −0.706462
\(844\) 0 0
\(845\) 3.35497 3.49699i 0.115415 0.120300i
\(846\) 0 0
\(847\) −1.42115 1.42115i −0.0488312 0.0488312i
\(848\) 0 0
\(849\) 28.8990i 0.991811i
\(850\) 0 0
\(851\) −8.39009 8.39009i −0.287609 0.287609i
\(852\) 0 0
\(853\) 32.1759i 1.10168i −0.834610 0.550841i \(-0.814307\pi\)
0.834610 0.550841i \(-0.185693\pi\)
\(854\) 0 0
\(855\) 0.278797 + 13.4516i 0.00953465 + 0.460035i
\(856\) 0 0
\(857\) 11.0467 + 11.0467i 0.377348 + 0.377348i 0.870145 0.492797i \(-0.164025\pi\)
−0.492797 + 0.870145i \(0.664025\pi\)
\(858\) 0 0
\(859\) 1.75107 + 1.75107i 0.0597457 + 0.0597457i 0.736348 0.676603i \(-0.236548\pi\)
−0.676603 + 0.736348i \(0.736548\pi\)
\(860\) 0 0
\(861\) 0.248372 0.248372i 0.00846451 0.00846451i
\(862\) 0 0
\(863\) −4.70982 + 4.70982i −0.160324 + 0.160324i −0.782710 0.622386i \(-0.786163\pi\)
0.622386 + 0.782710i \(0.286163\pi\)
\(864\) 0 0
\(865\) 19.8840 20.7256i 0.676075 0.704693i
\(866\) 0 0
\(867\) −13.3166 −0.452257
\(868\) 0 0
\(869\) 7.46216 7.46216i 0.253136 0.253136i
\(870\) 0 0
\(871\) 14.0453 0.475908
\(872\) 0 0
\(873\) −11.7668 + 11.7668i −0.398247 + 0.398247i
\(874\) 0 0
\(875\) −2.27076 + 0.141353i −0.0767658 + 0.00477860i
\(876\) 0 0
\(877\) 16.7655i 0.566130i −0.959101 0.283065i \(-0.908649\pi\)
0.959101 0.283065i \(-0.0913512\pi\)
\(878\) 0 0
\(879\) 8.86723 0.299084
\(880\) 0 0
\(881\) 50.5390 1.70270 0.851352 0.524595i \(-0.175783\pi\)
0.851352 + 0.524595i \(0.175783\pi\)
\(882\) 0 0
\(883\) 27.3039i 0.918848i −0.888217 0.459424i \(-0.848056\pi\)
0.888217 0.459424i \(-0.151944\pi\)
\(884\) 0 0
\(885\) 0.201978 + 9.74521i 0.00678943 + 0.327582i
\(886\) 0 0
\(887\) 2.95052 2.95052i 0.0990688 0.0990688i −0.655835 0.754904i \(-0.727683\pi\)
0.754904 + 0.655835i \(0.227683\pi\)
\(888\) 0 0
\(889\) 1.42329 0.0477355
\(890\) 0 0
\(891\) 0.749545 0.749545i 0.0251107 0.0251107i
\(892\) 0 0
\(893\) 72.7126 2.43324
\(894\) 0 0
\(895\) 0.227897 + 10.9957i 0.00761776 + 0.367547i
\(896\) 0 0
\(897\) −2.75611 + 2.75611i −0.0920238 + 0.0920238i
\(898\) 0 0
\(899\) −18.3379 + 18.3379i −0.611603 + 0.611603i
\(900\) 0 0
\(901\) 6.86040 + 6.86040i 0.228553 + 0.228553i
\(902\) 0 0
\(903\) 0.600283 + 0.600283i 0.0199762 + 0.0199762i
\(904\) 0 0
\(905\) 51.5926 1.06931i 1.71500 0.0355449i
\(906\) 0 0
\(907\) 0.0410041i 0.00136152i 1.00000 0.000680760i \(0.000216693\pi\)
−1.00000 0.000680760i \(0.999783\pi\)
\(908\) 0 0
\(909\) −1.29314 1.29314i −0.0428907 0.0428907i
\(910\) 0 0
\(911\) 21.7776i 0.721525i 0.932658 + 0.360763i \(0.117484\pi\)
−0.932658 + 0.360763i \(0.882516\pi\)
\(912\) 0 0
\(913\) −7.50552 7.50552i −0.248397 0.248397i
\(914\) 0 0
\(915\) −15.8189 + 0.327862i −0.522957 + 0.0108388i
\(916\) 0 0
\(917\) 3.66392 0.120993
\(918\) 0 0
\(919\) 34.4842i 1.13753i −0.822500 0.568765i \(-0.807421\pi\)
0.822500 0.568765i \(-0.192579\pi\)
\(920\) 0 0
\(921\) 14.1518i 0.466317i
\(922\) 0 0
\(923\) 43.4818 1.43122
\(924\) 0 0
\(925\) −2.07571 50.0538i −0.0682490 1.64576i
\(926\) 0 0
\(927\) −11.2892 11.2892i −0.370787 0.370787i
\(928\) 0 0
\(929\) 19.8125i 0.650028i −0.945709 0.325014i \(-0.894631\pi\)
0.945709 0.325014i \(-0.105369\pi\)
\(930\) 0 0
\(931\) −29.6066 29.6066i −0.970316 0.970316i
\(932\) 0 0
\(933\) 7.15165i 0.234134i
\(934\) 0 0
\(935\) 3.28262 + 3.14931i 0.107353 + 0.102994i
\(936\) 0 0
\(937\) −20.7731 20.7731i −0.678628 0.678628i 0.281062 0.959690i \(-0.409313\pi\)
−0.959690 + 0.281062i \(0.909313\pi\)
\(938\) 0 0
\(939\) 5.98016 + 5.98016i 0.195155 + 0.195155i
\(940\) 0 0
\(941\) 24.6412 24.6412i 0.803279 0.803279i −0.180328 0.983607i \(-0.557716\pi\)
0.983607 + 0.180328i \(0.0577158\pi\)
\(942\) 0 0
\(943\) 1.44540 1.44540i 0.0470687 0.0470687i
\(944\) 0 0
\(945\) −0.454934 + 0.00942893i −0.0147990 + 0.000306723i
\(946\) 0 0
\(947\) −46.1706 −1.50034 −0.750171 0.661244i \(-0.770029\pi\)
−0.750171 + 0.661244i \(0.770029\pi\)
\(948\) 0 0
\(949\) −38.4718 + 38.4718i −1.24885 + 1.24885i
\(950\) 0 0
\(951\) −7.76996 −0.251958
\(952\) 0 0
\(953\) −5.45044 + 5.45044i −0.176557 + 0.176557i −0.789853 0.613296i \(-0.789843\pi\)
0.613296 + 0.789853i \(0.289843\pi\)
\(954\) 0 0
\(955\) −34.7696 33.3576i −1.12512 1.07943i
\(956\) 0 0
\(957\) 4.15941i 0.134455i
\(958\) 0 0
\(959\) −1.74408 −0.0563194
\(960\) 0 0
\(961\) −12.6809 −0.409062
\(962\) 0 0
\(963\) 1.39451i 0.0449374i
\(964\) 0 0
\(965\) −35.7770 + 0.741512i −1.15170 + 0.0238701i
\(966\) 0 0
\(967\) 18.1852 18.1852i 0.584798 0.584798i −0.351420 0.936218i \(-0.614301\pi\)
0.936218 + 0.351420i \(0.114301\pi\)
\(968\) 0 0
\(969\) −11.5479 −0.370973
\(970\) 0 0
\(971\) −11.6265 + 11.6265i −0.373112 + 0.373112i −0.868609 0.495497i \(-0.834986\pi\)
0.495497 + 0.868609i \(0.334986\pi\)
\(972\) 0 0
\(973\) 2.97983 0.0955290
\(974\) 0 0
\(975\) −16.4424 + 0.681863i −0.526580 + 0.0218371i
\(976\) 0 0
\(977\) −8.35835 + 8.35835i −0.267407 + 0.267407i −0.828055 0.560647i \(-0.810552\pi\)
0.560647 + 0.828055i \(0.310552\pi\)
\(978\) 0 0
\(979\) −4.31741 + 4.31741i −0.137985 + 0.137985i
\(980\) 0 0
\(981\) 4.55325 + 4.55325i 0.145374 + 0.145374i
\(982\) 0 0
\(983\) 18.1290 + 18.1290i 0.578226 + 0.578226i 0.934414 0.356188i \(-0.115924\pi\)
−0.356188 + 0.934414i \(0.615924\pi\)
\(984\) 0 0
\(985\) −36.0861 + 37.6136i −1.14980 + 1.19847i
\(986\) 0 0
\(987\) 2.45915i 0.0782755i
\(988\) 0 0
\(989\) 3.49334 + 3.49334i 0.111082 + 0.111082i
\(990\) 0 0
\(991\) 28.8183i 0.915444i −0.889095 0.457722i \(-0.848666\pi\)
0.889095 0.457722i \(-0.151334\pi\)
\(992\) 0 0
\(993\) −0.751395 0.751395i −0.0238448 0.0238448i
\(994\) 0 0
\(995\) −3.46903 3.32815i −0.109975 0.105509i
\(996\) 0 0
\(997\) 30.7058 0.972463 0.486232 0.873830i \(-0.338371\pi\)
0.486232 + 0.873830i \(0.338371\pi\)
\(998\) 0 0
\(999\) 10.0194i 0.316998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bc.j.1183.1 16
4.3 odd 2 1920.2.bc.i.1183.1 16
5.2 odd 4 1920.2.y.j.1567.5 16
8.3 odd 2 240.2.bc.e.43.5 yes 16
8.5 even 2 960.2.bc.e.463.8 16
16.3 odd 4 1920.2.y.j.223.5 16
16.5 even 4 240.2.y.e.163.7 16
16.11 odd 4 960.2.y.e.943.4 16
16.13 even 4 1920.2.y.i.223.5 16
20.7 even 4 1920.2.y.i.1567.5 16
24.11 even 2 720.2.bd.f.523.4 16
40.27 even 4 240.2.y.e.187.7 yes 16
40.37 odd 4 960.2.y.e.847.4 16
48.5 odd 4 720.2.z.f.163.2 16
80.27 even 4 960.2.bc.e.367.8 16
80.37 odd 4 240.2.bc.e.67.5 yes 16
80.67 even 4 inner 1920.2.bc.j.607.1 16
80.77 odd 4 1920.2.bc.i.607.1 16
120.107 odd 4 720.2.z.f.667.2 16
240.197 even 4 720.2.bd.f.307.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.7 16 16.5 even 4
240.2.y.e.187.7 yes 16 40.27 even 4
240.2.bc.e.43.5 yes 16 8.3 odd 2
240.2.bc.e.67.5 yes 16 80.37 odd 4
720.2.z.f.163.2 16 48.5 odd 4
720.2.z.f.667.2 16 120.107 odd 4
720.2.bd.f.307.4 16 240.197 even 4
720.2.bd.f.523.4 16 24.11 even 2
960.2.y.e.847.4 16 40.37 odd 4
960.2.y.e.943.4 16 16.11 odd 4
960.2.bc.e.367.8 16 80.27 even 4
960.2.bc.e.463.8 16 8.5 even 2
1920.2.y.i.223.5 16 16.13 even 4
1920.2.y.i.1567.5 16 20.7 even 4
1920.2.y.j.223.5 16 16.3 odd 4
1920.2.y.j.1567.5 16 5.2 odd 4
1920.2.bc.i.607.1 16 80.77 odd 4
1920.2.bc.i.1183.1 16 4.3 odd 2
1920.2.bc.j.607.1 16 80.67 even 4 inner
1920.2.bc.j.1183.1 16 1.1 even 1 trivial