Properties

Label 1920.2.y.i.1567.5
Level $1920$
Weight $2$
Character 1920.1567
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(223,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.223");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1567.5
Root \(-1.20803 - 0.735291i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1567
Dual form 1920.2.y.i.223.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(1.61356 - 1.54804i) q^{5} +(0.143894 + 0.143894i) q^{7} +1.00000 q^{9} +(-0.749545 + 0.749545i) q^{11} +3.29132i q^{13} +(-1.61356 + 1.54804i) q^{15} +(1.35709 + 1.35709i) q^{17} +(-4.25468 + 4.25468i) q^{19} +(-0.143894 - 0.143894i) q^{21} +(0.837388 - 0.837388i) q^{23} +(0.207170 - 4.99571i) q^{25} -1.00000 q^{27} +(2.77462 + 2.77462i) q^{29} +6.60915i q^{31} +(0.749545 - 0.749545i) q^{33} +(0.454934 + 0.00942893i) q^{35} +10.0194i q^{37} -3.29132i q^{39} +1.72608i q^{41} -4.17171i q^{43} +(1.61356 - 1.54804i) q^{45} +(-8.54502 + 8.54502i) q^{47} -6.95859i q^{49} +(-1.35709 - 1.35709i) q^{51} +5.05524 q^{53} +(-0.0491155 + 2.36976i) q^{55} +(4.25468 - 4.25468i) q^{57} +(-3.08237 - 3.08237i) q^{59} +(5.00346 - 5.00346i) q^{61} +(0.143894 + 0.143894i) q^{63} +(5.09507 + 5.31074i) q^{65} +4.26739i q^{67} +(-0.837388 + 0.837388i) q^{69} +13.2111 q^{71} +(-11.6889 - 11.6889i) q^{73} +(-0.207170 + 4.99571i) q^{75} -0.215710 q^{77} +9.95558 q^{79} +1.00000 q^{81} +10.0134 q^{83} +(4.29056 + 0.0889259i) q^{85} +(-2.77462 - 2.77462i) q^{87} +5.76005 q^{89} +(-0.473599 + 0.473599i) q^{91} -6.60915i q^{93} +(-0.278797 + 13.4516i) q^{95} +(11.7668 + 11.7668i) q^{97} +(-0.749545 + 0.749545i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} + 4 q^{5} - 4 q^{7} + 16 q^{9} - 4 q^{15} - 8 q^{17} - 8 q^{19} + 4 q^{21} + 32 q^{25} - 16 q^{27} - 12 q^{29} + 20 q^{35} + 4 q^{45} - 32 q^{47} + 8 q^{51} - 16 q^{53} - 4 q^{55} + 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.61356 1.54804i 0.721607 0.692303i
\(6\) 0 0
\(7\) 0.143894 + 0.143894i 0.0543867 + 0.0543867i 0.733777 0.679390i \(-0.237756\pi\)
−0.679390 + 0.733777i \(0.737756\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.749545 + 0.749545i −0.225996 + 0.225996i −0.811018 0.585021i \(-0.801086\pi\)
0.585021 + 0.811018i \(0.301086\pi\)
\(12\) 0 0
\(13\) 3.29132i 0.912847i 0.889763 + 0.456423i \(0.150870\pi\)
−0.889763 + 0.456423i \(0.849130\pi\)
\(14\) 0 0
\(15\) −1.61356 + 1.54804i −0.416620 + 0.399701i
\(16\) 0 0
\(17\) 1.35709 + 1.35709i 0.329142 + 0.329142i 0.852260 0.523118i \(-0.175231\pi\)
−0.523118 + 0.852260i \(0.675231\pi\)
\(18\) 0 0
\(19\) −4.25468 + 4.25468i −0.976091 + 0.976091i −0.999721 0.0236300i \(-0.992478\pi\)
0.0236300 + 0.999721i \(0.492478\pi\)
\(20\) 0 0
\(21\) −0.143894 0.143894i −0.0314002 0.0314002i
\(22\) 0 0
\(23\) 0.837388 0.837388i 0.174608 0.174608i −0.614393 0.789000i \(-0.710599\pi\)
0.789000 + 0.614393i \(0.210599\pi\)
\(24\) 0 0
\(25\) 0.207170 4.99571i 0.0414341 0.999141i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.77462 + 2.77462i 0.515234 + 0.515234i 0.916126 0.400891i \(-0.131299\pi\)
−0.400891 + 0.916126i \(0.631299\pi\)
\(30\) 0 0
\(31\) 6.60915i 1.18704i 0.804820 + 0.593520i \(0.202262\pi\)
−0.804820 + 0.593520i \(0.797738\pi\)
\(32\) 0 0
\(33\) 0.749545 0.749545i 0.130479 0.130479i
\(34\) 0 0
\(35\) 0.454934 + 0.00942893i 0.0768979 + 0.00159378i
\(36\) 0 0
\(37\) 10.0194i 1.64717i 0.567191 + 0.823586i \(0.308030\pi\)
−0.567191 + 0.823586i \(0.691970\pi\)
\(38\) 0 0
\(39\) 3.29132i 0.527032i
\(40\) 0 0
\(41\) 1.72608i 0.269569i 0.990875 + 0.134784i \(0.0430342\pi\)
−0.990875 + 0.134784i \(0.956966\pi\)
\(42\) 0 0
\(43\) 4.17171i 0.636180i −0.948061 0.318090i \(-0.896959\pi\)
0.948061 0.318090i \(-0.103041\pi\)
\(44\) 0 0
\(45\) 1.61356 1.54804i 0.240536 0.230768i
\(46\) 0 0
\(47\) −8.54502 + 8.54502i −1.24642 + 1.24642i −0.289128 + 0.957290i \(0.593365\pi\)
−0.957290 + 0.289128i \(0.906635\pi\)
\(48\) 0 0
\(49\) 6.95859i 0.994084i
\(50\) 0 0
\(51\) −1.35709 1.35709i −0.190030 0.190030i
\(52\) 0 0
\(53\) 5.05524 0.694391 0.347196 0.937793i \(-0.387134\pi\)
0.347196 + 0.937793i \(0.387134\pi\)
\(54\) 0 0
\(55\) −0.0491155 + 2.36976i −0.00662273 + 0.319538i
\(56\) 0 0
\(57\) 4.25468 4.25468i 0.563546 0.563546i
\(58\) 0 0
\(59\) −3.08237 3.08237i −0.401290 0.401290i 0.477398 0.878687i \(-0.341580\pi\)
−0.878687 + 0.477398i \(0.841580\pi\)
\(60\) 0 0
\(61\) 5.00346 5.00346i 0.640627 0.640627i −0.310083 0.950710i \(-0.600357\pi\)
0.950710 + 0.310083i \(0.100357\pi\)
\(62\) 0 0
\(63\) 0.143894 + 0.143894i 0.0181289 + 0.0181289i
\(64\) 0 0
\(65\) 5.09507 + 5.31074i 0.631966 + 0.658717i
\(66\) 0 0
\(67\) 4.26739i 0.521345i 0.965427 + 0.260672i \(0.0839442\pi\)
−0.965427 + 0.260672i \(0.916056\pi\)
\(68\) 0 0
\(69\) −0.837388 + 0.837388i −0.100810 + 0.100810i
\(70\) 0 0
\(71\) 13.2111 1.56786 0.783932 0.620846i \(-0.213211\pi\)
0.783932 + 0.620846i \(0.213211\pi\)
\(72\) 0 0
\(73\) −11.6889 11.6889i −1.36808 1.36808i −0.863175 0.504904i \(-0.831528\pi\)
−0.504904 0.863175i \(-0.668472\pi\)
\(74\) 0 0
\(75\) −0.207170 + 4.99571i −0.0239220 + 0.576854i
\(76\) 0 0
\(77\) −0.215710 −0.0245824
\(78\) 0 0
\(79\) 9.95558 1.12009 0.560045 0.828462i \(-0.310784\pi\)
0.560045 + 0.828462i \(0.310784\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.0134 1.09912 0.549559 0.835455i \(-0.314796\pi\)
0.549559 + 0.835455i \(0.314796\pi\)
\(84\) 0 0
\(85\) 4.29056 + 0.0889259i 0.465377 + 0.00964537i
\(86\) 0 0
\(87\) −2.77462 2.77462i −0.297471 0.297471i
\(88\) 0 0
\(89\) 5.76005 0.610564 0.305282 0.952262i \(-0.401249\pi\)
0.305282 + 0.952262i \(0.401249\pi\)
\(90\) 0 0
\(91\) −0.473599 + 0.473599i −0.0496467 + 0.0496467i
\(92\) 0 0
\(93\) 6.60915i 0.685337i
\(94\) 0 0
\(95\) −0.278797 + 13.4516i −0.0286040 + 1.38010i
\(96\) 0 0
\(97\) 11.7668 + 11.7668i 1.19474 + 1.19474i 0.975720 + 0.219021i \(0.0702865\pi\)
0.219021 + 0.975720i \(0.429714\pi\)
\(98\) 0 0
\(99\) −0.749545 + 0.749545i −0.0753321 + 0.0753321i
\(100\) 0 0
\(101\) 1.29314 + 1.29314i 0.128672 + 0.128672i 0.768510 0.639838i \(-0.220998\pi\)
−0.639838 + 0.768510i \(0.720998\pi\)
\(102\) 0 0
\(103\) −11.2892 + 11.2892i −1.11236 + 1.11236i −0.119532 + 0.992830i \(0.538139\pi\)
−0.992830 + 0.119532i \(0.961861\pi\)
\(104\) 0 0
\(105\) −0.454934 0.00942893i −0.0443970 0.000920169i
\(106\) 0 0
\(107\) −1.39451 −0.134812 −0.0674060 0.997726i \(-0.521472\pi\)
−0.0674060 + 0.997726i \(0.521472\pi\)
\(108\) 0 0
\(109\) 4.55325 + 4.55325i 0.436123 + 0.436123i 0.890705 0.454582i \(-0.150211\pi\)
−0.454582 + 0.890705i \(0.650211\pi\)
\(110\) 0 0
\(111\) 10.0194i 0.950995i
\(112\) 0 0
\(113\) −11.4501 + 11.4501i −1.07714 + 1.07714i −0.0803726 + 0.996765i \(0.525611\pi\)
−0.996765 + 0.0803726i \(0.974389\pi\)
\(114\) 0 0
\(115\) 0.0548716 2.64749i 0.00511680 0.246879i
\(116\) 0 0
\(117\) 3.29132i 0.304282i
\(118\) 0 0
\(119\) 0.390552i 0.0358018i
\(120\) 0 0
\(121\) 9.87636i 0.897851i
\(122\) 0 0
\(123\) 1.72608i 0.155636i
\(124\) 0 0
\(125\) −7.39925 8.38159i −0.661809 0.749672i
\(126\) 0 0
\(127\) −4.94562 + 4.94562i −0.438853 + 0.438853i −0.891626 0.452773i \(-0.850435\pi\)
0.452773 + 0.891626i \(0.350435\pi\)
\(128\) 0 0
\(129\) 4.17171i 0.367299i
\(130\) 0 0
\(131\) 12.7313 + 12.7313i 1.11234 + 1.11234i 0.992833 + 0.119509i \(0.0381319\pi\)
0.119509 + 0.992833i \(0.461868\pi\)
\(132\) 0 0
\(133\) −1.22444 −0.106173
\(134\) 0 0
\(135\) −1.61356 + 1.54804i −0.138873 + 0.133234i
\(136\) 0 0
\(137\) −6.06032 + 6.06032i −0.517768 + 0.517768i −0.916896 0.399127i \(-0.869313\pi\)
0.399127 + 0.916896i \(0.369313\pi\)
\(138\) 0 0
\(139\) −10.3543 10.3543i −0.878239 0.878239i 0.115114 0.993352i \(-0.463277\pi\)
−0.993352 + 0.115114i \(0.963277\pi\)
\(140\) 0 0
\(141\) 8.54502 8.54502i 0.719620 0.719620i
\(142\) 0 0
\(143\) −2.46699 2.46699i −0.206300 0.206300i
\(144\) 0 0
\(145\) 8.77224 + 0.181813i 0.728495 + 0.0150987i
\(146\) 0 0
\(147\) 6.95859i 0.573935i
\(148\) 0 0
\(149\) −0.485009 + 0.485009i −0.0397335 + 0.0397335i −0.726694 0.686961i \(-0.758944\pi\)
0.686961 + 0.726694i \(0.258944\pi\)
\(150\) 0 0
\(151\) 6.47302 0.526767 0.263383 0.964691i \(-0.415162\pi\)
0.263383 + 0.964691i \(0.415162\pi\)
\(152\) 0 0
\(153\) 1.35709 + 1.35709i 0.109714 + 0.109714i
\(154\) 0 0
\(155\) 10.2312 + 10.6643i 0.821790 + 0.856576i
\(156\) 0 0
\(157\) 11.7463 0.937455 0.468728 0.883343i \(-0.344713\pi\)
0.468728 + 0.883343i \(0.344713\pi\)
\(158\) 0 0
\(159\) −5.05524 −0.400907
\(160\) 0 0
\(161\) 0.240990 0.0189926
\(162\) 0 0
\(163\) −1.87143 −0.146582 −0.0732908 0.997311i \(-0.523350\pi\)
−0.0732908 + 0.997311i \(0.523350\pi\)
\(164\) 0 0
\(165\) 0.0491155 2.36976i 0.00382364 0.184486i
\(166\) 0 0
\(167\) 4.79897 + 4.79897i 0.371355 + 0.371355i 0.867971 0.496615i \(-0.165424\pi\)
−0.496615 + 0.867971i \(0.665424\pi\)
\(168\) 0 0
\(169\) 2.16724 0.166711
\(170\) 0 0
\(171\) −4.25468 + 4.25468i −0.325364 + 0.325364i
\(172\) 0 0
\(173\) 12.8446i 0.976560i 0.872687 + 0.488280i \(0.162375\pi\)
−0.872687 + 0.488280i \(0.837625\pi\)
\(174\) 0 0
\(175\) 0.748661 0.689040i 0.0565934 0.0520865i
\(176\) 0 0
\(177\) 3.08237 + 3.08237i 0.231685 + 0.231685i
\(178\) 0 0
\(179\) 3.47791 3.47791i 0.259951 0.259951i −0.565083 0.825034i \(-0.691156\pi\)
0.825034 + 0.565083i \(0.191156\pi\)
\(180\) 0 0
\(181\) −16.3185 16.3185i −1.21295 1.21295i −0.970053 0.242893i \(-0.921903\pi\)
−0.242893 0.970053i \(-0.578097\pi\)
\(182\) 0 0
\(183\) −5.00346 + 5.00346i −0.369866 + 0.369866i
\(184\) 0 0
\(185\) 15.5103 + 16.1669i 1.14034 + 1.18861i
\(186\) 0 0
\(187\) −2.03439 −0.148770
\(188\) 0 0
\(189\) −0.143894 0.143894i −0.0104667 0.0104667i
\(190\) 0 0
\(191\) 21.5483i 1.55918i −0.626289 0.779591i \(-0.715427\pi\)
0.626289 0.779591i \(-0.284573\pi\)
\(192\) 0 0
\(193\) 11.3161 11.3161i 0.814552 0.814552i −0.170760 0.985313i \(-0.554622\pi\)
0.985313 + 0.170760i \(0.0546224\pi\)
\(194\) 0 0
\(195\) −5.09507 5.31074i −0.364866 0.380310i
\(196\) 0 0
\(197\) 23.3109i 1.66083i 0.557142 + 0.830417i \(0.311898\pi\)
−0.557142 + 0.830417i \(0.688102\pi\)
\(198\) 0 0
\(199\) 2.14992i 0.152404i 0.997092 + 0.0762018i \(0.0242793\pi\)
−0.997092 + 0.0762018i \(0.975721\pi\)
\(200\) 0 0
\(201\) 4.26739i 0.300999i
\(202\) 0 0
\(203\) 0.798501i 0.0560438i
\(204\) 0 0
\(205\) 2.67204 + 2.78514i 0.186623 + 0.194523i
\(206\) 0 0
\(207\) 0.837388 0.837388i 0.0582025 0.0582025i
\(208\) 0 0
\(209\) 6.37815i 0.441186i
\(210\) 0 0
\(211\) −6.27270 6.27270i −0.431830 0.431830i 0.457420 0.889251i \(-0.348774\pi\)
−0.889251 + 0.457420i \(0.848774\pi\)
\(212\) 0 0
\(213\) −13.2111 −0.905207
\(214\) 0 0
\(215\) −6.45796 6.73132i −0.440429 0.459072i
\(216\) 0 0
\(217\) −0.951015 + 0.951015i −0.0645591 + 0.0645591i
\(218\) 0 0
\(219\) 11.6889 + 11.6889i 0.789861 + 0.789861i
\(220\) 0 0
\(221\) −4.46660 + 4.46660i −0.300456 + 0.300456i
\(222\) 0 0
\(223\) −5.00009 5.00009i −0.334831 0.334831i 0.519587 0.854418i \(-0.326086\pi\)
−0.854418 + 0.519587i \(0.826086\pi\)
\(224\) 0 0
\(225\) 0.207170 4.99571i 0.0138114 0.333047i
\(226\) 0 0
\(227\) 22.5630i 1.49756i 0.662821 + 0.748778i \(0.269359\pi\)
−0.662821 + 0.748778i \(0.730641\pi\)
\(228\) 0 0
\(229\) 6.83720 6.83720i 0.451815 0.451815i −0.444142 0.895957i \(-0.646491\pi\)
0.895957 + 0.444142i \(0.146491\pi\)
\(230\) 0 0
\(231\) 0.215710 0.0141926
\(232\) 0 0
\(233\) 3.10894 + 3.10894i 0.203673 + 0.203673i 0.801572 0.597899i \(-0.203997\pi\)
−0.597899 + 0.801572i \(0.703997\pi\)
\(234\) 0 0
\(235\) −0.559930 + 27.0159i −0.0365258 + 1.76232i
\(236\) 0 0
\(237\) −9.95558 −0.646685
\(238\) 0 0
\(239\) 11.0671 0.715873 0.357937 0.933746i \(-0.383480\pi\)
0.357937 + 0.933746i \(0.383480\pi\)
\(240\) 0 0
\(241\) −23.4743 −1.51211 −0.756056 0.654507i \(-0.772876\pi\)
−0.756056 + 0.654507i \(0.772876\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −10.7721 11.2281i −0.688207 0.717338i
\(246\) 0 0
\(247\) −14.0035 14.0035i −0.891021 0.891021i
\(248\) 0 0
\(249\) −10.0134 −0.634576
\(250\) 0 0
\(251\) 1.76187 1.76187i 0.111209 0.111209i −0.649313 0.760521i \(-0.724943\pi\)
0.760521 + 0.649313i \(0.224943\pi\)
\(252\) 0 0
\(253\) 1.25532i 0.0789213i
\(254\) 0 0
\(255\) −4.29056 0.0889259i −0.268685 0.00556875i
\(256\) 0 0
\(257\) −4.05693 4.05693i −0.253064 0.253064i 0.569162 0.822226i \(-0.307268\pi\)
−0.822226 + 0.569162i \(0.807268\pi\)
\(258\) 0 0
\(259\) −1.44172 + 1.44172i −0.0895842 + 0.0895842i
\(260\) 0 0
\(261\) 2.77462 + 2.77462i 0.171745 + 0.171745i
\(262\) 0 0
\(263\) 22.2576 22.2576i 1.37246 1.37246i 0.515676 0.856784i \(-0.327541\pi\)
0.856784 0.515676i \(-0.172459\pi\)
\(264\) 0 0
\(265\) 8.15695 7.82570i 0.501078 0.480729i
\(266\) 0 0
\(267\) −5.76005 −0.352509
\(268\) 0 0
\(269\) 11.9600 + 11.9600i 0.729217 + 0.729217i 0.970464 0.241247i \(-0.0775564\pi\)
−0.241247 + 0.970464i \(0.577556\pi\)
\(270\) 0 0
\(271\) 15.7162i 0.954691i −0.878716 0.477346i \(-0.841599\pi\)
0.878716 0.477346i \(-0.158401\pi\)
\(272\) 0 0
\(273\) 0.473599 0.473599i 0.0286635 0.0286635i
\(274\) 0 0
\(275\) 3.58922 + 3.89979i 0.216438 + 0.235166i
\(276\) 0 0
\(277\) 4.59363i 0.276004i −0.990432 0.138002i \(-0.955932\pi\)
0.990432 0.138002i \(-0.0440681\pi\)
\(278\) 0 0
\(279\) 6.60915i 0.395680i
\(280\) 0 0
\(281\) 20.5117i 1.22363i 0.791002 + 0.611814i \(0.209560\pi\)
−0.791002 + 0.611814i \(0.790440\pi\)
\(282\) 0 0
\(283\) 28.8990i 1.71787i −0.512088 0.858933i \(-0.671128\pi\)
0.512088 0.858933i \(-0.328872\pi\)
\(284\) 0 0
\(285\) 0.278797 13.4516i 0.0165145 0.796804i
\(286\) 0 0
\(287\) −0.248372 + 0.248372i −0.0146610 + 0.0146610i
\(288\) 0 0
\(289\) 13.3166i 0.783332i
\(290\) 0 0
\(291\) −11.7668 11.7668i −0.689784 0.689784i
\(292\) 0 0
\(293\) −8.86723 −0.518029 −0.259014 0.965873i \(-0.583398\pi\)
−0.259014 + 0.965873i \(0.583398\pi\)
\(294\) 0 0
\(295\) −9.74521 0.201978i −0.567388 0.0117596i
\(296\) 0 0
\(297\) 0.749545 0.749545i 0.0434930 0.0434930i
\(298\) 0 0
\(299\) 2.75611 + 2.75611i 0.159390 + 0.159390i
\(300\) 0 0
\(301\) 0.600283 0.600283i 0.0345997 0.0345997i
\(302\) 0 0
\(303\) −1.29314 1.29314i −0.0742890 0.0742890i
\(304\) 0 0
\(305\) 0.327862 15.8189i 0.0187733 0.905789i
\(306\) 0 0
\(307\) 14.1518i 0.807684i −0.914829 0.403842i \(-0.867675\pi\)
0.914829 0.403842i \(-0.132325\pi\)
\(308\) 0 0
\(309\) 11.2892 11.2892i 0.642222 0.642222i
\(310\) 0 0
\(311\) 7.15165 0.405533 0.202766 0.979227i \(-0.435007\pi\)
0.202766 + 0.979227i \(0.435007\pi\)
\(312\) 0 0
\(313\) −5.98016 5.98016i −0.338019 0.338019i 0.517602 0.855621i \(-0.326825\pi\)
−0.855621 + 0.517602i \(0.826825\pi\)
\(314\) 0 0
\(315\) 0.454934 + 0.00942893i 0.0256326 + 0.000531260i
\(316\) 0 0
\(317\) −7.76996 −0.436404 −0.218202 0.975904i \(-0.570019\pi\)
−0.218202 + 0.975904i \(0.570019\pi\)
\(318\) 0 0
\(319\) −4.15941 −0.232882
\(320\) 0 0
\(321\) 1.39451 0.0778338
\(322\) 0 0
\(323\) −11.5479 −0.642544
\(324\) 0 0
\(325\) 16.4424 + 0.681863i 0.912063 + 0.0378229i
\(326\) 0 0
\(327\) −4.55325 4.55325i −0.251795 0.251795i
\(328\) 0 0
\(329\) −2.45915 −0.135577
\(330\) 0 0
\(331\) 0.751395 0.751395i 0.0413004 0.0413004i −0.686155 0.727455i \(-0.740703\pi\)
0.727455 + 0.686155i \(0.240703\pi\)
\(332\) 0 0
\(333\) 10.0194i 0.549057i
\(334\) 0 0
\(335\) 6.60607 + 6.88570i 0.360928 + 0.376206i
\(336\) 0 0
\(337\) −0.379414 0.379414i −0.0206680 0.0206680i 0.696697 0.717365i \(-0.254652\pi\)
−0.717365 + 0.696697i \(0.754652\pi\)
\(338\) 0 0
\(339\) 11.4501 11.4501i 0.621886 0.621886i
\(340\) 0 0
\(341\) −4.95386 4.95386i −0.268266 0.268266i
\(342\) 0 0
\(343\) 2.00855 2.00855i 0.108452 0.108452i
\(344\) 0 0
\(345\) −0.0548716 + 2.64749i −0.00295419 + 0.142536i
\(346\) 0 0
\(347\) −16.7455 −0.898947 −0.449473 0.893294i \(-0.648388\pi\)
−0.449473 + 0.893294i \(0.648388\pi\)
\(348\) 0 0
\(349\) −21.0019 21.0019i −1.12421 1.12421i −0.991102 0.133104i \(-0.957506\pi\)
−0.133104 0.991102i \(-0.542494\pi\)
\(350\) 0 0
\(351\) 3.29132i 0.175677i
\(352\) 0 0
\(353\) −9.02933 + 9.02933i −0.480583 + 0.480583i −0.905318 0.424735i \(-0.860367\pi\)
0.424735 + 0.905318i \(0.360367\pi\)
\(354\) 0 0
\(355\) 21.3169 20.4512i 1.13138 1.08544i
\(356\) 0 0
\(357\) 0.390552i 0.0206702i
\(358\) 0 0
\(359\) 12.2651i 0.647326i 0.946172 + 0.323663i \(0.104914\pi\)
−0.946172 + 0.323663i \(0.895086\pi\)
\(360\) 0 0
\(361\) 17.2046i 0.905506i
\(362\) 0 0
\(363\) 9.87636i 0.518375i
\(364\) 0 0
\(365\) −36.9555 0.765938i −1.93434 0.0400910i
\(366\) 0 0
\(367\) −1.25485 + 1.25485i −0.0655025 + 0.0655025i −0.739099 0.673597i \(-0.764749\pi\)
0.673597 + 0.739099i \(0.264749\pi\)
\(368\) 0 0
\(369\) 1.72608i 0.0898563i
\(370\) 0 0
\(371\) 0.727417 + 0.727417i 0.0377656 + 0.0377656i
\(372\) 0 0
\(373\) −8.25732 −0.427548 −0.213774 0.976883i \(-0.568576\pi\)
−0.213774 + 0.976883i \(0.568576\pi\)
\(374\) 0 0
\(375\) 7.39925 + 8.38159i 0.382096 + 0.432824i
\(376\) 0 0
\(377\) −9.13216 + 9.13216i −0.470330 + 0.470330i
\(378\) 0 0
\(379\) −1.03027 1.03027i −0.0529214 0.0529214i 0.680151 0.733072i \(-0.261914\pi\)
−0.733072 + 0.680151i \(0.761914\pi\)
\(380\) 0 0
\(381\) 4.94562 4.94562i 0.253372 0.253372i
\(382\) 0 0
\(383\) 12.3374 + 12.3374i 0.630413 + 0.630413i 0.948172 0.317759i \(-0.102930\pi\)
−0.317759 + 0.948172i \(0.602930\pi\)
\(384\) 0 0
\(385\) −0.348061 + 0.333926i −0.0177388 + 0.0170184i
\(386\) 0 0
\(387\) 4.17171i 0.212060i
\(388\) 0 0
\(389\) 12.8354 12.8354i 0.650781 0.650781i −0.302400 0.953181i \(-0.597788\pi\)
0.953181 + 0.302400i \(0.0977880\pi\)
\(390\) 0 0
\(391\) 2.27282 0.114941
\(392\) 0 0
\(393\) −12.7313 12.7313i −0.642211 0.642211i
\(394\) 0 0
\(395\) 16.0640 15.4116i 0.808266 0.775442i
\(396\) 0 0
\(397\) −14.3934 −0.722383 −0.361191 0.932492i \(-0.617630\pi\)
−0.361191 + 0.932492i \(0.617630\pi\)
\(398\) 0 0
\(399\) 1.22444 0.0612988
\(400\) 0 0
\(401\) −37.4272 −1.86902 −0.934512 0.355932i \(-0.884164\pi\)
−0.934512 + 0.355932i \(0.884164\pi\)
\(402\) 0 0
\(403\) −21.7528 −1.08358
\(404\) 0 0
\(405\) 1.61356 1.54804i 0.0801786 0.0769225i
\(406\) 0 0
\(407\) −7.50996 7.50996i −0.372255 0.372255i
\(408\) 0 0
\(409\) 8.19166 0.405052 0.202526 0.979277i \(-0.435085\pi\)
0.202526 + 0.979277i \(0.435085\pi\)
\(410\) 0 0
\(411\) 6.06032 6.06032i 0.298934 0.298934i
\(412\) 0 0
\(413\) 0.887066i 0.0436497i
\(414\) 0 0
\(415\) 16.1573 15.5012i 0.793131 0.760922i
\(416\) 0 0
\(417\) 10.3543 + 10.3543i 0.507051 + 0.507051i
\(418\) 0 0
\(419\) 22.2183 22.2183i 1.08544 1.08544i 0.0894455 0.995992i \(-0.471491\pi\)
0.995992 0.0894455i \(-0.0285095\pi\)
\(420\) 0 0
\(421\) 2.75098 + 2.75098i 0.134074 + 0.134074i 0.770959 0.636885i \(-0.219777\pi\)
−0.636885 + 0.770959i \(0.719777\pi\)
\(422\) 0 0
\(423\) −8.54502 + 8.54502i −0.415473 + 0.415473i
\(424\) 0 0
\(425\) 7.06075 6.49845i 0.342497 0.315221i
\(426\) 0 0
\(427\) 1.43993 0.0696832
\(428\) 0 0
\(429\) 2.46699 + 2.46699i 0.119107 + 0.119107i
\(430\) 0 0
\(431\) 5.32770i 0.256626i −0.991734 0.128313i \(-0.959044\pi\)
0.991734 0.128313i \(-0.0409563\pi\)
\(432\) 0 0
\(433\) −3.38866 + 3.38866i −0.162849 + 0.162849i −0.783827 0.620979i \(-0.786735\pi\)
0.620979 + 0.783827i \(0.286735\pi\)
\(434\) 0 0
\(435\) −8.77224 0.181813i −0.420597 0.00871726i
\(436\) 0 0
\(437\) 7.12564i 0.340866i
\(438\) 0 0
\(439\) 5.99801i 0.286269i 0.989703 + 0.143135i \(0.0457182\pi\)
−0.989703 + 0.143135i \(0.954282\pi\)
\(440\) 0 0
\(441\) 6.95859i 0.331361i
\(442\) 0 0
\(443\) 13.3394i 0.633773i −0.948463 0.316887i \(-0.897363\pi\)
0.948463 0.316887i \(-0.102637\pi\)
\(444\) 0 0
\(445\) 9.29420 8.91676i 0.440587 0.422695i
\(446\) 0 0
\(447\) 0.485009 0.485009i 0.0229401 0.0229401i
\(448\) 0 0
\(449\) 29.7201i 1.40258i −0.712877 0.701289i \(-0.752608\pi\)
0.712877 0.701289i \(-0.247392\pi\)
\(450\) 0 0
\(451\) −1.29378 1.29378i −0.0609216 0.0609216i
\(452\) 0 0
\(453\) −6.47302 −0.304129
\(454\) 0 0
\(455\) −0.0310336 + 1.49733i −0.00145488 + 0.0701960i
\(456\) 0 0
\(457\) −13.8443 + 13.8443i −0.647611 + 0.647611i −0.952415 0.304804i \(-0.901409\pi\)
0.304804 + 0.952415i \(0.401409\pi\)
\(458\) 0 0
\(459\) −1.35709 1.35709i −0.0633433 0.0633433i
\(460\) 0 0
\(461\) −23.8766 + 23.8766i −1.11205 + 1.11205i −0.119172 + 0.992874i \(0.538024\pi\)
−0.992874 + 0.119172i \(0.961976\pi\)
\(462\) 0 0
\(463\) −10.5750 10.5750i −0.491463 0.491463i 0.417304 0.908767i \(-0.362975\pi\)
−0.908767 + 0.417304i \(0.862975\pi\)
\(464\) 0 0
\(465\) −10.2312 10.6643i −0.474461 0.494544i
\(466\) 0 0
\(467\) 30.0161i 1.38898i −0.719502 0.694491i \(-0.755630\pi\)
0.719502 0.694491i \(-0.244370\pi\)
\(468\) 0 0
\(469\) −0.614050 + 0.614050i −0.0283542 + 0.0283542i
\(470\) 0 0
\(471\) −11.7463 −0.541240
\(472\) 0 0
\(473\) 3.12689 + 3.12689i 0.143774 + 0.143774i
\(474\) 0 0
\(475\) 20.3737 + 22.1366i 0.934809 + 1.01570i
\(476\) 0 0
\(477\) 5.05524 0.231464
\(478\) 0 0
\(479\) 21.9152 1.00133 0.500665 0.865641i \(-0.333089\pi\)
0.500665 + 0.865641i \(0.333089\pi\)
\(480\) 0 0
\(481\) −32.9769 −1.50362
\(482\) 0 0
\(483\) −0.240990 −0.0109654
\(484\) 0 0
\(485\) 37.2020 + 0.771047i 1.68926 + 0.0350114i
\(486\) 0 0
\(487\) −5.66360 5.66360i −0.256642 0.256642i 0.567045 0.823687i \(-0.308087\pi\)
−0.823687 + 0.567045i \(0.808087\pi\)
\(488\) 0 0
\(489\) 1.87143 0.0846289
\(490\) 0 0
\(491\) 25.4744 25.4744i 1.14964 1.14964i 0.163018 0.986623i \(-0.447877\pi\)
0.986623 0.163018i \(-0.0521230\pi\)
\(492\) 0 0
\(493\) 7.53080i 0.339170i
\(494\) 0 0
\(495\) −0.0491155 + 2.36976i −0.00220758 + 0.106513i
\(496\) 0 0
\(497\) 1.90099 + 1.90099i 0.0852709 + 0.0852709i
\(498\) 0 0
\(499\) −18.8209 + 18.8209i −0.842537 + 0.842537i −0.989188 0.146651i \(-0.953151\pi\)
0.146651 + 0.989188i \(0.453151\pi\)
\(500\) 0 0
\(501\) −4.79897 4.79897i −0.214402 0.214402i
\(502\) 0 0
\(503\) 7.85721 7.85721i 0.350336 0.350336i −0.509899 0.860234i \(-0.670317\pi\)
0.860234 + 0.509899i \(0.170317\pi\)
\(504\) 0 0
\(505\) 4.08839 + 0.0847357i 0.181931 + 0.00377069i
\(506\) 0 0
\(507\) −2.16724 −0.0962507
\(508\) 0 0
\(509\) 10.1248 + 10.1248i 0.448776 + 0.448776i 0.894948 0.446171i \(-0.147213\pi\)
−0.446171 + 0.894948i \(0.647213\pi\)
\(510\) 0 0
\(511\) 3.36391i 0.148811i
\(512\) 0 0
\(513\) 4.25468 4.25468i 0.187849 0.187849i
\(514\) 0 0
\(515\) −0.739751 + 35.6920i −0.0325973 + 1.57278i
\(516\) 0 0
\(517\) 12.8097i 0.563372i
\(518\) 0 0
\(519\) 12.8446i 0.563817i
\(520\) 0 0
\(521\) 37.3503i 1.63634i −0.574973 0.818172i \(-0.694987\pi\)
0.574973 0.818172i \(-0.305013\pi\)
\(522\) 0 0
\(523\) 8.27258i 0.361735i 0.983507 + 0.180867i \(0.0578905\pi\)
−0.983507 + 0.180867i \(0.942110\pi\)
\(524\) 0 0
\(525\) −0.748661 + 0.689040i −0.0326742 + 0.0300722i
\(526\) 0 0
\(527\) −8.96919 + 8.96919i −0.390704 + 0.390704i
\(528\) 0 0
\(529\) 21.5976i 0.939024i
\(530\) 0 0
\(531\) −3.08237 3.08237i −0.133763 0.133763i
\(532\) 0 0
\(533\) −5.68108 −0.246075
\(534\) 0 0
\(535\) −2.25012 + 2.15875i −0.0972814 + 0.0933308i
\(536\) 0 0
\(537\) −3.47791 + 3.47791i −0.150083 + 0.150083i
\(538\) 0 0
\(539\) 5.21578 + 5.21578i 0.224659 + 0.224659i
\(540\) 0 0
\(541\) −11.1960 + 11.1960i −0.481352 + 0.481352i −0.905563 0.424211i \(-0.860551\pi\)
0.424211 + 0.905563i \(0.360551\pi\)
\(542\) 0 0
\(543\) 16.3185 + 16.3185i 0.700295 + 0.700295i
\(544\) 0 0
\(545\) 14.3956 + 0.298361i 0.616638 + 0.0127804i
\(546\) 0 0
\(547\) 26.6966i 1.14147i −0.821136 0.570733i \(-0.806659\pi\)
0.821136 0.570733i \(-0.193341\pi\)
\(548\) 0 0
\(549\) 5.00346 5.00346i 0.213542 0.213542i
\(550\) 0 0
\(551\) −23.6103 −1.00583
\(552\) 0 0
\(553\) 1.43255 + 1.43255i 0.0609180 + 0.0609180i
\(554\) 0 0
\(555\) −15.5103 16.1669i −0.658377 0.686245i
\(556\) 0 0
\(557\) 0.715510 0.0303171 0.0151586 0.999885i \(-0.495175\pi\)
0.0151586 + 0.999885i \(0.495175\pi\)
\(558\) 0 0
\(559\) 13.7304 0.580735
\(560\) 0 0
\(561\) 2.03439 0.0858922
\(562\) 0 0
\(563\) −16.6892 −0.703364 −0.351682 0.936119i \(-0.614390\pi\)
−0.351682 + 0.936119i \(0.614390\pi\)
\(564\) 0 0
\(565\) −0.750294 + 36.2007i −0.0315651 + 1.52298i
\(566\) 0 0
\(567\) 0.143894 + 0.143894i 0.00604297 + 0.00604297i
\(568\) 0 0
\(569\) −23.0249 −0.965253 −0.482626 0.875826i \(-0.660317\pi\)
−0.482626 + 0.875826i \(0.660317\pi\)
\(570\) 0 0
\(571\) 7.65518 7.65518i 0.320359 0.320359i −0.528546 0.848905i \(-0.677262\pi\)
0.848905 + 0.528546i \(0.177262\pi\)
\(572\) 0 0
\(573\) 21.5483i 0.900194i
\(574\) 0 0
\(575\) −4.00986 4.35683i −0.167223 0.181692i
\(576\) 0 0
\(577\) 22.0343 + 22.0343i 0.917298 + 0.917298i 0.996832 0.0795337i \(-0.0253431\pi\)
−0.0795337 + 0.996832i \(0.525343\pi\)
\(578\) 0 0
\(579\) −11.3161 + 11.3161i −0.470282 + 0.470282i
\(580\) 0 0
\(581\) 1.44087 + 1.44087i 0.0597774 + 0.0597774i
\(582\) 0 0
\(583\) −3.78913 + 3.78913i −0.156930 + 0.156930i
\(584\) 0 0
\(585\) 5.09507 + 5.31074i 0.210655 + 0.219572i
\(586\) 0 0
\(587\) −22.5696 −0.931547 −0.465773 0.884904i \(-0.654224\pi\)
−0.465773 + 0.884904i \(0.654224\pi\)
\(588\) 0 0
\(589\) −28.1198 28.1198i −1.15866 1.15866i
\(590\) 0 0
\(591\) 23.3109i 0.958883i
\(592\) 0 0
\(593\) −26.4172 + 26.4172i −1.08482 + 1.08482i −0.0887706 + 0.996052i \(0.528294\pi\)
−0.996052 + 0.0887706i \(0.971706\pi\)
\(594\) 0 0
\(595\) 0.604589 + 0.630180i 0.0247857 + 0.0258349i
\(596\) 0 0
\(597\) 2.14992i 0.0879902i
\(598\) 0 0
\(599\) 17.4693i 0.713775i 0.934147 + 0.356888i \(0.116162\pi\)
−0.934147 + 0.356888i \(0.883838\pi\)
\(600\) 0 0
\(601\) 25.8843i 1.05584i 0.849294 + 0.527921i \(0.177028\pi\)
−0.849294 + 0.527921i \(0.822972\pi\)
\(602\) 0 0
\(603\) 4.26739i 0.173782i
\(604\) 0 0
\(605\) 15.2890 + 15.9361i 0.621585 + 0.647896i
\(606\) 0 0
\(607\) −22.7204 + 22.7204i −0.922193 + 0.922193i −0.997184 0.0749912i \(-0.976107\pi\)
0.0749912 + 0.997184i \(0.476107\pi\)
\(608\) 0 0
\(609\) 0.798501i 0.0323569i
\(610\) 0 0
\(611\) −28.1243 28.1243i −1.13779 1.13779i
\(612\) 0 0
\(613\) 0.840532 0.0339488 0.0169744 0.999856i \(-0.494597\pi\)
0.0169744 + 0.999856i \(0.494597\pi\)
\(614\) 0 0
\(615\) −2.67204 2.78514i −0.107747 0.112308i
\(616\) 0 0
\(617\) 7.18912 7.18912i 0.289423 0.289423i −0.547429 0.836852i \(-0.684393\pi\)
0.836852 + 0.547429i \(0.184393\pi\)
\(618\) 0 0
\(619\) 31.9741 + 31.9741i 1.28515 + 1.28515i 0.937700 + 0.347447i \(0.112951\pi\)
0.347447 + 0.937700i \(0.387049\pi\)
\(620\) 0 0
\(621\) −0.837388 + 0.837388i −0.0336032 + 0.0336032i
\(622\) 0 0
\(623\) 0.828834 + 0.828834i 0.0332065 + 0.0332065i
\(624\) 0 0
\(625\) −24.9142 2.06992i −0.996566 0.0827970i
\(626\) 0 0
\(627\) 6.37815i 0.254719i
\(628\) 0 0
\(629\) −13.5971 + 13.5971i −0.542153 + 0.542153i
\(630\) 0 0
\(631\) 28.2004 1.12264 0.561320 0.827599i \(-0.310294\pi\)
0.561320 + 0.827599i \(0.310294\pi\)
\(632\) 0 0
\(633\) 6.27270 + 6.27270i 0.249317 + 0.249317i
\(634\) 0 0
\(635\) −0.324072 + 15.6361i −0.0128604 + 0.620498i
\(636\) 0 0
\(637\) 22.9029 0.907446
\(638\) 0 0
\(639\) 13.2111 0.522621
\(640\) 0 0
\(641\) 36.6103 1.44602 0.723011 0.690837i \(-0.242758\pi\)
0.723011 + 0.690837i \(0.242758\pi\)
\(642\) 0 0
\(643\) −13.4647 −0.530996 −0.265498 0.964111i \(-0.585536\pi\)
−0.265498 + 0.964111i \(0.585536\pi\)
\(644\) 0 0
\(645\) 6.45796 + 6.73132i 0.254282 + 0.265045i
\(646\) 0 0
\(647\) 23.4382 + 23.4382i 0.921451 + 0.921451i 0.997132 0.0756812i \(-0.0241131\pi\)
−0.0756812 + 0.997132i \(0.524113\pi\)
\(648\) 0 0
\(649\) 4.62075 0.181380
\(650\) 0 0
\(651\) 0.951015 0.951015i 0.0372732 0.0372732i
\(652\) 0 0
\(653\) 15.0338i 0.588318i 0.955756 + 0.294159i \(0.0950396\pi\)
−0.955756 + 0.294159i \(0.904960\pi\)
\(654\) 0 0
\(655\) 40.2514 + 0.834247i 1.57275 + 0.0325967i
\(656\) 0 0
\(657\) −11.6889 11.6889i −0.456027 0.456027i
\(658\) 0 0
\(659\) 12.8233 12.8233i 0.499524 0.499524i −0.411766 0.911290i \(-0.635088\pi\)
0.911290 + 0.411766i \(0.135088\pi\)
\(660\) 0 0
\(661\) −22.6599 22.6599i −0.881369 0.881369i 0.112305 0.993674i \(-0.464177\pi\)
−0.993674 + 0.112305i \(0.964177\pi\)
\(662\) 0 0
\(663\) 4.46660 4.46660i 0.173468 0.173468i
\(664\) 0 0
\(665\) −1.97572 + 1.89548i −0.0766150 + 0.0735036i
\(666\) 0 0
\(667\) 4.64687 0.179928
\(668\) 0 0
\(669\) 5.00009 + 5.00009i 0.193315 + 0.193315i
\(670\) 0 0
\(671\) 7.50063i 0.289559i
\(672\) 0 0
\(673\) 18.5901 18.5901i 0.716595 0.716595i −0.251311 0.967906i \(-0.580862\pi\)
0.967906 + 0.251311i \(0.0808617\pi\)
\(674\) 0 0
\(675\) −0.207170 + 4.99571i −0.00797399 + 0.192285i
\(676\) 0 0
\(677\) 1.52496i 0.0586089i −0.999571 0.0293044i \(-0.990671\pi\)
0.999571 0.0293044i \(-0.00932923\pi\)
\(678\) 0 0
\(679\) 3.38635i 0.129956i
\(680\) 0 0
\(681\) 22.5630i 0.864614i
\(682\) 0 0
\(683\) 3.77382i 0.144401i 0.997390 + 0.0722006i \(0.0230022\pi\)
−0.997390 + 0.0722006i \(0.976998\pi\)
\(684\) 0 0
\(685\) −0.397115 + 19.1603i −0.0151730 + 0.732078i
\(686\) 0 0
\(687\) −6.83720 + 6.83720i −0.260856 + 0.260856i
\(688\) 0 0
\(689\) 16.6384i 0.633873i
\(690\) 0 0
\(691\) 15.9624 + 15.9624i 0.607239 + 0.607239i 0.942224 0.334984i \(-0.108731\pi\)
−0.334984 + 0.942224i \(0.608731\pi\)
\(692\) 0 0
\(693\) −0.215710 −0.00819413
\(694\) 0 0
\(695\) −32.7361 0.678486i −1.24175 0.0257364i
\(696\) 0 0
\(697\) −2.34244 + 2.34244i −0.0887263 + 0.0887263i
\(698\) 0 0
\(699\) −3.10894 3.10894i −0.117591 0.117591i
\(700\) 0 0
\(701\) 20.1411 20.1411i 0.760717 0.760717i −0.215735 0.976452i \(-0.569215\pi\)
0.976452 + 0.215735i \(0.0692146\pi\)
\(702\) 0 0
\(703\) −42.6292 42.6292i −1.60779 1.60779i
\(704\) 0 0
\(705\) 0.559930 27.0159i 0.0210882 1.01748i
\(706\) 0 0
\(707\) 0.372149i 0.0139961i
\(708\) 0 0
\(709\) −8.20276 + 8.20276i −0.308061 + 0.308061i −0.844157 0.536096i \(-0.819899\pi\)
0.536096 + 0.844157i \(0.319899\pi\)
\(710\) 0 0
\(711\) 9.95558 0.373364
\(712\) 0 0
\(713\) 5.53443 + 5.53443i 0.207266 + 0.207266i
\(714\) 0 0
\(715\) −7.79963 0.161655i −0.291690 0.00604554i
\(716\) 0 0
\(717\) −11.0671 −0.413310
\(718\) 0 0
\(719\) −23.6655 −0.882576 −0.441288 0.897366i \(-0.645478\pi\)
−0.441288 + 0.897366i \(0.645478\pi\)
\(720\) 0 0
\(721\) −3.24890 −0.120995
\(722\) 0 0
\(723\) 23.4743 0.873018
\(724\) 0 0
\(725\) 14.4360 13.2864i 0.536140 0.493444i
\(726\) 0 0
\(727\) −1.68416 1.68416i −0.0624622 0.0624622i 0.675186 0.737648i \(-0.264064\pi\)
−0.737648 + 0.675186i \(0.764064\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.66137 5.66137i 0.209393 0.209393i
\(732\) 0 0
\(733\) 48.4131i 1.78818i −0.447889 0.894089i \(-0.647824\pi\)
0.447889 0.894089i \(-0.352176\pi\)
\(734\) 0 0
\(735\) 10.7721 + 11.2281i 0.397337 + 0.414155i
\(736\) 0 0
\(737\) −3.19860 3.19860i −0.117822 0.117822i
\(738\) 0 0
\(739\) −2.35313 + 2.35313i −0.0865612 + 0.0865612i −0.749062 0.662500i \(-0.769495\pi\)
0.662500 + 0.749062i \(0.269495\pi\)
\(740\) 0 0
\(741\) 14.0035 + 14.0035i 0.514431 + 0.514431i
\(742\) 0 0
\(743\) 17.6788 17.6788i 0.648571 0.648571i −0.304076 0.952648i \(-0.598348\pi\)
0.952648 + 0.304076i \(0.0983478\pi\)
\(744\) 0 0
\(745\) −0.0317812 + 1.53340i −0.00116437 + 0.0561796i
\(746\) 0 0
\(747\) 10.0134 0.366373
\(748\) 0 0
\(749\) −0.200661 0.200661i −0.00733198 0.00733198i
\(750\) 0 0
\(751\) 40.8647i 1.49117i 0.666409 + 0.745587i \(0.267831\pi\)
−0.666409 + 0.745587i \(0.732169\pi\)
\(752\) 0 0
\(753\) −1.76187 + 1.76187i −0.0642063 + 0.0642063i
\(754\) 0 0
\(755\) 10.4446 10.0205i 0.380119 0.364682i
\(756\) 0 0
\(757\) 24.6892i 0.897345i 0.893696 + 0.448673i \(0.148103\pi\)
−0.893696 + 0.448673i \(0.851897\pi\)
\(758\) 0 0
\(759\) 1.25532i 0.0455652i
\(760\) 0 0
\(761\) 6.54343i 0.237199i −0.992942 0.118600i \(-0.962160\pi\)
0.992942 0.118600i \(-0.0378405\pi\)
\(762\) 0 0
\(763\) 1.31037i 0.0474385i
\(764\) 0 0
\(765\) 4.29056 + 0.0889259i 0.155126 + 0.00321512i
\(766\) 0 0
\(767\) 10.1450 10.1450i 0.366316 0.366316i
\(768\) 0 0
\(769\) 26.2710i 0.947357i −0.880698 0.473678i \(-0.842926\pi\)
0.880698 0.473678i \(-0.157074\pi\)
\(770\) 0 0
\(771\) 4.05693 + 4.05693i 0.146107 + 0.146107i
\(772\) 0 0
\(773\) 9.19242 0.330628 0.165314 0.986241i \(-0.447136\pi\)
0.165314 + 0.986241i \(0.447136\pi\)
\(774\) 0 0
\(775\) 33.0174 + 1.36922i 1.18602 + 0.0491839i
\(776\) 0 0
\(777\) 1.44172 1.44172i 0.0517215 0.0517215i
\(778\) 0 0
\(779\) −7.34393 7.34393i −0.263124 0.263124i
\(780\) 0 0
\(781\) −9.90228 + 9.90228i −0.354332 + 0.354332i
\(782\) 0 0
\(783\) −2.77462 2.77462i −0.0991569 0.0991569i
\(784\) 0 0
\(785\) 18.9534 18.1837i 0.676475 0.649003i
\(786\) 0 0
\(787\) 20.9534i 0.746908i 0.927649 + 0.373454i \(0.121827\pi\)
−0.927649 + 0.373454i \(0.878173\pi\)
\(788\) 0 0
\(789\) −22.2576 + 22.2576i −0.792390 + 0.792390i
\(790\) 0 0
\(791\) −3.29520 −0.117164
\(792\) 0 0
\(793\) 16.4680 + 16.4680i 0.584794 + 0.584794i
\(794\) 0 0
\(795\) −8.15695 + 7.82570i −0.289297 + 0.277549i
\(796\) 0 0
\(797\) 25.5883 0.906384 0.453192 0.891413i \(-0.350285\pi\)
0.453192 + 0.891413i \(0.350285\pi\)
\(798\) 0 0
\(799\) −23.1926 −0.820497
\(800\) 0 0
\(801\) 5.76005 0.203521
\(802\) 0 0
\(803\) 17.5227 0.618362
\(804\) 0 0
\(805\) 0.388852 0.373061i 0.0137052 0.0131487i
\(806\) 0 0
\(807\) −11.9600 11.9600i −0.421014 0.421014i
\(808\) 0 0
\(809\) −4.93002 −0.173330 −0.0866652 0.996237i \(-0.527621\pi\)
−0.0866652 + 0.996237i \(0.527621\pi\)
\(810\) 0 0
\(811\) −35.3133 + 35.3133i −1.24002 + 1.24002i −0.280025 + 0.959993i \(0.590343\pi\)
−0.959993 + 0.280025i \(0.909657\pi\)
\(812\) 0 0
\(813\) 15.7162i 0.551191i
\(814\) 0 0
\(815\) −3.01967 + 2.89704i −0.105774 + 0.101479i
\(816\) 0 0
\(817\) 17.7493 + 17.7493i 0.620970 + 0.620970i
\(818\) 0 0
\(819\) −0.473599 + 0.473599i −0.0165489 + 0.0165489i
\(820\) 0 0
\(821\) −36.2490 36.2490i −1.26510 1.26510i −0.948589 0.316509i \(-0.897489\pi\)
−0.316509 0.948589i \(-0.602511\pi\)
\(822\) 0 0
\(823\) 23.0235 23.0235i 0.802548 0.802548i −0.180945 0.983493i \(-0.557916\pi\)
0.983493 + 0.180945i \(0.0579156\pi\)
\(824\) 0 0
\(825\) −3.58922 3.89979i −0.124961 0.135773i
\(826\) 0 0
\(827\) −44.8863 −1.56085 −0.780424 0.625250i \(-0.784997\pi\)
−0.780424 + 0.625250i \(0.784997\pi\)
\(828\) 0 0
\(829\) −7.27338 7.27338i −0.252615 0.252615i 0.569427 0.822042i \(-0.307165\pi\)
−0.822042 + 0.569427i \(0.807165\pi\)
\(830\) 0 0
\(831\) 4.59363i 0.159351i
\(832\) 0 0
\(833\) 9.44340 9.44340i 0.327195 0.327195i
\(834\) 0 0
\(835\) 15.1724 + 0.314462i 0.525063 + 0.0108824i
\(836\) 0 0
\(837\) 6.60915i 0.228446i
\(838\) 0 0
\(839\) 6.23853i 0.215378i 0.994185 + 0.107689i \(0.0343451\pi\)
−0.994185 + 0.107689i \(0.965655\pi\)
\(840\) 0 0
\(841\) 13.6029i 0.469067i
\(842\) 0 0
\(843\) 20.5117i 0.706462i
\(844\) 0 0
\(845\) 3.49699 3.35497i 0.120300 0.115415i
\(846\) 0 0
\(847\) −1.42115 + 1.42115i −0.0488312 + 0.0488312i
\(848\) 0 0
\(849\) 28.8990i 0.991811i
\(850\) 0 0
\(851\) 8.39009 + 8.39009i 0.287609 + 0.287609i
\(852\) 0 0
\(853\) −32.1759 −1.10168 −0.550841 0.834610i \(-0.685693\pi\)
−0.550841 + 0.834610i \(0.685693\pi\)
\(854\) 0 0
\(855\) −0.278797 + 13.4516i −0.00953465 + 0.460035i
\(856\) 0 0
\(857\) −11.0467 + 11.0467i −0.377348 + 0.377348i −0.870145 0.492797i \(-0.835975\pi\)
0.492797 + 0.870145i \(0.335975\pi\)
\(858\) 0 0
\(859\) 1.75107 + 1.75107i 0.0597457 + 0.0597457i 0.736348 0.676603i \(-0.236548\pi\)
−0.676603 + 0.736348i \(0.736548\pi\)
\(860\) 0 0
\(861\) 0.248372 0.248372i 0.00846451 0.00846451i
\(862\) 0 0
\(863\) −4.70982 4.70982i −0.160324 0.160324i 0.622386 0.782710i \(-0.286163\pi\)
−0.782710 + 0.622386i \(0.786163\pi\)
\(864\) 0 0
\(865\) 19.8840 + 20.7256i 0.676075 + 0.704693i
\(866\) 0 0
\(867\) 13.3166i 0.452257i
\(868\) 0 0
\(869\) −7.46216 + 7.46216i −0.253136 + 0.253136i
\(870\) 0 0
\(871\) −14.0453 −0.475908
\(872\) 0 0
\(873\) 11.7668 + 11.7668i 0.398247 + 0.398247i
\(874\) 0 0
\(875\) 0.141353 2.27076i 0.00477860 0.0767658i
\(876\) 0 0
\(877\) 16.7655 0.566130 0.283065 0.959101i \(-0.408649\pi\)
0.283065 + 0.959101i \(0.408649\pi\)
\(878\) 0 0
\(879\) 8.86723 0.299084
\(880\) 0 0
\(881\) 50.5390 1.70270 0.851352 0.524595i \(-0.175783\pi\)
0.851352 + 0.524595i \(0.175783\pi\)
\(882\) 0 0
\(883\) 27.3039 0.918848 0.459424 0.888217i \(-0.348056\pi\)
0.459424 + 0.888217i \(0.348056\pi\)
\(884\) 0 0
\(885\) 9.74521 + 0.201978i 0.327582 + 0.00678943i
\(886\) 0 0
\(887\) −2.95052 2.95052i −0.0990688 0.0990688i 0.655835 0.754904i \(-0.272317\pi\)
−0.754904 + 0.655835i \(0.772317\pi\)
\(888\) 0 0
\(889\) −1.42329 −0.0477355
\(890\) 0 0
\(891\) −0.749545 + 0.749545i −0.0251107 + 0.0251107i
\(892\) 0 0
\(893\) 72.7126i 2.43324i
\(894\) 0 0
\(895\) 0.227897 10.9957i 0.00761776 0.367547i
\(896\) 0 0
\(897\) −2.75611 2.75611i −0.0920238 0.0920238i
\(898\) 0 0
\(899\) −18.3379 + 18.3379i −0.611603 + 0.611603i
\(900\) 0 0
\(901\) 6.86040 + 6.86040i 0.228553 + 0.228553i
\(902\) 0 0
\(903\) −0.600283 + 0.600283i −0.0199762 + 0.0199762i
\(904\) 0 0
\(905\) −51.5926 1.06931i −1.71500 0.0355449i
\(906\) 0 0
\(907\) 0.0410041 0.00136152 0.000680760 1.00000i \(-0.499783\pi\)
0.000680760 1.00000i \(0.499783\pi\)
\(908\) 0 0
\(909\) 1.29314 + 1.29314i 0.0428907 + 0.0428907i
\(910\) 0 0
\(911\) 21.7776i 0.721525i −0.932658 0.360763i \(-0.882516\pi\)
0.932658 0.360763i \(-0.117484\pi\)
\(912\) 0 0
\(913\) −7.50552 + 7.50552i −0.248397 + 0.248397i
\(914\) 0 0
\(915\) −0.327862 + 15.8189i −0.0108388 + 0.522957i
\(916\) 0 0
\(917\) 3.66392i 0.120993i
\(918\) 0 0
\(919\) 34.4842i 1.13753i −0.822500 0.568765i \(-0.807421\pi\)
0.822500 0.568765i \(-0.192579\pi\)
\(920\) 0 0
\(921\) 14.1518i 0.466317i
\(922\) 0 0
\(923\) 43.4818i 1.43122i
\(924\) 0 0
\(925\) 50.0538 + 2.07571i 1.64576 + 0.0682490i
\(926\) 0 0
\(927\) −11.2892 + 11.2892i −0.370787 + 0.370787i
\(928\) 0 0
\(929\) 19.8125i 0.650028i 0.945709 + 0.325014i \(0.105369\pi\)
−0.945709 + 0.325014i \(0.894631\pi\)
\(930\) 0 0
\(931\) 29.6066 + 29.6066i 0.970316 + 0.970316i
\(932\) 0 0
\(933\) −7.15165 −0.234134
\(934\) 0 0
\(935\) −3.28262 + 3.14931i −0.107353 + 0.102994i
\(936\) 0 0
\(937\) 20.7731 20.7731i 0.678628 0.678628i −0.281062 0.959690i \(-0.590687\pi\)
0.959690 + 0.281062i \(0.0906866\pi\)
\(938\) 0 0
\(939\) 5.98016 + 5.98016i 0.195155 + 0.195155i
\(940\) 0 0
\(941\) 24.6412 24.6412i 0.803279 0.803279i −0.180328 0.983607i \(-0.557716\pi\)
0.983607 + 0.180328i \(0.0577158\pi\)
\(942\) 0 0
\(943\) 1.44540 + 1.44540i 0.0470687 + 0.0470687i
\(944\) 0 0
\(945\) −0.454934 0.00942893i −0.0147990 0.000306723i
\(946\) 0 0
\(947\) 46.1706i 1.50034i 0.661244 + 0.750171i \(0.270029\pi\)
−0.661244 + 0.750171i \(0.729971\pi\)
\(948\) 0 0
\(949\) 38.4718 38.4718i 1.24885 1.24885i
\(950\) 0 0
\(951\) 7.76996 0.251958
\(952\) 0 0
\(953\) 5.45044 + 5.45044i 0.176557 + 0.176557i 0.789853 0.613296i \(-0.210157\pi\)
−0.613296 + 0.789853i \(0.710157\pi\)
\(954\) 0 0
\(955\) −33.3576 34.7696i −1.07943 1.12512i
\(956\) 0 0
\(957\) 4.15941 0.134455
\(958\) 0 0
\(959\) −1.74408 −0.0563194
\(960\) 0 0
\(961\) −12.6809 −0.409062
\(962\) 0 0
\(963\) −1.39451 −0.0449374
\(964\) 0 0
\(965\) 0.741512 35.7770i 0.0238701 1.15170i
\(966\) 0 0
\(967\) −18.1852 18.1852i −0.584798 0.584798i 0.351420 0.936218i \(-0.385699\pi\)
−0.936218 + 0.351420i \(0.885699\pi\)
\(968\) 0 0
\(969\) 11.5479 0.370973
\(970\) 0 0
\(971\) 11.6265 11.6265i 0.373112 0.373112i −0.495497 0.868609i \(-0.665014\pi\)
0.868609 + 0.495497i \(0.165014\pi\)
\(972\) 0 0
\(973\) 2.97983i 0.0955290i
\(974\) 0 0
\(975\) −16.4424 0.681863i −0.526580 0.0218371i
\(976\) 0 0
\(977\) −8.35835 8.35835i −0.267407 0.267407i 0.560647 0.828055i \(-0.310552\pi\)
−0.828055 + 0.560647i \(0.810552\pi\)
\(978\) 0 0
\(979\) −4.31741 + 4.31741i −0.137985 + 0.137985i
\(980\) 0 0
\(981\) 4.55325 + 4.55325i 0.145374 + 0.145374i
\(982\) 0 0
\(983\) −18.1290 + 18.1290i −0.578226 + 0.578226i −0.934414 0.356188i \(-0.884076\pi\)
0.356188 + 0.934414i \(0.384076\pi\)
\(984\) 0 0
\(985\) 36.0861 + 37.6136i 1.14980 + 1.19847i
\(986\) 0 0
\(987\) 2.45915 0.0782755
\(988\) 0 0
\(989\) −3.49334 3.49334i −0.111082 0.111082i
\(990\) 0 0
\(991\) 28.8183i 0.915444i 0.889095 + 0.457722i \(0.151334\pi\)
−0.889095 + 0.457722i \(0.848666\pi\)
\(992\) 0 0
\(993\) −0.751395 + 0.751395i −0.0238448 + 0.0238448i
\(994\) 0 0
\(995\) 3.32815 + 3.46903i 0.105509 + 0.109975i
\(996\) 0 0
\(997\) 30.7058i 0.972463i 0.873830 + 0.486232i \(0.161629\pi\)
−0.873830 + 0.486232i \(0.838371\pi\)
\(998\) 0 0
\(999\) 10.0194i 0.316998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.i.1567.5 16
4.3 odd 2 1920.2.y.j.1567.5 16
5.3 odd 4 1920.2.bc.i.1183.1 16
8.3 odd 2 960.2.y.e.847.4 16
8.5 even 2 240.2.y.e.187.7 yes 16
16.3 odd 4 1920.2.bc.i.607.1 16
16.5 even 4 960.2.bc.e.367.8 16
16.11 odd 4 240.2.bc.e.67.5 yes 16
16.13 even 4 1920.2.bc.j.607.1 16
20.3 even 4 1920.2.bc.j.1183.1 16
24.5 odd 2 720.2.z.f.667.2 16
40.3 even 4 960.2.bc.e.463.8 16
40.13 odd 4 240.2.bc.e.43.5 yes 16
48.11 even 4 720.2.bd.f.307.4 16
80.3 even 4 inner 1920.2.y.i.223.5 16
80.13 odd 4 1920.2.y.j.223.5 16
80.43 even 4 240.2.y.e.163.7 16
80.53 odd 4 960.2.y.e.943.4 16
120.53 even 4 720.2.bd.f.523.4 16
240.203 odd 4 720.2.z.f.163.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.7 16 80.43 even 4
240.2.y.e.187.7 yes 16 8.5 even 2
240.2.bc.e.43.5 yes 16 40.13 odd 4
240.2.bc.e.67.5 yes 16 16.11 odd 4
720.2.z.f.163.2 16 240.203 odd 4
720.2.z.f.667.2 16 24.5 odd 2
720.2.bd.f.307.4 16 48.11 even 4
720.2.bd.f.523.4 16 120.53 even 4
960.2.y.e.847.4 16 8.3 odd 2
960.2.y.e.943.4 16 80.53 odd 4
960.2.bc.e.367.8 16 16.5 even 4
960.2.bc.e.463.8 16 40.3 even 4
1920.2.y.i.223.5 16 80.3 even 4 inner
1920.2.y.i.1567.5 16 1.1 even 1 trivial
1920.2.y.j.223.5 16 80.13 odd 4
1920.2.y.j.1567.5 16 4.3 odd 2
1920.2.bc.i.607.1 16 16.3 odd 4
1920.2.bc.i.1183.1 16 5.3 odd 4
1920.2.bc.j.607.1 16 16.13 even 4
1920.2.bc.j.1183.1 16 20.3 even 4