Properties

Label 1920.2.bh.f.703.2
Level $1920$
Weight $2$
Character 1920.703
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(703,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bh (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 703.2
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1920.703
Dual form 1920.2.bh.f.1087.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(2.12132 - 0.707107i) q^{5} +(1.00000 + 1.00000i) q^{7} +1.00000i q^{9} -1.41421 q^{11} +(-1.41421 + 1.41421i) q^{13} +(2.00000 + 1.00000i) q^{15} +(-2.00000 + 2.00000i) q^{17} +5.65685i q^{19} +1.41421i q^{21} +(-2.00000 + 2.00000i) q^{23} +(4.00000 - 3.00000i) q^{25} +(-0.707107 + 0.707107i) q^{27} +1.41421 q^{29} +10.0000i q^{31} +(-1.00000 - 1.00000i) q^{33} +(2.82843 + 1.41421i) q^{35} +(4.24264 + 4.24264i) q^{37} -2.00000 q^{39} -2.00000 q^{41} +(-2.82843 - 2.82843i) q^{43} +(0.707107 + 2.12132i) q^{45} +(8.00000 + 8.00000i) q^{47} -5.00000i q^{49} -2.82843 q^{51} +(4.24264 - 4.24264i) q^{53} +(-3.00000 + 1.00000i) q^{55} +(-4.00000 + 4.00000i) q^{57} -4.24264i q^{59} -2.82843i q^{61} +(-1.00000 + 1.00000i) q^{63} +(-2.00000 + 4.00000i) q^{65} +(8.48528 - 8.48528i) q^{67} -2.82843 q^{69} +8.00000i q^{71} +(3.00000 + 3.00000i) q^{73} +(4.94975 + 0.707107i) q^{75} +(-1.41421 - 1.41421i) q^{77} +10.0000 q^{79} -1.00000 q^{81} +(-7.07107 - 7.07107i) q^{83} +(-2.82843 + 5.65685i) q^{85} +(1.00000 + 1.00000i) q^{87} -10.0000i q^{89} -2.82843 q^{91} +(-7.07107 + 7.07107i) q^{93} +(4.00000 + 12.0000i) q^{95} +(3.00000 - 3.00000i) q^{97} -1.41421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 8 q^{15} - 8 q^{17} - 8 q^{23} + 16 q^{25} - 4 q^{33} - 8 q^{39} - 8 q^{41} + 32 q^{47} - 12 q^{55} - 16 q^{57} - 4 q^{63} - 8 q^{65} + 12 q^{73} + 40 q^{79} - 4 q^{81} + 4 q^{87} + 16 q^{95}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 2.12132 0.707107i 0.948683 0.316228i
\(6\) 0 0
\(7\) 1.00000 + 1.00000i 0.377964 + 0.377964i 0.870367 0.492403i \(-0.163881\pi\)
−0.492403 + 0.870367i \(0.663881\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) −1.41421 + 1.41421i −0.392232 + 0.392232i −0.875482 0.483250i \(-0.839456\pi\)
0.483250 + 0.875482i \(0.339456\pi\)
\(14\) 0 0
\(15\) 2.00000 + 1.00000i 0.516398 + 0.258199i
\(16\) 0 0
\(17\) −2.00000 + 2.00000i −0.485071 + 0.485071i −0.906747 0.421676i \(-0.861442\pi\)
0.421676 + 0.906747i \(0.361442\pi\)
\(18\) 0 0
\(19\) 5.65685i 1.29777i 0.760886 + 0.648886i \(0.224765\pi\)
−0.760886 + 0.648886i \(0.775235\pi\)
\(20\) 0 0
\(21\) 1.41421i 0.308607i
\(22\) 0 0
\(23\) −2.00000 + 2.00000i −0.417029 + 0.417029i −0.884178 0.467150i \(-0.845281\pi\)
0.467150 + 0.884178i \(0.345281\pi\)
\(24\) 0 0
\(25\) 4.00000 3.00000i 0.800000 0.600000i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 1.41421 0.262613 0.131306 0.991342i \(-0.458083\pi\)
0.131306 + 0.991342i \(0.458083\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) −1.00000 1.00000i −0.174078 0.174078i
\(34\) 0 0
\(35\) 2.82843 + 1.41421i 0.478091 + 0.239046i
\(36\) 0 0
\(37\) 4.24264 + 4.24264i 0.697486 + 0.697486i 0.963868 0.266382i \(-0.0858282\pi\)
−0.266382 + 0.963868i \(0.585828\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −2.82843 2.82843i −0.431331 0.431331i 0.457750 0.889081i \(-0.348656\pi\)
−0.889081 + 0.457750i \(0.848656\pi\)
\(44\) 0 0
\(45\) 0.707107 + 2.12132i 0.105409 + 0.316228i
\(46\) 0 0
\(47\) 8.00000 + 8.00000i 1.16692 + 1.16692i 0.982928 + 0.183992i \(0.0589021\pi\)
0.183992 + 0.982928i \(0.441098\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) −2.82843 −0.396059
\(52\) 0 0
\(53\) 4.24264 4.24264i 0.582772 0.582772i −0.352892 0.935664i \(-0.614802\pi\)
0.935664 + 0.352892i \(0.114802\pi\)
\(54\) 0 0
\(55\) −3.00000 + 1.00000i −0.404520 + 0.134840i
\(56\) 0 0
\(57\) −4.00000 + 4.00000i −0.529813 + 0.529813i
\(58\) 0 0
\(59\) 4.24264i 0.552345i −0.961108 0.276172i \(-0.910934\pi\)
0.961108 0.276172i \(-0.0890661\pi\)
\(60\) 0 0
\(61\) 2.82843i 0.362143i −0.983470 0.181071i \(-0.942043\pi\)
0.983470 0.181071i \(-0.0579565\pi\)
\(62\) 0 0
\(63\) −1.00000 + 1.00000i −0.125988 + 0.125988i
\(64\) 0 0
\(65\) −2.00000 + 4.00000i −0.248069 + 0.496139i
\(66\) 0 0
\(67\) 8.48528 8.48528i 1.03664 1.03664i 0.0373395 0.999303i \(-0.488112\pi\)
0.999303 0.0373395i \(-0.0118883\pi\)
\(68\) 0 0
\(69\) −2.82843 −0.340503
\(70\) 0 0
\(71\) 8.00000i 0.949425i 0.880141 + 0.474713i \(0.157448\pi\)
−0.880141 + 0.474713i \(0.842552\pi\)
\(72\) 0 0
\(73\) 3.00000 + 3.00000i 0.351123 + 0.351123i 0.860527 0.509404i \(-0.170134\pi\)
−0.509404 + 0.860527i \(0.670134\pi\)
\(74\) 0 0
\(75\) 4.94975 + 0.707107i 0.571548 + 0.0816497i
\(76\) 0 0
\(77\) −1.41421 1.41421i −0.161165 0.161165i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −7.07107 7.07107i −0.776151 0.776151i 0.203023 0.979174i \(-0.434923\pi\)
−0.979174 + 0.203023i \(0.934923\pi\)
\(84\) 0 0
\(85\) −2.82843 + 5.65685i −0.306786 + 0.613572i
\(86\) 0 0
\(87\) 1.00000 + 1.00000i 0.107211 + 0.107211i
\(88\) 0 0
\(89\) 10.0000i 1.06000i −0.847998 0.529999i \(-0.822192\pi\)
0.847998 0.529999i \(-0.177808\pi\)
\(90\) 0 0
\(91\) −2.82843 −0.296500
\(92\) 0 0
\(93\) −7.07107 + 7.07107i −0.733236 + 0.733236i
\(94\) 0 0
\(95\) 4.00000 + 12.0000i 0.410391 + 1.23117i
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 0 0
\(99\) 1.41421i 0.142134i
\(100\) 0 0
\(101\) 18.3848i 1.82935i −0.404186 0.914677i \(-0.632445\pi\)
0.404186 0.914677i \(-0.367555\pi\)
\(102\) 0 0
\(103\) −9.00000 + 9.00000i −0.886796 + 0.886796i −0.994214 0.107418i \(-0.965742\pi\)
0.107418 + 0.994214i \(0.465742\pi\)
\(104\) 0 0
\(105\) 1.00000 + 3.00000i 0.0975900 + 0.292770i
\(106\) 0 0
\(107\) 4.24264 4.24264i 0.410152 0.410152i −0.471640 0.881791i \(-0.656338\pi\)
0.881791 + 0.471640i \(0.156338\pi\)
\(108\) 0 0
\(109\) −8.48528 −0.812743 −0.406371 0.913708i \(-0.633206\pi\)
−0.406371 + 0.913708i \(0.633206\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 0 0
\(113\) 8.00000 + 8.00000i 0.752577 + 0.752577i 0.974959 0.222383i \(-0.0713835\pi\)
−0.222383 + 0.974959i \(0.571383\pi\)
\(114\) 0 0
\(115\) −2.82843 + 5.65685i −0.263752 + 0.527504i
\(116\) 0 0
\(117\) −1.41421 1.41421i −0.130744 0.130744i
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) −1.41421 1.41421i −0.127515 0.127515i
\(124\) 0 0
\(125\) 6.36396 9.19239i 0.569210 0.822192i
\(126\) 0 0
\(127\) 13.0000 + 13.0000i 1.15356 + 1.15356i 0.985833 + 0.167731i \(0.0536439\pi\)
0.167731 + 0.985833i \(0.446356\pi\)
\(128\) 0 0
\(129\) 4.00000i 0.352180i
\(130\) 0 0
\(131\) −1.41421 −0.123560 −0.0617802 0.998090i \(-0.519678\pi\)
−0.0617802 + 0.998090i \(0.519678\pi\)
\(132\) 0 0
\(133\) −5.65685 + 5.65685i −0.490511 + 0.490511i
\(134\) 0 0
\(135\) −1.00000 + 2.00000i −0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 2.82843i 0.239904i 0.992780 + 0.119952i \(0.0382741\pi\)
−0.992780 + 0.119952i \(0.961726\pi\)
\(140\) 0 0
\(141\) 11.3137i 0.952786i
\(142\) 0 0
\(143\) 2.00000 2.00000i 0.167248 0.167248i
\(144\) 0 0
\(145\) 3.00000 1.00000i 0.249136 0.0830455i
\(146\) 0 0
\(147\) 3.53553 3.53553i 0.291606 0.291606i
\(148\) 0 0
\(149\) 9.89949 0.810998 0.405499 0.914095i \(-0.367098\pi\)
0.405499 + 0.914095i \(0.367098\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i −0.945537 0.325515i \(-0.894462\pi\)
0.945537 0.325515i \(-0.105538\pi\)
\(152\) 0 0
\(153\) −2.00000 2.00000i −0.161690 0.161690i
\(154\) 0 0
\(155\) 7.07107 + 21.2132i 0.567962 + 1.70389i
\(156\) 0 0
\(157\) −7.07107 7.07107i −0.564333 0.564333i 0.366203 0.930535i \(-0.380658\pi\)
−0.930535 + 0.366203i \(0.880658\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) −5.65685 5.65685i −0.443079 0.443079i 0.449966 0.893045i \(-0.351436\pi\)
−0.893045 + 0.449966i \(0.851436\pi\)
\(164\) 0 0
\(165\) −2.82843 1.41421i −0.220193 0.110096i
\(166\) 0 0
\(167\) −10.0000 10.0000i −0.773823 0.773823i 0.204949 0.978773i \(-0.434297\pi\)
−0.978773 + 0.204949i \(0.934297\pi\)
\(168\) 0 0
\(169\) 9.00000i 0.692308i
\(170\) 0 0
\(171\) −5.65685 −0.432590
\(172\) 0 0
\(173\) 11.3137 11.3137i 0.860165 0.860165i −0.131192 0.991357i \(-0.541880\pi\)
0.991357 + 0.131192i \(0.0418803\pi\)
\(174\) 0 0
\(175\) 7.00000 + 1.00000i 0.529150 + 0.0755929i
\(176\) 0 0
\(177\) 3.00000 3.00000i 0.225494 0.225494i
\(178\) 0 0
\(179\) 18.3848i 1.37414i 0.726590 + 0.687071i \(0.241104\pi\)
−0.726590 + 0.687071i \(0.758896\pi\)
\(180\) 0 0
\(181\) 19.7990i 1.47165i 0.677173 + 0.735824i \(0.263205\pi\)
−0.677173 + 0.735824i \(0.736795\pi\)
\(182\) 0 0
\(183\) 2.00000 2.00000i 0.147844 0.147844i
\(184\) 0 0
\(185\) 12.0000 + 6.00000i 0.882258 + 0.441129i
\(186\) 0 0
\(187\) 2.82843 2.82843i 0.206835 0.206835i
\(188\) 0 0
\(189\) −1.41421 −0.102869
\(190\) 0 0
\(191\) 12.0000i 0.868290i 0.900843 + 0.434145i \(0.142949\pi\)
−0.900843 + 0.434145i \(0.857051\pi\)
\(192\) 0 0
\(193\) 5.00000 + 5.00000i 0.359908 + 0.359908i 0.863779 0.503871i \(-0.168091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) −4.24264 + 1.41421i −0.303822 + 0.101274i
\(196\) 0 0
\(197\) −9.89949 9.89949i −0.705310 0.705310i 0.260235 0.965545i \(-0.416200\pi\)
−0.965545 + 0.260235i \(0.916200\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) 1.41421 + 1.41421i 0.0992583 + 0.0992583i
\(204\) 0 0
\(205\) −4.24264 + 1.41421i −0.296319 + 0.0987730i
\(206\) 0 0
\(207\) −2.00000 2.00000i −0.139010 0.139010i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) −14.1421 −0.973585 −0.486792 0.873518i \(-0.661833\pi\)
−0.486792 + 0.873518i \(0.661833\pi\)
\(212\) 0 0
\(213\) −5.65685 + 5.65685i −0.387601 + 0.387601i
\(214\) 0 0
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) −10.0000 + 10.0000i −0.678844 + 0.678844i
\(218\) 0 0
\(219\) 4.24264i 0.286691i
\(220\) 0 0
\(221\) 5.65685i 0.380521i
\(222\) 0 0
\(223\) −7.00000 + 7.00000i −0.468755 + 0.468755i −0.901511 0.432756i \(-0.857541\pi\)
0.432756 + 0.901511i \(0.357541\pi\)
\(224\) 0 0
\(225\) 3.00000 + 4.00000i 0.200000 + 0.266667i
\(226\) 0 0
\(227\) 14.1421 14.1421i 0.938647 0.938647i −0.0595772 0.998224i \(-0.518975\pi\)
0.998224 + 0.0595772i \(0.0189752\pi\)
\(228\) 0 0
\(229\) −11.3137 −0.747631 −0.373815 0.927503i \(-0.621951\pi\)
−0.373815 + 0.927503i \(0.621951\pi\)
\(230\) 0 0
\(231\) 2.00000i 0.131590i
\(232\) 0 0
\(233\) −18.0000 18.0000i −1.17922 1.17922i −0.979943 0.199276i \(-0.936141\pi\)
−0.199276 0.979943i \(-0.563859\pi\)
\(234\) 0 0
\(235\) 22.6274 + 11.3137i 1.47605 + 0.738025i
\(236\) 0 0
\(237\) 7.07107 + 7.07107i 0.459315 + 0.459315i
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) −3.53553 10.6066i −0.225877 0.677631i
\(246\) 0 0
\(247\) −8.00000 8.00000i −0.509028 0.509028i
\(248\) 0 0
\(249\) 10.0000i 0.633724i
\(250\) 0 0
\(251\) −24.0416 −1.51749 −0.758747 0.651385i \(-0.774188\pi\)
−0.758747 + 0.651385i \(0.774188\pi\)
\(252\) 0 0
\(253\) 2.82843 2.82843i 0.177822 0.177822i
\(254\) 0 0
\(255\) −6.00000 + 2.00000i −0.375735 + 0.125245i
\(256\) 0 0
\(257\) −4.00000 + 4.00000i −0.249513 + 0.249513i −0.820771 0.571258i \(-0.806456\pi\)
0.571258 + 0.820771i \(0.306456\pi\)
\(258\) 0 0
\(259\) 8.48528i 0.527250i
\(260\) 0 0
\(261\) 1.41421i 0.0875376i
\(262\) 0 0
\(263\) 6.00000 6.00000i 0.369976 0.369976i −0.497492 0.867468i \(-0.665746\pi\)
0.867468 + 0.497492i \(0.165746\pi\)
\(264\) 0 0
\(265\) 6.00000 12.0000i 0.368577 0.737154i
\(266\) 0 0
\(267\) 7.07107 7.07107i 0.432742 0.432742i
\(268\) 0 0
\(269\) 18.3848 1.12094 0.560470 0.828175i \(-0.310621\pi\)
0.560470 + 0.828175i \(0.310621\pi\)
\(270\) 0 0
\(271\) 16.0000i 0.971931i −0.873978 0.485965i \(-0.838468\pi\)
0.873978 0.485965i \(-0.161532\pi\)
\(272\) 0 0
\(273\) −2.00000 2.00000i −0.121046 0.121046i
\(274\) 0 0
\(275\) −5.65685 + 4.24264i −0.341121 + 0.255841i
\(276\) 0 0
\(277\) 18.3848 + 18.3848i 1.10463 + 1.10463i 0.993844 + 0.110790i \(0.0353382\pi\)
0.110790 + 0.993844i \(0.464662\pi\)
\(278\) 0 0
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) −5.65685 + 11.3137i −0.335083 + 0.670166i
\(286\) 0 0
\(287\) −2.00000 2.00000i −0.118056 0.118056i
\(288\) 0 0
\(289\) 9.00000i 0.529412i
\(290\) 0 0
\(291\) 4.24264 0.248708
\(292\) 0 0
\(293\) 21.2132 21.2132i 1.23929 1.23929i 0.278996 0.960292i \(-0.409998\pi\)
0.960292 0.278996i \(-0.0900018\pi\)
\(294\) 0 0
\(295\) −3.00000 9.00000i −0.174667 0.524000i
\(296\) 0 0
\(297\) 1.00000 1.00000i 0.0580259 0.0580259i
\(298\) 0 0
\(299\) 5.65685i 0.327144i
\(300\) 0 0
\(301\) 5.65685i 0.326056i
\(302\) 0 0
\(303\) 13.0000 13.0000i 0.746830 0.746830i
\(304\) 0 0
\(305\) −2.00000 6.00000i −0.114520 0.343559i
\(306\) 0 0
\(307\) 19.7990 19.7990i 1.12999 1.12999i 0.139810 0.990178i \(-0.455351\pi\)
0.990178 0.139810i \(-0.0446491\pi\)
\(308\) 0 0
\(309\) −12.7279 −0.724066
\(310\) 0 0
\(311\) 20.0000i 1.13410i −0.823685 0.567048i \(-0.808085\pi\)
0.823685 0.567048i \(-0.191915\pi\)
\(312\) 0 0
\(313\) 5.00000 + 5.00000i 0.282617 + 0.282617i 0.834152 0.551535i \(-0.185958\pi\)
−0.551535 + 0.834152i \(0.685958\pi\)
\(314\) 0 0
\(315\) −1.41421 + 2.82843i −0.0796819 + 0.159364i
\(316\) 0 0
\(317\) 8.48528 + 8.48528i 0.476581 + 0.476581i 0.904036 0.427456i \(-0.140590\pi\)
−0.427456 + 0.904036i \(0.640590\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −11.3137 11.3137i −0.629512 0.629512i
\(324\) 0 0
\(325\) −1.41421 + 9.89949i −0.0784465 + 0.549125i
\(326\) 0 0
\(327\) −6.00000 6.00000i −0.331801 0.331801i
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) −33.9411 −1.86557 −0.932786 0.360429i \(-0.882630\pi\)
−0.932786 + 0.360429i \(0.882630\pi\)
\(332\) 0 0
\(333\) −4.24264 + 4.24264i −0.232495 + 0.232495i
\(334\) 0 0
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) 0 0
\(337\) 3.00000 3.00000i 0.163420 0.163420i −0.620660 0.784080i \(-0.713135\pi\)
0.784080 + 0.620660i \(0.213135\pi\)
\(338\) 0 0
\(339\) 11.3137i 0.614476i
\(340\) 0 0
\(341\) 14.1421i 0.765840i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) −6.00000 + 2.00000i −0.323029 + 0.107676i
\(346\) 0 0
\(347\) 14.1421 14.1421i 0.759190 0.759190i −0.216985 0.976175i \(-0.569622\pi\)
0.976175 + 0.216985i \(0.0696224\pi\)
\(348\) 0 0
\(349\) 19.7990 1.05982 0.529908 0.848055i \(-0.322227\pi\)
0.529908 + 0.848055i \(0.322227\pi\)
\(350\) 0 0
\(351\) 2.00000i 0.106752i
\(352\) 0 0
\(353\) −2.00000 2.00000i −0.106449 0.106449i 0.651876 0.758325i \(-0.273982\pi\)
−0.758325 + 0.651876i \(0.773982\pi\)
\(354\) 0 0
\(355\) 5.65685 + 16.9706i 0.300235 + 0.900704i
\(356\) 0 0
\(357\) −2.82843 2.82843i −0.149696 0.149696i
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −13.0000 −0.684211
\(362\) 0 0
\(363\) −6.36396 6.36396i −0.334021 0.334021i
\(364\) 0 0
\(365\) 8.48528 + 4.24264i 0.444140 + 0.222070i
\(366\) 0 0
\(367\) −9.00000 9.00000i −0.469796 0.469796i 0.432052 0.901849i \(-0.357790\pi\)
−0.901849 + 0.432052i \(0.857790\pi\)
\(368\) 0 0
\(369\) 2.00000i 0.104116i
\(370\) 0 0
\(371\) 8.48528 0.440534
\(372\) 0 0
\(373\) −18.3848 + 18.3848i −0.951928 + 0.951928i −0.998896 0.0469687i \(-0.985044\pi\)
0.0469687 + 0.998896i \(0.485044\pi\)
\(374\) 0 0
\(375\) 11.0000 2.00000i 0.568038 0.103280i
\(376\) 0 0
\(377\) −2.00000 + 2.00000i −0.103005 + 0.103005i
\(378\) 0 0
\(379\) 25.4558i 1.30758i −0.756677 0.653789i \(-0.773178\pi\)
0.756677 0.653789i \(-0.226822\pi\)
\(380\) 0 0
\(381\) 18.3848i 0.941881i
\(382\) 0 0
\(383\) −8.00000 + 8.00000i −0.408781 + 0.408781i −0.881313 0.472532i \(-0.843340\pi\)
0.472532 + 0.881313i \(0.343340\pi\)
\(384\) 0 0
\(385\) −4.00000 2.00000i −0.203859 0.101929i
\(386\) 0 0
\(387\) 2.82843 2.82843i 0.143777 0.143777i
\(388\) 0 0
\(389\) 9.89949 0.501924 0.250962 0.967997i \(-0.419253\pi\)
0.250962 + 0.967997i \(0.419253\pi\)
\(390\) 0 0
\(391\) 8.00000i 0.404577i
\(392\) 0 0
\(393\) −1.00000 1.00000i −0.0504433 0.0504433i
\(394\) 0 0
\(395\) 21.2132 7.07107i 1.06735 0.355784i
\(396\) 0 0
\(397\) −15.5563 15.5563i −0.780751 0.780751i 0.199207 0.979957i \(-0.436163\pi\)
−0.979957 + 0.199207i \(0.936163\pi\)
\(398\) 0 0
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) −14.1421 14.1421i −0.704470 0.704470i
\(404\) 0 0
\(405\) −2.12132 + 0.707107i −0.105409 + 0.0351364i
\(406\) 0 0
\(407\) −6.00000 6.00000i −0.297409 0.297409i
\(408\) 0 0
\(409\) 8.00000i 0.395575i 0.980245 + 0.197787i \(0.0633755\pi\)
−0.980245 + 0.197787i \(0.936624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.24264 4.24264i 0.208767 0.208767i
\(414\) 0 0
\(415\) −20.0000 10.0000i −0.981761 0.490881i
\(416\) 0 0
\(417\) −2.00000 + 2.00000i −0.0979404 + 0.0979404i
\(418\) 0 0
\(419\) 24.0416i 1.17451i 0.809402 + 0.587255i \(0.199792\pi\)
−0.809402 + 0.587255i \(0.800208\pi\)
\(420\) 0 0
\(421\) 39.5980i 1.92989i 0.262457 + 0.964944i \(0.415467\pi\)
−0.262457 + 0.964944i \(0.584533\pi\)
\(422\) 0 0
\(423\) −8.00000 + 8.00000i −0.388973 + 0.388973i
\(424\) 0 0
\(425\) −2.00000 + 14.0000i −0.0970143 + 0.679100i
\(426\) 0 0
\(427\) 2.82843 2.82843i 0.136877 0.136877i
\(428\) 0 0
\(429\) 2.82843 0.136558
\(430\) 0 0
\(431\) 36.0000i 1.73406i −0.498257 0.867029i \(-0.666026\pi\)
0.498257 0.867029i \(-0.333974\pi\)
\(432\) 0 0
\(433\) 21.0000 + 21.0000i 1.00920 + 1.00920i 0.999957 + 0.00923827i \(0.00294067\pi\)
0.00923827 + 0.999957i \(0.497059\pi\)
\(434\) 0 0
\(435\) 2.82843 + 1.41421i 0.135613 + 0.0678064i
\(436\) 0 0
\(437\) −11.3137 11.3137i −0.541208 0.541208i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) −19.7990 19.7990i −0.940678 0.940678i 0.0576580 0.998336i \(-0.481637\pi\)
−0.998336 + 0.0576580i \(0.981637\pi\)
\(444\) 0 0
\(445\) −7.07107 21.2132i −0.335201 1.00560i
\(446\) 0 0
\(447\) 7.00000 + 7.00000i 0.331089 + 0.331089i
\(448\) 0 0
\(449\) 34.0000i 1.60456i −0.596948 0.802280i \(-0.703620\pi\)
0.596948 0.802280i \(-0.296380\pi\)
\(450\) 0 0
\(451\) 2.82843 0.133185
\(452\) 0 0
\(453\) 5.65685 5.65685i 0.265782 0.265782i
\(454\) 0 0
\(455\) −6.00000 + 2.00000i −0.281284 + 0.0937614i
\(456\) 0 0
\(457\) 21.0000 21.0000i 0.982339 0.982339i −0.0175082 0.999847i \(-0.505573\pi\)
0.999847 + 0.0175082i \(0.00557330\pi\)
\(458\) 0 0
\(459\) 2.82843i 0.132020i
\(460\) 0 0
\(461\) 4.24264i 0.197599i −0.995107 0.0987997i \(-0.968500\pi\)
0.995107 0.0987997i \(-0.0315003\pi\)
\(462\) 0 0
\(463\) 27.0000 27.0000i 1.25480 1.25480i 0.301252 0.953545i \(-0.402596\pi\)
0.953545 0.301252i \(-0.0974045\pi\)
\(464\) 0 0
\(465\) −10.0000 + 20.0000i −0.463739 + 0.927478i
\(466\) 0 0
\(467\) 26.8701 26.8701i 1.24340 1.24340i 0.284816 0.958582i \(-0.408068\pi\)
0.958582 0.284816i \(-0.0919324\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 0 0
\(471\) 10.0000i 0.460776i
\(472\) 0 0
\(473\) 4.00000 + 4.00000i 0.183920 + 0.183920i
\(474\) 0 0
\(475\) 16.9706 + 22.6274i 0.778663 + 1.03822i
\(476\) 0 0
\(477\) 4.24264 + 4.24264i 0.194257 + 0.194257i
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) −2.82843 2.82843i −0.128698 0.128698i
\(484\) 0 0
\(485\) 4.24264 8.48528i 0.192648 0.385297i
\(486\) 0 0
\(487\) −9.00000 9.00000i −0.407829 0.407829i 0.473152 0.880981i \(-0.343116\pi\)
−0.880981 + 0.473152i \(0.843116\pi\)
\(488\) 0 0
\(489\) 8.00000i 0.361773i
\(490\) 0 0
\(491\) −29.6985 −1.34027 −0.670137 0.742237i \(-0.733765\pi\)
−0.670137 + 0.742237i \(0.733765\pi\)
\(492\) 0 0
\(493\) −2.82843 + 2.82843i −0.127386 + 0.127386i
\(494\) 0 0
\(495\) −1.00000 3.00000i −0.0449467 0.134840i
\(496\) 0 0
\(497\) −8.00000 + 8.00000i −0.358849 + 0.358849i
\(498\) 0 0
\(499\) 33.9411i 1.51941i 0.650266 + 0.759707i \(0.274658\pi\)
−0.650266 + 0.759707i \(0.725342\pi\)
\(500\) 0 0
\(501\) 14.1421i 0.631824i
\(502\) 0 0
\(503\) 16.0000 16.0000i 0.713405 0.713405i −0.253841 0.967246i \(-0.581694\pi\)
0.967246 + 0.253841i \(0.0816941\pi\)
\(504\) 0 0
\(505\) −13.0000 39.0000i −0.578492 1.73548i
\(506\) 0 0
\(507\) −6.36396 + 6.36396i −0.282633 + 0.282633i
\(508\) 0 0
\(509\) −18.3848 −0.814891 −0.407445 0.913230i \(-0.633580\pi\)
−0.407445 + 0.913230i \(0.633580\pi\)
\(510\) 0 0
\(511\) 6.00000i 0.265424i
\(512\) 0 0
\(513\) −4.00000 4.00000i −0.176604 0.176604i
\(514\) 0 0
\(515\) −12.7279 + 25.4558i −0.560859 + 1.12172i
\(516\) 0 0
\(517\) −11.3137 11.3137i −0.497576 0.497576i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 5.65685 + 5.65685i 0.247357 + 0.247357i 0.819885 0.572528i \(-0.194037\pi\)
−0.572528 + 0.819885i \(0.694037\pi\)
\(524\) 0 0
\(525\) 4.24264 + 5.65685i 0.185164 + 0.246885i
\(526\) 0 0
\(527\) −20.0000 20.0000i −0.871214 0.871214i
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 4.24264 0.184115
\(532\) 0 0
\(533\) 2.82843 2.82843i 0.122513 0.122513i
\(534\) 0 0
\(535\) 6.00000 12.0000i 0.259403 0.518805i
\(536\) 0 0
\(537\) −13.0000 + 13.0000i −0.560991 + 0.560991i
\(538\) 0 0
\(539\) 7.07107i 0.304572i
\(540\) 0 0
\(541\) 25.4558i 1.09443i −0.836991 0.547216i \(-0.815688\pi\)
0.836991 0.547216i \(-0.184312\pi\)
\(542\) 0 0
\(543\) −14.0000 + 14.0000i −0.600798 + 0.600798i
\(544\) 0 0
\(545\) −18.0000 + 6.00000i −0.771035 + 0.257012i
\(546\) 0 0
\(547\) 5.65685 5.65685i 0.241870 0.241870i −0.575754 0.817623i \(-0.695291\pi\)
0.817623 + 0.575754i \(0.195291\pi\)
\(548\) 0 0
\(549\) 2.82843 0.120714
\(550\) 0 0
\(551\) 8.00000i 0.340811i
\(552\) 0 0
\(553\) 10.0000 + 10.0000i 0.425243 + 0.425243i
\(554\) 0 0
\(555\) 4.24264 + 12.7279i 0.180090 + 0.540270i
\(556\) 0 0
\(557\) 9.89949 + 9.89949i 0.419455 + 0.419455i 0.885016 0.465561i \(-0.154147\pi\)
−0.465561 + 0.885016i \(0.654147\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −2.82843 2.82843i −0.119204 0.119204i 0.644988 0.764192i \(-0.276862\pi\)
−0.764192 + 0.644988i \(0.776862\pi\)
\(564\) 0 0
\(565\) 22.6274 + 11.3137i 0.951943 + 0.475971i
\(566\) 0 0
\(567\) −1.00000 1.00000i −0.0419961 0.0419961i
\(568\) 0 0
\(569\) 30.0000i 1.25767i 0.777541 + 0.628833i \(0.216467\pi\)
−0.777541 + 0.628833i \(0.783533\pi\)
\(570\) 0 0
\(571\) 5.65685 0.236732 0.118366 0.992970i \(-0.462234\pi\)
0.118366 + 0.992970i \(0.462234\pi\)
\(572\) 0 0
\(573\) −8.48528 + 8.48528i −0.354478 + 0.354478i
\(574\) 0 0
\(575\) −2.00000 + 14.0000i −0.0834058 + 0.583840i
\(576\) 0 0
\(577\) 27.0000 27.0000i 1.12402 1.12402i 0.132895 0.991130i \(-0.457573\pi\)
0.991130 0.132895i \(-0.0424272\pi\)
\(578\) 0 0
\(579\) 7.07107i 0.293864i
\(580\) 0 0
\(581\) 14.1421i 0.586715i
\(582\) 0 0
\(583\) −6.00000 + 6.00000i −0.248495 + 0.248495i
\(584\) 0 0
\(585\) −4.00000 2.00000i −0.165380 0.0826898i
\(586\) 0 0
\(587\) −15.5563 + 15.5563i −0.642079 + 0.642079i −0.951066 0.308987i \(-0.900010\pi\)
0.308987 + 0.951066i \(0.400010\pi\)
\(588\) 0 0
\(589\) −56.5685 −2.33087
\(590\) 0 0
\(591\) 14.0000i 0.575883i
\(592\) 0 0
\(593\) −16.0000 16.0000i −0.657041 0.657041i 0.297638 0.954679i \(-0.403801\pi\)
−0.954679 + 0.297638i \(0.903801\pi\)
\(594\) 0 0
\(595\) −8.48528 + 2.82843i −0.347863 + 0.115954i
\(596\) 0 0
\(597\) −5.65685 5.65685i −0.231520 0.231520i
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 8.48528 + 8.48528i 0.345547 + 0.345547i
\(604\) 0 0
\(605\) −19.0919 + 6.36396i −0.776195 + 0.258732i
\(606\) 0 0
\(607\) −21.0000 21.0000i −0.852364 0.852364i 0.138060 0.990424i \(-0.455913\pi\)
−0.990424 + 0.138060i \(0.955913\pi\)
\(608\) 0 0
\(609\) 2.00000i 0.0810441i
\(610\) 0 0
\(611\) −22.6274 −0.915407
\(612\) 0 0
\(613\) −7.07107 + 7.07107i −0.285598 + 0.285598i −0.835337 0.549739i \(-0.814727\pi\)
0.549739 + 0.835337i \(0.314727\pi\)
\(614\) 0 0
\(615\) −4.00000 2.00000i −0.161296 0.0806478i
\(616\) 0 0
\(617\) 2.00000 2.00000i 0.0805170 0.0805170i −0.665701 0.746218i \(-0.731868\pi\)
0.746218 + 0.665701i \(0.231868\pi\)
\(618\) 0 0
\(619\) 8.48528i 0.341052i 0.985353 + 0.170526i \(0.0545467\pi\)
−0.985353 + 0.170526i \(0.945453\pi\)
\(620\) 0 0
\(621\) 2.82843i 0.113501i
\(622\) 0 0
\(623\) 10.0000 10.0000i 0.400642 0.400642i
\(624\) 0 0
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) 0 0
\(627\) 5.65685 5.65685i 0.225913 0.225913i
\(628\) 0 0
\(629\) −16.9706 −0.676661
\(630\) 0 0
\(631\) 6.00000i 0.238856i 0.992843 + 0.119428i \(0.0381061\pi\)
−0.992843 + 0.119428i \(0.961894\pi\)
\(632\) 0 0
\(633\) −10.0000 10.0000i −0.397464 0.397464i
\(634\) 0 0
\(635\) 36.7696 + 18.3848i 1.45916 + 0.729578i
\(636\) 0 0
\(637\) 7.07107 + 7.07107i 0.280166 + 0.280166i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 22.0000 0.868948 0.434474 0.900684i \(-0.356934\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(642\) 0 0
\(643\) −31.1127 31.1127i −1.22697 1.22697i −0.965106 0.261859i \(-0.915665\pi\)
−0.261859 0.965106i \(-0.584335\pi\)
\(644\) 0 0
\(645\) −2.82843 8.48528i −0.111369 0.334108i
\(646\) 0 0
\(647\) 24.0000 + 24.0000i 0.943537 + 0.943537i 0.998489 0.0549517i \(-0.0175005\pi\)
−0.0549517 + 0.998489i \(0.517500\pi\)
\(648\) 0 0
\(649\) 6.00000i 0.235521i
\(650\) 0 0
\(651\) −14.1421 −0.554274
\(652\) 0 0
\(653\) −2.82843 + 2.82843i −0.110685 + 0.110685i −0.760280 0.649595i \(-0.774938\pi\)
0.649595 + 0.760280i \(0.274938\pi\)
\(654\) 0 0
\(655\) −3.00000 + 1.00000i −0.117220 + 0.0390732i
\(656\) 0 0
\(657\) −3.00000 + 3.00000i −0.117041 + 0.117041i
\(658\) 0 0
\(659\) 4.24264i 0.165270i 0.996580 + 0.0826349i \(0.0263335\pi\)
−0.996580 + 0.0826349i \(0.973666\pi\)
\(660\) 0 0
\(661\) 14.1421i 0.550065i −0.961435 0.275033i \(-0.911311\pi\)
0.961435 0.275033i \(-0.0886887\pi\)
\(662\) 0 0
\(663\) 4.00000 4.00000i 0.155347 0.155347i
\(664\) 0 0
\(665\) −8.00000 + 16.0000i −0.310227 + 0.620453i
\(666\) 0 0
\(667\) −2.82843 + 2.82843i −0.109517 + 0.109517i
\(668\) 0 0
\(669\) −9.89949 −0.382737
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) −5.00000 5.00000i −0.192736 0.192736i 0.604141 0.796877i \(-0.293516\pi\)
−0.796877 + 0.604141i \(0.793516\pi\)
\(674\) 0 0
\(675\) −0.707107 + 4.94975i −0.0272166 + 0.190516i
\(676\) 0 0
\(677\) 8.48528 + 8.48528i 0.326116 + 0.326116i 0.851107 0.524992i \(-0.175932\pi\)
−0.524992 + 0.851107i \(0.675932\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 21.2132 + 21.2132i 0.811701 + 0.811701i 0.984889 0.173188i \(-0.0554069\pi\)
−0.173188 + 0.984889i \(0.555407\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −8.00000 8.00000i −0.305219 0.305219i
\(688\) 0 0
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) 16.9706 0.645591 0.322795 0.946469i \(-0.395377\pi\)
0.322795 + 0.946469i \(0.395377\pi\)
\(692\) 0 0
\(693\) 1.41421 1.41421i 0.0537215 0.0537215i
\(694\) 0 0
\(695\) 2.00000 + 6.00000i 0.0758643 + 0.227593i
\(696\) 0 0
\(697\) 4.00000 4.00000i 0.151511 0.151511i
\(698\) 0 0
\(699\) 25.4558i 0.962828i
\(700\) 0 0
\(701\) 9.89949i 0.373899i 0.982370 + 0.186949i \(0.0598600\pi\)
−0.982370 + 0.186949i \(0.940140\pi\)
\(702\) 0 0
\(703\) −24.0000 + 24.0000i −0.905177 + 0.905177i
\(704\) 0 0
\(705\) 8.00000 + 24.0000i 0.301297 + 0.903892i
\(706\) 0 0
\(707\) 18.3848 18.3848i 0.691431 0.691431i
\(708\) 0 0
\(709\) 16.9706 0.637343 0.318671 0.947865i \(-0.396763\pi\)
0.318671 + 0.947865i \(0.396763\pi\)
\(710\) 0 0
\(711\) 10.0000i 0.375029i
\(712\) 0 0
\(713\) −20.0000 20.0000i −0.749006 0.749006i
\(714\) 0 0
\(715\) 2.82843 5.65685i 0.105777 0.211554i
\(716\) 0 0
\(717\) 11.3137 + 11.3137i 0.422518 + 0.422518i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) −19.7990 19.7990i −0.736332 0.736332i
\(724\) 0 0
\(725\) 5.65685 4.24264i 0.210090 0.157568i
\(726\) 0 0
\(727\) 27.0000 + 27.0000i 1.00137 + 1.00137i 0.999999 + 0.00137552i \(0.000437841\pi\)
0.00137552 + 0.999999i \(0.499562\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 11.3137 0.418453
\(732\) 0 0
\(733\) 21.2132 21.2132i 0.783528 0.783528i −0.196897 0.980424i \(-0.563086\pi\)
0.980424 + 0.196897i \(0.0630864\pi\)
\(734\) 0 0
\(735\) 5.00000 10.0000i 0.184428 0.368856i
\(736\) 0 0
\(737\) −12.0000 + 12.0000i −0.442026 + 0.442026i
\(738\) 0 0
\(739\) 28.2843i 1.04045i 0.854028 + 0.520227i \(0.174153\pi\)
−0.854028 + 0.520227i \(0.825847\pi\)
\(740\) 0 0
\(741\) 11.3137i 0.415619i
\(742\) 0 0
\(743\) −16.0000 + 16.0000i −0.586983 + 0.586983i −0.936813 0.349830i \(-0.886239\pi\)
0.349830 + 0.936813i \(0.386239\pi\)
\(744\) 0 0
\(745\) 21.0000 7.00000i 0.769380 0.256460i
\(746\) 0 0
\(747\) 7.07107 7.07107i 0.258717 0.258717i
\(748\) 0 0
\(749\) 8.48528 0.310045
\(750\) 0 0
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 0 0
\(753\) −17.0000 17.0000i −0.619514 0.619514i
\(754\) 0 0
\(755\) −5.65685 16.9706i −0.205874 0.617622i
\(756\) 0 0
\(757\) 15.5563 + 15.5563i 0.565405 + 0.565405i 0.930838 0.365433i \(-0.119079\pi\)
−0.365433 + 0.930838i \(0.619079\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) −8.48528 8.48528i −0.307188 0.307188i
\(764\) 0 0
\(765\) −5.65685 2.82843i −0.204524 0.102262i
\(766\) 0 0
\(767\) 6.00000 + 6.00000i 0.216647 + 0.216647i
\(768\) 0 0
\(769\) 50.0000i 1.80305i 0.432731 + 0.901523i \(0.357550\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(770\) 0 0
\(771\) −5.65685 −0.203727
\(772\) 0 0
\(773\) −25.4558 + 25.4558i −0.915583 + 0.915583i −0.996704 0.0811212i \(-0.974150\pi\)
0.0811212 + 0.996704i \(0.474150\pi\)
\(774\) 0 0
\(775\) 30.0000 + 40.0000i 1.07763 + 1.43684i
\(776\) 0 0
\(777\) −6.00000 + 6.00000i −0.215249 + 0.215249i
\(778\) 0 0
\(779\) 11.3137i 0.405356i
\(780\) 0 0
\(781\) 11.3137i 0.404836i
\(782\) 0 0
\(783\) −1.00000 + 1.00000i −0.0357371 + 0.0357371i
\(784\) 0 0
\(785\) −20.0000 10.0000i −0.713831 0.356915i
\(786\) 0 0
\(787\) 36.7696 36.7696i 1.31069 1.31069i 0.389789 0.920904i \(-0.372548\pi\)
0.920904 0.389789i \(-0.127452\pi\)
\(788\) 0 0
\(789\) 8.48528 0.302084
\(790\) 0 0
\(791\) 16.0000i 0.568895i
\(792\) 0 0
\(793\) 4.00000 + 4.00000i 0.142044 + 0.142044i
\(794\) 0 0
\(795\) 12.7279 4.24264i 0.451413 0.150471i
\(796\) 0 0
\(797\) −5.65685 5.65685i −0.200376 0.200376i 0.599785 0.800161i \(-0.295253\pi\)
−0.800161 + 0.599785i \(0.795253\pi\)
\(798\) 0 0
\(799\) −32.0000 −1.13208
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) −4.24264 4.24264i −0.149720 0.149720i
\(804\) 0 0
\(805\) −8.48528 + 2.82843i −0.299067 + 0.0996890i
\(806\) 0 0
\(807\) 13.0000 + 13.0000i 0.457622 + 0.457622i
\(808\) 0 0
\(809\) 18.0000i 0.632846i −0.948618 0.316423i \(-0.897518\pi\)
0.948618 0.316423i \(-0.102482\pi\)
\(810\) 0 0
\(811\) −42.4264 −1.48979 −0.744896 0.667180i \(-0.767501\pi\)
−0.744896 + 0.667180i \(0.767501\pi\)
\(812\) 0 0
\(813\) 11.3137 11.3137i 0.396789 0.396789i
\(814\) 0 0
\(815\) −16.0000 8.00000i −0.560456 0.280228i
\(816\) 0 0
\(817\) 16.0000 16.0000i 0.559769 0.559769i
\(818\) 0 0
\(819\) 2.82843i 0.0988332i
\(820\) 0 0
\(821\) 12.7279i 0.444208i 0.975023 + 0.222104i \(0.0712924\pi\)
−0.975023 + 0.222104i \(0.928708\pi\)
\(822\) 0 0
\(823\) 3.00000 3.00000i 0.104573 0.104573i −0.652884 0.757458i \(-0.726441\pi\)
0.757458 + 0.652884i \(0.226441\pi\)
\(824\) 0 0
\(825\) −7.00000 1.00000i −0.243709 0.0348155i
\(826\) 0 0
\(827\) −8.48528 + 8.48528i −0.295062 + 0.295062i −0.839076 0.544014i \(-0.816904\pi\)
0.544014 + 0.839076i \(0.316904\pi\)
\(828\) 0 0
\(829\) 25.4558 0.884118 0.442059 0.896986i \(-0.354248\pi\)
0.442059 + 0.896986i \(0.354248\pi\)
\(830\) 0 0
\(831\) 26.0000i 0.901930i
\(832\) 0 0
\(833\) 10.0000 + 10.0000i 0.346479 + 0.346479i
\(834\) 0 0
\(835\) −28.2843 14.1421i −0.978818 0.489409i
\(836\) 0 0
\(837\) −7.07107 7.07107i −0.244412 0.244412i
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −27.0000 −0.931034
\(842\) 0 0
\(843\) 12.7279 + 12.7279i 0.438373 + 0.438373i
\(844\) 0 0
\(845\) 6.36396 + 19.0919i 0.218927 + 0.656781i
\(846\) 0 0
\(847\) −9.00000 9.00000i −0.309244 0.309244i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.9706 −0.581743
\(852\) 0 0
\(853\) 18.3848 18.3848i 0.629483 0.629483i −0.318455 0.947938i \(-0.603164\pi\)
0.947938 + 0.318455i \(0.103164\pi\)
\(854\) 0 0
\(855\) −12.0000 + 4.00000i −0.410391 + 0.136797i
\(856\) 0 0
\(857\) 30.0000 30.0000i 1.02478 1.02478i 0.0250954 0.999685i \(-0.492011\pi\)
0.999685 0.0250954i \(-0.00798896\pi\)
\(858\) 0 0
\(859\) 25.4558i 0.868542i −0.900782 0.434271i \(-0.857006\pi\)
0.900782 0.434271i \(-0.142994\pi\)
\(860\) 0 0
\(861\) 2.82843i 0.0963925i
\(862\) 0 0
\(863\) −22.0000 + 22.0000i −0.748889 + 0.748889i −0.974271 0.225382i \(-0.927637\pi\)
0.225382 + 0.974271i \(0.427637\pi\)
\(864\) 0 0
\(865\) 16.0000 32.0000i 0.544016 1.08803i
\(866\) 0 0
\(867\) −6.36396 + 6.36396i −0.216131 + 0.216131i
\(868\) 0 0
\(869\) −14.1421 −0.479739
\(870\) 0 0
\(871\) 24.0000i 0.813209i
\(872\) 0 0
\(873\) 3.00000 + 3.00000i 0.101535 + 0.101535i
\(874\) 0 0
\(875\) 15.5563 2.82843i 0.525901 0.0956183i
\(876\) 0 0
\(877\) −35.3553 35.3553i −1.19386 1.19386i −0.975973 0.217892i \(-0.930082\pi\)
−0.217892 0.975973i \(-0.569918\pi\)
\(878\) 0 0
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 11.3137 + 11.3137i 0.380737 + 0.380737i 0.871368 0.490631i \(-0.163234\pi\)
−0.490631 + 0.871368i \(0.663234\pi\)
\(884\) 0 0
\(885\) 4.24264 8.48528i 0.142615 0.285230i
\(886\) 0 0
\(887\) 10.0000 + 10.0000i 0.335767 + 0.335767i 0.854772 0.519004i \(-0.173697\pi\)
−0.519004 + 0.854772i \(0.673697\pi\)
\(888\) 0 0
\(889\) 26.0000i 0.872012i
\(890\) 0 0
\(891\) 1.41421 0.0473779
\(892\) 0 0
\(893\) −45.2548 + 45.2548i −1.51440 + 1.51440i
\(894\) 0 0
\(895\) 13.0000 + 39.0000i 0.434542 + 1.30363i
\(896\) 0 0
\(897\) 4.00000 4.00000i 0.133556 0.133556i
\(898\) 0 0
\(899\) 14.1421i 0.471667i
\(900\) 0 0
\(901\) 16.9706i 0.565371i
\(902\) 0 0
\(903\) 4.00000 4.00000i 0.133112 0.133112i
\(904\) 0 0
\(905\) 14.0000 + 42.0000i 0.465376 + 1.39613i
\(906\) 0 0
\(907\) 22.6274 22.6274i 0.751331 0.751331i −0.223397 0.974728i \(-0.571714\pi\)
0.974728 + 0.223397i \(0.0717145\pi\)
\(908\) 0 0
\(909\) 18.3848 0.609785
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 10.0000 + 10.0000i 0.330952 + 0.330952i
\(914\) 0 0
\(915\) 2.82843 5.65685i 0.0935049 0.187010i
\(916\) 0 0
\(917\) −1.41421 1.41421i −0.0467014 0.0467014i
\(918\) 0 0
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −11.3137 11.3137i −0.372395 0.372395i
\(924\) 0 0
\(925\) 29.6985 + 4.24264i 0.976480 + 0.139497i
\(926\) 0 0
\(927\) −9.00000 9.00000i −0.295599 0.295599i
\(928\) 0 0
\(929\) 2.00000i 0.0656179i −0.999462 0.0328089i \(-0.989555\pi\)
0.999462 0.0328089i \(-0.0104453\pi\)
\(930\) 0 0
\(931\) 28.2843 0.926980
\(932\) 0 0
\(933\) 14.1421 14.1421i 0.462993 0.462993i
\(934\) 0 0
\(935\) 4.00000 8.00000i 0.130814 0.261628i
\(936\) 0 0
\(937\) −17.0000 + 17.0000i −0.555366 + 0.555366i −0.927985 0.372619i \(-0.878460\pi\)
0.372619 + 0.927985i \(0.378460\pi\)
\(938\) 0 0
\(939\) 7.07107i 0.230756i
\(940\) 0 0
\(941\) 41.0122i 1.33696i 0.743730 + 0.668480i \(0.233055\pi\)
−0.743730 + 0.668480i \(0.766945\pi\)
\(942\) 0 0
\(943\) 4.00000 4.00000i 0.130258 0.130258i
\(944\) 0 0
\(945\) −3.00000 + 1.00000i −0.0975900 + 0.0325300i
\(946\) 0 0
\(947\) 2.82843 2.82843i 0.0919115 0.0919115i −0.659656 0.751568i \(-0.729298\pi\)
0.751568 + 0.659656i \(0.229298\pi\)
\(948\) 0 0
\(949\) −8.48528 −0.275444
\(950\) 0 0
\(951\) 12.0000i 0.389127i
\(952\) 0 0
\(953\) −4.00000 4.00000i −0.129573 0.129573i 0.639346 0.768919i \(-0.279205\pi\)
−0.768919 + 0.639346i \(0.779205\pi\)
\(954\) 0 0
\(955\) 8.48528 + 25.4558i 0.274577 + 0.823732i
\(956\) 0 0
\(957\) −1.41421 1.41421i −0.0457150 0.0457150i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 4.24264 + 4.24264i 0.136717 + 0.136717i
\(964\) 0 0
\(965\) 14.1421 + 7.07107i 0.455251 + 0.227626i
\(966\) 0 0
\(967\) 39.0000 + 39.0000i 1.25416 + 1.25416i 0.953840 + 0.300316i \(0.0970920\pi\)
0.300316 + 0.953840i \(0.402908\pi\)
\(968\) 0 0
\(969\) 16.0000i 0.513994i
\(970\) 0 0
\(971\) −26.8701 −0.862301 −0.431151 0.902280i \(-0.641892\pi\)
−0.431151 + 0.902280i \(0.641892\pi\)
\(972\) 0 0
\(973\) −2.82843 + 2.82843i −0.0906752 + 0.0906752i
\(974\) 0 0
\(975\) −8.00000 + 6.00000i −0.256205 + 0.192154i
\(976\) 0 0
\(977\) −14.0000 + 14.0000i −0.447900 + 0.447900i −0.894656 0.446756i \(-0.852579\pi\)
0.446756 + 0.894656i \(0.352579\pi\)
\(978\) 0 0
\(979\) 14.1421i 0.451985i
\(980\) 0 0
\(981\) 8.48528i 0.270914i
\(982\) 0 0
\(983\) −20.0000 + 20.0000i −0.637901 + 0.637901i −0.950037 0.312136i \(-0.898955\pi\)
0.312136 + 0.950037i \(0.398955\pi\)
\(984\) 0 0
\(985\) −28.0000 14.0000i −0.892154 0.446077i
\(986\) 0 0
\(987\) −11.3137 + 11.3137i −0.360119 + 0.360119i
\(988\) 0 0
\(989\) 11.3137 0.359755
\(990\) 0 0
\(991\) 32.0000i 1.01651i 0.861206 + 0.508257i \(0.169710\pi\)
−0.861206 + 0.508257i \(0.830290\pi\)
\(992\) 0 0
\(993\) −24.0000 24.0000i −0.761617 0.761617i
\(994\) 0 0
\(995\) −16.9706 + 5.65685i −0.538003 + 0.179334i
\(996\) 0 0
\(997\) 26.8701 + 26.8701i 0.850983 + 0.850983i 0.990254 0.139271i \(-0.0444759\pi\)
−0.139271 + 0.990254i \(0.544476\pi\)
\(998\) 0 0
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bh.f.703.2 yes 4
4.3 odd 2 1920.2.bh.c.703.1 4
5.2 odd 4 1920.2.bh.c.1087.2 yes 4
8.3 odd 2 1920.2.bh.c.703.2 yes 4
8.5 even 2 inner 1920.2.bh.f.703.1 yes 4
20.7 even 4 inner 1920.2.bh.f.1087.1 yes 4
40.27 even 4 inner 1920.2.bh.f.1087.2 yes 4
40.37 odd 4 1920.2.bh.c.1087.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.bh.c.703.1 4 4.3 odd 2
1920.2.bh.c.703.2 yes 4 8.3 odd 2
1920.2.bh.c.1087.1 yes 4 40.37 odd 4
1920.2.bh.c.1087.2 yes 4 5.2 odd 4
1920.2.bh.f.703.1 yes 4 8.5 even 2 inner
1920.2.bh.f.703.2 yes 4 1.1 even 1 trivial
1920.2.bh.f.1087.1 yes 4 20.7 even 4 inner
1920.2.bh.f.1087.2 yes 4 40.27 even 4 inner