Properties

Label 1920.2.bl.a.1249.12
Level $1920$
Weight $2$
Character 1920.1249
Analytic conductor $15.331$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(289,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bl (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1249.12
Character \(\chi\) \(=\) 1920.1249
Dual form 1920.2.bl.a.289.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.16437 + 0.561697i) q^{5} +4.51614 q^{7} +1.00000i q^{9} +(3.44000 + 3.44000i) q^{11} +(0.113618 + 0.113618i) q^{13} +(1.92762 + 1.13326i) q^{15} +5.03305i q^{17} +(0.992498 - 0.992498i) q^{19} +(-3.19340 - 3.19340i) q^{21} -8.00517 q^{23} +(4.36899 - 2.43144i) q^{25} +(0.707107 - 0.707107i) q^{27} +(1.01722 - 1.01722i) q^{29} -6.42697 q^{31} -4.86490i q^{33} +(-9.77461 + 2.53670i) q^{35} +(-1.63459 + 1.63459i) q^{37} -0.160680i q^{39} -3.35633i q^{41} +(-5.68196 + 5.68196i) q^{43} +(-0.561697 - 2.16437i) q^{45} +9.10261i q^{47} +13.3956 q^{49} +(3.55890 - 3.55890i) q^{51} +(-3.27113 + 3.27113i) q^{53} +(-9.37767 - 5.51320i) q^{55} -1.40360 q^{57} +(5.30843 + 5.30843i) q^{59} +(5.87487 - 5.87487i) q^{61} +4.51614i q^{63} +(-0.309729 - 0.182092i) q^{65} +(1.87639 + 1.87639i) q^{67} +(5.66051 + 5.66051i) q^{69} +0.635312i q^{71} +6.14208 q^{73} +(-4.80863 - 1.37006i) q^{75} +(15.5355 + 15.5355i) q^{77} +1.76500 q^{79} -1.00000 q^{81} +(6.39170 + 6.39170i) q^{83} +(-2.82705 - 10.8934i) q^{85} -1.43857 q^{87} -0.579554i q^{89} +(0.513114 + 0.513114i) q^{91} +(4.54455 + 4.54455i) q^{93} +(-1.59065 + 2.70562i) q^{95} +15.2769i q^{97} +(-3.44000 + 3.44000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{19} - 48 q^{31} - 24 q^{35} + 48 q^{49} - 8 q^{51} + 32 q^{59} - 16 q^{61} + 16 q^{65} + 16 q^{69} + 16 q^{75} - 96 q^{79} - 48 q^{81} + 32 q^{91} - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.16437 + 0.561697i −0.967936 + 0.251198i
\(6\) 0 0
\(7\) 4.51614 1.70694 0.853471 0.521140i \(-0.174493\pi\)
0.853471 + 0.521140i \(0.174493\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 3.44000 + 3.44000i 1.03720 + 1.03720i 0.999281 + 0.0379186i \(0.0120728\pi\)
0.0379186 + 0.999281i \(0.487927\pi\)
\(12\) 0 0
\(13\) 0.113618 + 0.113618i 0.0315119 + 0.0315119i 0.722687 0.691175i \(-0.242907\pi\)
−0.691175 + 0.722687i \(0.742907\pi\)
\(14\) 0 0
\(15\) 1.92762 + 1.13326i 0.497709 + 0.292607i
\(16\) 0 0
\(17\) 5.03305i 1.22069i 0.792134 + 0.610347i \(0.208970\pi\)
−0.792134 + 0.610347i \(0.791030\pi\)
\(18\) 0 0
\(19\) 0.992498 0.992498i 0.227695 0.227695i −0.584034 0.811729i \(-0.698527\pi\)
0.811729 + 0.584034i \(0.198527\pi\)
\(20\) 0 0
\(21\) −3.19340 3.19340i −0.696856 0.696856i
\(22\) 0 0
\(23\) −8.00517 −1.66919 −0.834596 0.550862i \(-0.814299\pi\)
−0.834596 + 0.550862i \(0.814299\pi\)
\(24\) 0 0
\(25\) 4.36899 2.43144i 0.873799 0.486288i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.01722 1.01722i 0.188894 0.188894i −0.606324 0.795218i \(-0.707357\pi\)
0.795218 + 0.606324i \(0.207357\pi\)
\(30\) 0 0
\(31\) −6.42697 −1.15432 −0.577159 0.816632i \(-0.695839\pi\)
−0.577159 + 0.816632i \(0.695839\pi\)
\(32\) 0 0
\(33\) 4.86490i 0.846870i
\(34\) 0 0
\(35\) −9.77461 + 2.53670i −1.65221 + 0.428781i
\(36\) 0 0
\(37\) −1.63459 + 1.63459i −0.268726 + 0.268726i −0.828587 0.559861i \(-0.810855\pi\)
0.559861 + 0.828587i \(0.310855\pi\)
\(38\) 0 0
\(39\) 0.160680i 0.0257293i
\(40\) 0 0
\(41\) 3.35633i 0.524171i −0.965045 0.262086i \(-0.915590\pi\)
0.965045 0.262086i \(-0.0844103\pi\)
\(42\) 0 0
\(43\) −5.68196 + 5.68196i −0.866491 + 0.866491i −0.992082 0.125591i \(-0.959917\pi\)
0.125591 + 0.992082i \(0.459917\pi\)
\(44\) 0 0
\(45\) −0.561697 2.16437i −0.0837328 0.322645i
\(46\) 0 0
\(47\) 9.10261i 1.32775i 0.747842 + 0.663876i \(0.231090\pi\)
−0.747842 + 0.663876i \(0.768910\pi\)
\(48\) 0 0
\(49\) 13.3956 1.91365
\(50\) 0 0
\(51\) 3.55890 3.55890i 0.498346 0.498346i
\(52\) 0 0
\(53\) −3.27113 + 3.27113i −0.449324 + 0.449324i −0.895130 0.445806i \(-0.852917\pi\)
0.445806 + 0.895130i \(0.352917\pi\)
\(54\) 0 0
\(55\) −9.37767 5.51320i −1.26449 0.743399i
\(56\) 0 0
\(57\) −1.40360 −0.185912
\(58\) 0 0
\(59\) 5.30843 + 5.30843i 0.691098 + 0.691098i 0.962474 0.271375i \(-0.0874785\pi\)
−0.271375 + 0.962474i \(0.587478\pi\)
\(60\) 0 0
\(61\) 5.87487 5.87487i 0.752199 0.752199i −0.222690 0.974889i \(-0.571484\pi\)
0.974889 + 0.222690i \(0.0714837\pi\)
\(62\) 0 0
\(63\) 4.51614i 0.568981i
\(64\) 0 0
\(65\) −0.309729 0.182092i −0.0384172 0.0225857i
\(66\) 0 0
\(67\) 1.87639 + 1.87639i 0.229238 + 0.229238i 0.812374 0.583137i \(-0.198175\pi\)
−0.583137 + 0.812374i \(0.698175\pi\)
\(68\) 0 0
\(69\) 5.66051 + 5.66051i 0.681445 + 0.681445i
\(70\) 0 0
\(71\) 0.635312i 0.0753977i 0.999289 + 0.0376988i \(0.0120028\pi\)
−0.999289 + 0.0376988i \(0.987997\pi\)
\(72\) 0 0
\(73\) 6.14208 0.718876 0.359438 0.933169i \(-0.382968\pi\)
0.359438 + 0.933169i \(0.382968\pi\)
\(74\) 0 0
\(75\) −4.80863 1.37006i −0.555253 0.158201i
\(76\) 0 0
\(77\) 15.5355 + 15.5355i 1.77044 + 1.77044i
\(78\) 0 0
\(79\) 1.76500 0.198578 0.0992888 0.995059i \(-0.468343\pi\)
0.0992888 + 0.995059i \(0.468343\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 6.39170 + 6.39170i 0.701580 + 0.701580i 0.964750 0.263169i \(-0.0847678\pi\)
−0.263169 + 0.964750i \(0.584768\pi\)
\(84\) 0 0
\(85\) −2.82705 10.8934i −0.306636 1.18155i
\(86\) 0 0
\(87\) −1.43857 −0.154231
\(88\) 0 0
\(89\) 0.579554i 0.0614326i −0.999528 0.0307163i \(-0.990221\pi\)
0.999528 0.0307163i \(-0.00977884\pi\)
\(90\) 0 0
\(91\) 0.513114 + 0.513114i 0.0537889 + 0.0537889i
\(92\) 0 0
\(93\) 4.54455 + 4.54455i 0.471248 + 0.471248i
\(94\) 0 0
\(95\) −1.59065 + 2.70562i −0.163197 + 0.277590i
\(96\) 0 0
\(97\) 15.2769i 1.55113i 0.631265 + 0.775567i \(0.282536\pi\)
−0.631265 + 0.775567i \(0.717464\pi\)
\(98\) 0 0
\(99\) −3.44000 + 3.44000i −0.345733 + 0.345733i
\(100\) 0 0
\(101\) 2.60639 + 2.60639i 0.259346 + 0.259346i 0.824788 0.565442i \(-0.191294\pi\)
−0.565442 + 0.824788i \(0.691294\pi\)
\(102\) 0 0
\(103\) −9.26272 −0.912683 −0.456341 0.889805i \(-0.650840\pi\)
−0.456341 + 0.889805i \(0.650840\pi\)
\(104\) 0 0
\(105\) 8.70541 + 5.11797i 0.849561 + 0.499463i
\(106\) 0 0
\(107\) −4.72776 + 4.72776i −0.457050 + 0.457050i −0.897686 0.440636i \(-0.854753\pi\)
0.440636 + 0.897686i \(0.354753\pi\)
\(108\) 0 0
\(109\) −0.160713 + 0.160713i −0.0153935 + 0.0153935i −0.714762 0.699368i \(-0.753465\pi\)
0.699368 + 0.714762i \(0.253465\pi\)
\(110\) 0 0
\(111\) 2.31167 0.219414
\(112\) 0 0
\(113\) 1.02489i 0.0964131i 0.998837 + 0.0482066i \(0.0153506\pi\)
−0.998837 + 0.0482066i \(0.984649\pi\)
\(114\) 0 0
\(115\) 17.3261 4.49648i 1.61567 0.419298i
\(116\) 0 0
\(117\) −0.113618 + 0.113618i −0.0105040 + 0.0105040i
\(118\) 0 0
\(119\) 22.7300i 2.08365i
\(120\) 0 0
\(121\) 12.6672i 1.15157i
\(122\) 0 0
\(123\) −2.37329 + 2.37329i −0.213992 + 0.213992i
\(124\) 0 0
\(125\) −8.09039 + 7.71658i −0.723626 + 0.690192i
\(126\) 0 0
\(127\) 9.29167i 0.824502i −0.911070 0.412251i \(-0.864743\pi\)
0.911070 0.412251i \(-0.135257\pi\)
\(128\) 0 0
\(129\) 8.03551 0.707487
\(130\) 0 0
\(131\) 4.53759 4.53759i 0.396451 0.396451i −0.480528 0.876979i \(-0.659555\pi\)
0.876979 + 0.480528i \(0.159555\pi\)
\(132\) 0 0
\(133\) 4.48226 4.48226i 0.388662 0.388662i
\(134\) 0 0
\(135\) −1.13326 + 1.92762i −0.0975356 + 0.165903i
\(136\) 0 0
\(137\) 0.448842 0.0383471 0.0191736 0.999816i \(-0.493896\pi\)
0.0191736 + 0.999816i \(0.493896\pi\)
\(138\) 0 0
\(139\) 5.12669 + 5.12669i 0.434840 + 0.434840i 0.890271 0.455431i \(-0.150515\pi\)
−0.455431 + 0.890271i \(0.650515\pi\)
\(140\) 0 0
\(141\) 6.43652 6.43652i 0.542053 0.542053i
\(142\) 0 0
\(143\) 0.781690i 0.0653682i
\(144\) 0 0
\(145\) −1.63028 + 2.77302i −0.135387 + 0.230287i
\(146\) 0 0
\(147\) −9.47209 9.47209i −0.781245 0.781245i
\(148\) 0 0
\(149\) −4.56510 4.56510i −0.373988 0.373988i 0.494940 0.868927i \(-0.335190\pi\)
−0.868927 + 0.494940i \(0.835190\pi\)
\(150\) 0 0
\(151\) 6.84317i 0.556890i 0.960452 + 0.278445i \(0.0898189\pi\)
−0.960452 + 0.278445i \(0.910181\pi\)
\(152\) 0 0
\(153\) −5.03305 −0.406898
\(154\) 0 0
\(155\) 13.9103 3.61001i 1.11730 0.289963i
\(156\) 0 0
\(157\) 1.85978 + 1.85978i 0.148426 + 0.148426i 0.777415 0.628988i \(-0.216531\pi\)
−0.628988 + 0.777415i \(0.716531\pi\)
\(158\) 0 0
\(159\) 4.62608 0.366872
\(160\) 0 0
\(161\) −36.1525 −2.84922
\(162\) 0 0
\(163\) −9.43033 9.43033i −0.738641 0.738641i 0.233674 0.972315i \(-0.424925\pi\)
−0.972315 + 0.233674i \(0.924925\pi\)
\(164\) 0 0
\(165\) 2.73260 + 10.5294i 0.212732 + 0.819715i
\(166\) 0 0
\(167\) 21.2570 1.64492 0.822459 0.568824i \(-0.192602\pi\)
0.822459 + 0.568824i \(0.192602\pi\)
\(168\) 0 0
\(169\) 12.9742i 0.998014i
\(170\) 0 0
\(171\) 0.992498 + 0.992498i 0.0758982 + 0.0758982i
\(172\) 0 0
\(173\) −3.90989 3.90989i −0.297263 0.297263i 0.542678 0.839941i \(-0.317410\pi\)
−0.839941 + 0.542678i \(0.817410\pi\)
\(174\) 0 0
\(175\) 19.7310 10.9807i 1.49152 0.830065i
\(176\) 0 0
\(177\) 7.50725i 0.564279i
\(178\) 0 0
\(179\) −16.8281 + 16.8281i −1.25779 + 1.25779i −0.305651 + 0.952144i \(0.598874\pi\)
−0.952144 + 0.305651i \(0.901126\pi\)
\(180\) 0 0
\(181\) 10.4003 + 10.4003i 0.773050 + 0.773050i 0.978639 0.205588i \(-0.0659108\pi\)
−0.205588 + 0.978639i \(0.565911\pi\)
\(182\) 0 0
\(183\) −8.30831 −0.614168
\(184\) 0 0
\(185\) 2.61972 4.45601i 0.192606 0.327613i
\(186\) 0 0
\(187\) −17.3137 + 17.3137i −1.26610 + 1.26610i
\(188\) 0 0
\(189\) 3.19340 3.19340i 0.232285 0.232285i
\(190\) 0 0
\(191\) 20.8245 1.50681 0.753404 0.657558i \(-0.228411\pi\)
0.753404 + 0.657558i \(0.228411\pi\)
\(192\) 0 0
\(193\) 5.82531i 0.419315i 0.977775 + 0.209657i \(0.0672349\pi\)
−0.977775 + 0.209657i \(0.932765\pi\)
\(194\) 0 0
\(195\) 0.0902532 + 0.347770i 0.00646317 + 0.0249043i
\(196\) 0 0
\(197\) 11.0656 11.0656i 0.788391 0.788391i −0.192839 0.981230i \(-0.561770\pi\)
0.981230 + 0.192839i \(0.0617695\pi\)
\(198\) 0 0
\(199\) 7.04564i 0.499452i 0.968317 + 0.249726i \(0.0803406\pi\)
−0.968317 + 0.249726i \(0.919659\pi\)
\(200\) 0 0
\(201\) 2.65362i 0.187172i
\(202\) 0 0
\(203\) 4.59393 4.59393i 0.322430 0.322430i
\(204\) 0 0
\(205\) 1.88524 + 7.26435i 0.131671 + 0.507364i
\(206\) 0 0
\(207\) 8.00517i 0.556398i
\(208\) 0 0
\(209\) 6.82839 0.472329
\(210\) 0 0
\(211\) −0.158025 + 0.158025i −0.0108789 + 0.0108789i −0.712525 0.701646i \(-0.752449\pi\)
0.701646 + 0.712525i \(0.252449\pi\)
\(212\) 0 0
\(213\) 0.449234 0.449234i 0.0307810 0.0307810i
\(214\) 0 0
\(215\) 9.10633 15.4894i 0.621047 1.05637i
\(216\) 0 0
\(217\) −29.0251 −1.97035
\(218\) 0 0
\(219\) −4.34311 4.34311i −0.293480 0.293480i
\(220\) 0 0
\(221\) −0.571843 + 0.571843i −0.0384663 + 0.0384663i
\(222\) 0 0
\(223\) 8.38138i 0.561259i 0.959816 + 0.280629i \(0.0905432\pi\)
−0.959816 + 0.280629i \(0.909457\pi\)
\(224\) 0 0
\(225\) 2.43144 + 4.36899i 0.162096 + 0.291266i
\(226\) 0 0
\(227\) −6.73568 6.73568i −0.447063 0.447063i 0.447314 0.894377i \(-0.352381\pi\)
−0.894377 + 0.447314i \(0.852381\pi\)
\(228\) 0 0
\(229\) 13.6770 + 13.6770i 0.903800 + 0.903800i 0.995762 0.0919626i \(-0.0293140\pi\)
−0.0919626 + 0.995762i \(0.529314\pi\)
\(230\) 0 0
\(231\) 21.9706i 1.44556i
\(232\) 0 0
\(233\) −1.62741 −0.106615 −0.0533077 0.998578i \(-0.516976\pi\)
−0.0533077 + 0.998578i \(0.516976\pi\)
\(234\) 0 0
\(235\) −5.11291 19.7014i −0.333529 1.28518i
\(236\) 0 0
\(237\) −1.24804 1.24804i −0.0810690 0.0810690i
\(238\) 0 0
\(239\) −12.6908 −0.820902 −0.410451 0.911883i \(-0.634629\pi\)
−0.410451 + 0.911883i \(0.634629\pi\)
\(240\) 0 0
\(241\) 21.1033 1.35938 0.679692 0.733498i \(-0.262114\pi\)
0.679692 + 0.733498i \(0.262114\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −28.9930 + 7.52424i −1.85229 + 0.480706i
\(246\) 0 0
\(247\) 0.225531 0.0143502
\(248\) 0 0
\(249\) 9.03923i 0.572838i
\(250\) 0 0
\(251\) −17.4935 17.4935i −1.10418 1.10418i −0.993900 0.110282i \(-0.964824\pi\)
−0.110282 0.993900i \(-0.535176\pi\)
\(252\) 0 0
\(253\) −27.5378 27.5378i −1.73129 1.73129i
\(254\) 0 0
\(255\) −5.70376 + 9.70181i −0.357183 + 0.607551i
\(256\) 0 0
\(257\) 7.80177i 0.486661i −0.969943 0.243331i \(-0.921760\pi\)
0.969943 0.243331i \(-0.0782400\pi\)
\(258\) 0 0
\(259\) −7.38207 + 7.38207i −0.458699 + 0.458699i
\(260\) 0 0
\(261\) 1.01722 + 1.01722i 0.0629645 + 0.0629645i
\(262\) 0 0
\(263\) 11.9238 0.735252 0.367626 0.929974i \(-0.380171\pi\)
0.367626 + 0.929974i \(0.380171\pi\)
\(264\) 0 0
\(265\) 5.24255 8.91732i 0.322047 0.547787i
\(266\) 0 0
\(267\) −0.409807 + 0.409807i −0.0250798 + 0.0250798i
\(268\) 0 0
\(269\) 8.24368 8.24368i 0.502626 0.502626i −0.409627 0.912253i \(-0.634341\pi\)
0.912253 + 0.409627i \(0.134341\pi\)
\(270\) 0 0
\(271\) −26.8960 −1.63381 −0.816907 0.576770i \(-0.804313\pi\)
−0.816907 + 0.576770i \(0.804313\pi\)
\(272\) 0 0
\(273\) 0.725652i 0.0439185i
\(274\) 0 0
\(275\) 23.3935 + 6.66519i 1.41068 + 0.401926i
\(276\) 0 0
\(277\) 15.8294 15.8294i 0.951099 0.951099i −0.0477597 0.998859i \(-0.515208\pi\)
0.998859 + 0.0477597i \(0.0152082\pi\)
\(278\) 0 0
\(279\) 6.42697i 0.384772i
\(280\) 0 0
\(281\) 27.8550i 1.66169i −0.556503 0.830845i \(-0.687857\pi\)
0.556503 0.830845i \(-0.312143\pi\)
\(282\) 0 0
\(283\) −2.62285 + 2.62285i −0.155913 + 0.155913i −0.780753 0.624840i \(-0.785164\pi\)
0.624840 + 0.780753i \(0.285164\pi\)
\(284\) 0 0
\(285\) 3.03792 0.788400i 0.179951 0.0467008i
\(286\) 0 0
\(287\) 15.1577i 0.894730i
\(288\) 0 0
\(289\) −8.33160 −0.490094
\(290\) 0 0
\(291\) 10.8024 10.8024i 0.633248 0.633248i
\(292\) 0 0
\(293\) −7.75559 + 7.75559i −0.453086 + 0.453086i −0.896378 0.443291i \(-0.853811\pi\)
0.443291 + 0.896378i \(0.353811\pi\)
\(294\) 0 0
\(295\) −14.4711 8.50767i −0.842541 0.495336i
\(296\) 0 0
\(297\) 4.86490 0.282290
\(298\) 0 0
\(299\) −0.909528 0.909528i −0.0525994 0.0525994i
\(300\) 0 0
\(301\) −25.6606 + 25.6606i −1.47905 + 1.47905i
\(302\) 0 0
\(303\) 3.68600i 0.211755i
\(304\) 0 0
\(305\) −9.41549 + 16.0153i −0.539129 + 0.917032i
\(306\) 0 0
\(307\) 2.60764 + 2.60764i 0.148826 + 0.148826i 0.777593 0.628767i \(-0.216440\pi\)
−0.628767 + 0.777593i \(0.716440\pi\)
\(308\) 0 0
\(309\) 6.54973 + 6.54973i 0.372601 + 0.372601i
\(310\) 0 0
\(311\) 20.1642i 1.14340i 0.820461 + 0.571702i \(0.193717\pi\)
−0.820461 + 0.571702i \(0.806283\pi\)
\(312\) 0 0
\(313\) 23.2572 1.31457 0.657286 0.753641i \(-0.271704\pi\)
0.657286 + 0.753641i \(0.271704\pi\)
\(314\) 0 0
\(315\) −2.53670 9.77461i −0.142927 0.550737i
\(316\) 0 0
\(317\) −17.1360 17.1360i −0.962451 0.962451i 0.0368693 0.999320i \(-0.488261\pi\)
−0.999320 + 0.0368693i \(0.988261\pi\)
\(318\) 0 0
\(319\) 6.99850 0.391841
\(320\) 0 0
\(321\) 6.68607 0.373180
\(322\) 0 0
\(323\) 4.99529 + 4.99529i 0.277945 + 0.277945i
\(324\) 0 0
\(325\) 0.772649 + 0.220140i 0.0428589 + 0.0122112i
\(326\) 0 0
\(327\) 0.227282 0.0125687
\(328\) 0 0
\(329\) 41.1087i 2.26640i
\(330\) 0 0
\(331\) 2.06668 + 2.06668i 0.113595 + 0.113595i 0.761619 0.648025i \(-0.224405\pi\)
−0.648025 + 0.761619i \(0.724405\pi\)
\(332\) 0 0
\(333\) −1.63459 1.63459i −0.0895752 0.0895752i
\(334\) 0 0
\(335\) −5.11517 3.00724i −0.279471 0.164303i
\(336\) 0 0
\(337\) 35.2657i 1.92105i −0.278201 0.960523i \(-0.589738\pi\)
0.278201 0.960523i \(-0.410262\pi\)
\(338\) 0 0
\(339\) 0.724704 0.724704i 0.0393605 0.0393605i
\(340\) 0 0
\(341\) −22.1088 22.1088i −1.19726 1.19726i
\(342\) 0 0
\(343\) 28.8833 1.55955
\(344\) 0 0
\(345\) −15.4309 9.07194i −0.830773 0.488417i
\(346\) 0 0
\(347\) −2.03686 + 2.03686i −0.109344 + 0.109344i −0.759662 0.650318i \(-0.774636\pi\)
0.650318 + 0.759662i \(0.274636\pi\)
\(348\) 0 0
\(349\) 19.7731 19.7731i 1.05843 1.05843i 0.0602455 0.998184i \(-0.480812\pi\)
0.998184 0.0602455i \(-0.0191884\pi\)
\(350\) 0 0
\(351\) 0.160680 0.00857644
\(352\) 0 0
\(353\) 10.5799i 0.563110i 0.959545 + 0.281555i \(0.0908502\pi\)
−0.959545 + 0.281555i \(0.909150\pi\)
\(354\) 0 0
\(355\) −0.356853 1.37505i −0.0189398 0.0729801i
\(356\) 0 0
\(357\) 16.0725 16.0725i 0.850648 0.850648i
\(358\) 0 0
\(359\) 32.7257i 1.72719i 0.504183 + 0.863597i \(0.331794\pi\)
−0.504183 + 0.863597i \(0.668206\pi\)
\(360\) 0 0
\(361\) 17.0299i 0.896310i
\(362\) 0 0
\(363\) 8.95708 8.95708i 0.470125 0.470125i
\(364\) 0 0
\(365\) −13.2937 + 3.44999i −0.695826 + 0.180581i
\(366\) 0 0
\(367\) 22.0267i 1.14978i 0.818230 + 0.574891i \(0.194956\pi\)
−0.818230 + 0.574891i \(0.805044\pi\)
\(368\) 0 0
\(369\) 3.35633 0.174724
\(370\) 0 0
\(371\) −14.7729 + 14.7729i −0.766971 + 0.766971i
\(372\) 0 0
\(373\) −9.69407 + 9.69407i −0.501940 + 0.501940i −0.912040 0.410100i \(-0.865494\pi\)
0.410100 + 0.912040i \(0.365494\pi\)
\(374\) 0 0
\(375\) 11.1772 + 0.264320i 0.577189 + 0.0136494i
\(376\) 0 0
\(377\) 0.231149 0.0119048
\(378\) 0 0
\(379\) 7.44766 + 7.44766i 0.382560 + 0.382560i 0.872024 0.489463i \(-0.162807\pi\)
−0.489463 + 0.872024i \(0.662807\pi\)
\(380\) 0 0
\(381\) −6.57020 + 6.57020i −0.336602 + 0.336602i
\(382\) 0 0
\(383\) 7.30581i 0.373309i 0.982426 + 0.186655i \(0.0597645\pi\)
−0.982426 + 0.186655i \(0.940235\pi\)
\(384\) 0 0
\(385\) −42.3509 24.8984i −2.15840 1.26894i
\(386\) 0 0
\(387\) −5.68196 5.68196i −0.288830 0.288830i
\(388\) 0 0
\(389\) 10.6571 + 10.6571i 0.540338 + 0.540338i 0.923628 0.383290i \(-0.125209\pi\)
−0.383290 + 0.923628i \(0.625209\pi\)
\(390\) 0 0
\(391\) 40.2904i 2.03757i
\(392\) 0 0
\(393\) −6.41712 −0.323701
\(394\) 0 0
\(395\) −3.82011 + 0.991393i −0.192210 + 0.0498824i
\(396\) 0 0
\(397\) 3.10102 + 3.10102i 0.155636 + 0.155636i 0.780630 0.624994i \(-0.214899\pi\)
−0.624994 + 0.780630i \(0.714899\pi\)
\(398\) 0 0
\(399\) −6.33888 −0.317341
\(400\) 0 0
\(401\) −9.88608 −0.493687 −0.246844 0.969055i \(-0.579393\pi\)
−0.246844 + 0.969055i \(0.579393\pi\)
\(402\) 0 0
\(403\) −0.730217 0.730217i −0.0363747 0.0363747i
\(404\) 0 0
\(405\) 2.16437 0.561697i 0.107548 0.0279109i
\(406\) 0 0
\(407\) −11.2460 −0.557444
\(408\) 0 0
\(409\) 11.6903i 0.578048i 0.957322 + 0.289024i \(0.0933307\pi\)
−0.957322 + 0.289024i \(0.906669\pi\)
\(410\) 0 0
\(411\) −0.317379 0.317379i −0.0156552 0.0156552i
\(412\) 0 0
\(413\) 23.9736 + 23.9736i 1.17966 + 1.17966i
\(414\) 0 0
\(415\) −17.4242 10.2438i −0.855321 0.502849i
\(416\) 0 0
\(417\) 7.25024i 0.355046i
\(418\) 0 0
\(419\) −5.66521 + 5.66521i −0.276764 + 0.276764i −0.831816 0.555052i \(-0.812698\pi\)
0.555052 + 0.831816i \(0.312698\pi\)
\(420\) 0 0
\(421\) −19.7440 19.7440i −0.962263 0.962263i 0.0370502 0.999313i \(-0.488204\pi\)
−0.999313 + 0.0370502i \(0.988204\pi\)
\(422\) 0 0
\(423\) −9.10261 −0.442584
\(424\) 0 0
\(425\) 12.2376 + 21.9894i 0.593609 + 1.06664i
\(426\) 0 0
\(427\) 26.5317 26.5317i 1.28396 1.28396i
\(428\) 0 0
\(429\) 0.552738 0.552738i 0.0266864 0.0266864i
\(430\) 0 0
\(431\) −10.8449 −0.522382 −0.261191 0.965287i \(-0.584115\pi\)
−0.261191 + 0.965287i \(0.584115\pi\)
\(432\) 0 0
\(433\) 15.4885i 0.744330i −0.928167 0.372165i \(-0.878616\pi\)
0.928167 0.372165i \(-0.121384\pi\)
\(434\) 0 0
\(435\) 3.11360 0.808040i 0.149286 0.0387426i
\(436\) 0 0
\(437\) −7.94511 + 7.94511i −0.380066 + 0.380066i
\(438\) 0 0
\(439\) 10.4685i 0.499633i −0.968293 0.249816i \(-0.919630\pi\)
0.968293 0.249816i \(-0.0803702\pi\)
\(440\) 0 0
\(441\) 13.3956i 0.637884i
\(442\) 0 0
\(443\) 15.6375 15.6375i 0.742961 0.742961i −0.230186 0.973147i \(-0.573933\pi\)
0.973147 + 0.230186i \(0.0739334\pi\)
\(444\) 0 0
\(445\) 0.325534 + 1.25437i 0.0154318 + 0.0594628i
\(446\) 0 0
\(447\) 6.45603i 0.305360i
\(448\) 0 0
\(449\) 22.2119 1.04825 0.524123 0.851642i \(-0.324393\pi\)
0.524123 + 0.851642i \(0.324393\pi\)
\(450\) 0 0
\(451\) 11.5458 11.5458i 0.543670 0.543670i
\(452\) 0 0
\(453\) 4.83885 4.83885i 0.227349 0.227349i
\(454\) 0 0
\(455\) −1.39878 0.822354i −0.0655759 0.0385525i
\(456\) 0 0
\(457\) −28.4752 −1.33201 −0.666006 0.745946i \(-0.731998\pi\)
−0.666006 + 0.745946i \(0.731998\pi\)
\(458\) 0 0
\(459\) 3.55890 + 3.55890i 0.166115 + 0.166115i
\(460\) 0 0
\(461\) −22.7778 + 22.7778i −1.06087 + 1.06087i −0.0628456 + 0.998023i \(0.520018\pi\)
−0.998023 + 0.0628456i \(0.979982\pi\)
\(462\) 0 0
\(463\) 24.5804i 1.14235i −0.820829 0.571174i \(-0.806488\pi\)
0.820829 0.571174i \(-0.193512\pi\)
\(464\) 0 0
\(465\) −12.3888 7.28343i −0.574515 0.337761i
\(466\) 0 0
\(467\) −15.6837 15.6837i −0.725757 0.725757i 0.244015 0.969772i \(-0.421536\pi\)
−0.969772 + 0.244015i \(0.921536\pi\)
\(468\) 0 0
\(469\) 8.47405 + 8.47405i 0.391295 + 0.391295i
\(470\) 0 0
\(471\) 2.63012i 0.121190i
\(472\) 0 0
\(473\) −39.0919 −1.79745
\(474\) 0 0
\(475\) 1.92302 6.74941i 0.0882342 0.309684i
\(476\) 0 0
\(477\) −3.27113 3.27113i −0.149775 0.149775i
\(478\) 0 0
\(479\) −9.45943 −0.432212 −0.216106 0.976370i \(-0.569336\pi\)
−0.216106 + 0.976370i \(0.569336\pi\)
\(480\) 0 0
\(481\) −0.371438 −0.0169361
\(482\) 0 0
\(483\) 25.5637 + 25.5637i 1.16319 + 1.16319i
\(484\) 0 0
\(485\) −8.58099 33.0649i −0.389643 1.50140i
\(486\) 0 0
\(487\) 9.95957 0.451311 0.225656 0.974207i \(-0.427548\pi\)
0.225656 + 0.974207i \(0.427548\pi\)
\(488\) 0 0
\(489\) 13.3365i 0.603097i
\(490\) 0 0
\(491\) −4.35184 4.35184i −0.196396 0.196396i 0.602057 0.798453i \(-0.294348\pi\)
−0.798453 + 0.602057i \(0.794348\pi\)
\(492\) 0 0
\(493\) 5.11973 + 5.11973i 0.230581 + 0.230581i
\(494\) 0 0
\(495\) 5.51320 9.37767i 0.247800 0.421495i
\(496\) 0 0
\(497\) 2.86916i 0.128700i
\(498\) 0 0
\(499\) −3.09455 + 3.09455i −0.138531 + 0.138531i −0.772972 0.634440i \(-0.781231\pi\)
0.634440 + 0.772972i \(0.281231\pi\)
\(500\) 0 0
\(501\) −15.0310 15.0310i −0.671535 0.671535i
\(502\) 0 0
\(503\) 5.84356 0.260552 0.130276 0.991478i \(-0.458414\pi\)
0.130276 + 0.991478i \(0.458414\pi\)
\(504\) 0 0
\(505\) −7.10520 4.17720i −0.316177 0.185883i
\(506\) 0 0
\(507\) −9.17413 + 9.17413i −0.407438 + 0.407438i
\(508\) 0 0
\(509\) −2.16459 + 2.16459i −0.0959436 + 0.0959436i −0.753449 0.657506i \(-0.771611\pi\)
0.657506 + 0.753449i \(0.271611\pi\)
\(510\) 0 0
\(511\) 27.7385 1.22708
\(512\) 0 0
\(513\) 1.40360i 0.0619706i
\(514\) 0 0
\(515\) 20.0479 5.20284i 0.883418 0.229264i
\(516\) 0 0
\(517\) −31.3130 + 31.3130i −1.37714 + 1.37714i
\(518\) 0 0
\(519\) 5.52941i 0.242714i
\(520\) 0 0
\(521\) 4.80746i 0.210619i 0.994440 + 0.105309i \(0.0335833\pi\)
−0.994440 + 0.105309i \(0.966417\pi\)
\(522\) 0 0
\(523\) 23.6204 23.6204i 1.03285 1.03285i 0.0334047 0.999442i \(-0.489365\pi\)
0.999442 0.0334047i \(-0.0106350\pi\)
\(524\) 0 0
\(525\) −21.7165 6.18738i −0.947785 0.270039i
\(526\) 0 0
\(527\) 32.3473i 1.40907i
\(528\) 0 0
\(529\) 41.0827 1.78620
\(530\) 0 0
\(531\) −5.30843 + 5.30843i −0.230366 + 0.230366i
\(532\) 0 0
\(533\) 0.381339 0.381339i 0.0165176 0.0165176i
\(534\) 0 0
\(535\) 7.57706 12.8882i 0.327585 0.557205i
\(536\) 0 0
\(537\) 23.7986 1.02698
\(538\) 0 0
\(539\) 46.0808 + 46.0808i 1.98484 + 1.98484i
\(540\) 0 0
\(541\) 22.9002 22.9002i 0.984558 0.984558i −0.0153248 0.999883i \(-0.504878\pi\)
0.999883 + 0.0153248i \(0.00487822\pi\)
\(542\) 0 0
\(543\) 14.7083i 0.631193i
\(544\) 0 0
\(545\) 0.257570 0.438114i 0.0110331 0.0187667i
\(546\) 0 0
\(547\) 24.1611 + 24.1611i 1.03306 + 1.03306i 0.999435 + 0.0336209i \(0.0107039\pi\)
0.0336209 + 0.999435i \(0.489296\pi\)
\(548\) 0 0
\(549\) 5.87487 + 5.87487i 0.250733 + 0.250733i
\(550\) 0 0
\(551\) 2.01918i 0.0860201i
\(552\) 0 0
\(553\) 7.97098 0.338961
\(554\) 0 0
\(555\) −5.00330 + 1.29846i −0.212378 + 0.0551164i
\(556\) 0 0
\(557\) −4.87106 4.87106i −0.206393 0.206393i 0.596339 0.802733i \(-0.296621\pi\)
−0.802733 + 0.596339i \(0.796621\pi\)
\(558\) 0 0
\(559\) −1.29114 −0.0546095
\(560\) 0 0
\(561\) 24.4853 1.03377
\(562\) 0 0
\(563\) 1.64374 + 1.64374i 0.0692752 + 0.0692752i 0.740896 0.671620i \(-0.234401\pi\)
−0.671620 + 0.740896i \(0.734401\pi\)
\(564\) 0 0
\(565\) −0.575675 2.21823i −0.0242188 0.0933217i
\(566\) 0 0
\(567\) −4.51614 −0.189660
\(568\) 0 0
\(569\) 30.0890i 1.26140i −0.776028 0.630699i \(-0.782768\pi\)
0.776028 0.630699i \(-0.217232\pi\)
\(570\) 0 0
\(571\) −12.4422 12.4422i −0.520688 0.520688i 0.397091 0.917779i \(-0.370020\pi\)
−0.917779 + 0.397091i \(0.870020\pi\)
\(572\) 0 0
\(573\) −14.7251 14.7251i −0.615151 0.615151i
\(574\) 0 0
\(575\) −34.9745 + 19.4641i −1.45854 + 0.811708i
\(576\) 0 0
\(577\) 38.4529i 1.60081i 0.599457 + 0.800407i \(0.295383\pi\)
−0.599457 + 0.800407i \(0.704617\pi\)
\(578\) 0 0
\(579\) 4.11912 4.11912i 0.171185 0.171185i
\(580\) 0 0
\(581\) 28.8659 + 28.8659i 1.19756 + 1.19756i
\(582\) 0 0
\(583\) −22.5054 −0.932078
\(584\) 0 0
\(585\) 0.182092 0.309729i 0.00752858 0.0128057i
\(586\) 0 0
\(587\) 20.0374 20.0374i 0.827031 0.827031i −0.160074 0.987105i \(-0.551173\pi\)
0.987105 + 0.160074i \(0.0511734\pi\)
\(588\) 0 0
\(589\) −6.37875 + 6.37875i −0.262832 + 0.262832i
\(590\) 0 0
\(591\) −15.6491 −0.643719
\(592\) 0 0
\(593\) 39.5143i 1.62266i −0.584590 0.811329i \(-0.698745\pi\)
0.584590 0.811329i \(-0.301255\pi\)
\(594\) 0 0
\(595\) −12.7674 49.1961i −0.523411 2.01684i
\(596\) 0 0
\(597\) 4.98202 4.98202i 0.203901 0.203901i
\(598\) 0 0
\(599\) 46.6476i 1.90597i −0.303022 0.952984i \(-0.597996\pi\)
0.303022 0.952984i \(-0.402004\pi\)
\(600\) 0 0
\(601\) 39.8224i 1.62439i −0.583386 0.812195i \(-0.698273\pi\)
0.583386 0.812195i \(-0.301727\pi\)
\(602\) 0 0
\(603\) −1.87639 + 1.87639i −0.0764125 + 0.0764125i
\(604\) 0 0
\(605\) −7.11514 27.4165i −0.289271 1.11464i
\(606\) 0 0
\(607\) 29.2165i 1.18586i 0.805254 + 0.592930i \(0.202029\pi\)
−0.805254 + 0.592930i \(0.797971\pi\)
\(608\) 0 0
\(609\) −6.49679 −0.263263
\(610\) 0 0
\(611\) −1.03422 + 1.03422i −0.0418400 + 0.0418400i
\(612\) 0 0
\(613\) 19.6885 19.6885i 0.795212 0.795212i −0.187124 0.982336i \(-0.559917\pi\)
0.982336 + 0.187124i \(0.0599167\pi\)
\(614\) 0 0
\(615\) 3.80360 6.46973i 0.153376 0.260885i
\(616\) 0 0
\(617\) −10.8873 −0.438306 −0.219153 0.975691i \(-0.570329\pi\)
−0.219153 + 0.975691i \(0.570329\pi\)
\(618\) 0 0
\(619\) −31.2108 31.2108i −1.25447 1.25447i −0.953696 0.300773i \(-0.902755\pi\)
−0.300773 0.953696i \(-0.597245\pi\)
\(620\) 0 0
\(621\) −5.66051 + 5.66051i −0.227148 + 0.227148i
\(622\) 0 0
\(623\) 2.61735i 0.104862i
\(624\) 0 0
\(625\) 13.1762 21.2459i 0.527048 0.849835i
\(626\) 0 0
\(627\) −4.82840 4.82840i −0.192828 0.192828i
\(628\) 0 0
\(629\) −8.22700 8.22700i −0.328032 0.328032i
\(630\) 0 0
\(631\) 15.8570i 0.631257i −0.948883 0.315629i \(-0.897785\pi\)
0.948883 0.315629i \(-0.102215\pi\)
\(632\) 0 0
\(633\) 0.223481 0.00888257
\(634\) 0 0
\(635\) 5.21910 + 20.1106i 0.207114 + 0.798065i
\(636\) 0 0
\(637\) 1.52197 + 1.52197i 0.0603027 + 0.0603027i
\(638\) 0 0
\(639\) −0.635312 −0.0251326
\(640\) 0 0
\(641\) −10.9256 −0.431535 −0.215767 0.976445i \(-0.569225\pi\)
−0.215767 + 0.976445i \(0.569225\pi\)
\(642\) 0 0
\(643\) −34.9865 34.9865i −1.37973 1.37973i −0.845058 0.534675i \(-0.820434\pi\)
−0.534675 0.845058i \(-0.679566\pi\)
\(644\) 0 0
\(645\) −17.3918 + 4.51352i −0.684802 + 0.177720i
\(646\) 0 0
\(647\) 8.60364 0.338244 0.169122 0.985595i \(-0.445907\pi\)
0.169122 + 0.985595i \(0.445907\pi\)
\(648\) 0 0
\(649\) 36.5220i 1.43361i
\(650\) 0 0
\(651\) 20.5239 + 20.5239i 0.804393 + 0.804393i
\(652\) 0 0
\(653\) −9.44853 9.44853i −0.369750 0.369750i 0.497636 0.867386i \(-0.334201\pi\)
−0.867386 + 0.497636i \(0.834201\pi\)
\(654\) 0 0
\(655\) −7.27227 + 12.3698i −0.284151 + 0.483327i
\(656\) 0 0
\(657\) 6.14208i 0.239625i
\(658\) 0 0
\(659\) 4.77731 4.77731i 0.186098 0.186098i −0.607909 0.794007i \(-0.707991\pi\)
0.794007 + 0.607909i \(0.207991\pi\)
\(660\) 0 0
\(661\) −14.2928 14.2928i −0.555927 0.555927i 0.372218 0.928145i \(-0.378597\pi\)
−0.928145 + 0.372218i \(0.878597\pi\)
\(662\) 0 0
\(663\) 0.808709 0.0314076
\(664\) 0 0
\(665\) −7.18360 + 12.2189i −0.278568 + 0.473831i
\(666\) 0 0
\(667\) −8.14304 + 8.14304i −0.315300 + 0.315300i
\(668\) 0 0
\(669\) 5.92653 5.92653i 0.229133 0.229133i
\(670\) 0 0
\(671\) 40.4191 1.56036
\(672\) 0 0
\(673\) 19.6076i 0.755818i −0.925843 0.377909i \(-0.876643\pi\)
0.925843 0.377909i \(-0.123357\pi\)
\(674\) 0 0
\(675\) 1.37006 4.80863i 0.0527336 0.185084i
\(676\) 0 0
\(677\) 1.22231 1.22231i 0.0469773 0.0469773i −0.683228 0.730205i \(-0.739424\pi\)
0.730205 + 0.683228i \(0.239424\pi\)
\(678\) 0 0
\(679\) 68.9927i 2.64770i
\(680\) 0 0
\(681\) 9.52569i 0.365025i
\(682\) 0 0
\(683\) −27.1537 + 27.1537i −1.03901 + 1.03901i −0.0398011 + 0.999208i \(0.512672\pi\)
−0.999208 + 0.0398011i \(0.987328\pi\)
\(684\) 0 0
\(685\) −0.971460 + 0.252113i −0.0371176 + 0.00963274i
\(686\) 0 0
\(687\) 19.3422i 0.737950i
\(688\) 0 0
\(689\) −0.743316 −0.0283181
\(690\) 0 0
\(691\) −14.8065 + 14.8065i −0.563266 + 0.563266i −0.930234 0.366968i \(-0.880396\pi\)
0.366968 + 0.930234i \(0.380396\pi\)
\(692\) 0 0
\(693\) −15.5355 + 15.5355i −0.590147 + 0.590147i
\(694\) 0 0
\(695\) −13.9757 8.21641i −0.530129 0.311666i
\(696\) 0 0
\(697\) 16.8926 0.639853
\(698\) 0 0
\(699\) 1.15076 + 1.15076i 0.0435256 + 0.0435256i
\(700\) 0 0
\(701\) 0.259714 0.259714i 0.00980927 0.00980927i −0.702185 0.711994i \(-0.747792\pi\)
0.711994 + 0.702185i \(0.247792\pi\)
\(702\) 0 0
\(703\) 3.24466i 0.122375i
\(704\) 0 0
\(705\) −10.3156 + 17.5464i −0.388509 + 0.660835i
\(706\) 0 0
\(707\) 11.7708 + 11.7708i 0.442688 + 0.442688i
\(708\) 0 0
\(709\) 16.6998 + 16.6998i 0.627173 + 0.627173i 0.947356 0.320183i \(-0.103744\pi\)
−0.320183 + 0.947356i \(0.603744\pi\)
\(710\) 0 0
\(711\) 1.76500i 0.0661925i
\(712\) 0 0
\(713\) 51.4489 1.92678
\(714\) 0 0
\(715\) −0.439073 1.69187i −0.0164204 0.0632722i
\(716\) 0 0
\(717\) 8.97378 + 8.97378i 0.335132 + 0.335132i
\(718\) 0 0
\(719\) 0.0356124 0.00132812 0.000664059 1.00000i \(-0.499789\pi\)
0.000664059 1.00000i \(0.499789\pi\)
\(720\) 0 0
\(721\) −41.8318 −1.55790
\(722\) 0 0
\(723\) −14.9223 14.9223i −0.554966 0.554966i
\(724\) 0 0
\(725\) 1.97093 6.91755i 0.0731983 0.256912i
\(726\) 0 0
\(727\) 35.1597 1.30400 0.652000 0.758219i \(-0.273930\pi\)
0.652000 + 0.758219i \(0.273930\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −28.5976 28.5976i −1.05772 1.05772i
\(732\) 0 0
\(733\) 27.9959 + 27.9959i 1.03405 + 1.03405i 0.999399 + 0.0346524i \(0.0110324\pi\)
0.0346524 + 0.999399i \(0.488968\pi\)
\(734\) 0 0
\(735\) 25.8216 + 15.1807i 0.952443 + 0.559947i
\(736\) 0 0
\(737\) 12.9096i 0.475530i
\(738\) 0 0
\(739\) −22.3803 + 22.3803i −0.823274 + 0.823274i −0.986576 0.163302i \(-0.947785\pi\)
0.163302 + 0.986576i \(0.447785\pi\)
\(740\) 0 0
\(741\) −0.159474 0.159474i −0.00585843 0.00585843i
\(742\) 0 0
\(743\) 11.3806 0.417514 0.208757 0.977968i \(-0.433058\pi\)
0.208757 + 0.977968i \(0.433058\pi\)
\(744\) 0 0
\(745\) 12.4448 + 7.31637i 0.455941 + 0.268051i
\(746\) 0 0
\(747\) −6.39170 + 6.39170i −0.233860 + 0.233860i
\(748\) 0 0
\(749\) −21.3513 + 21.3513i −0.780158 + 0.780158i
\(750\) 0 0
\(751\) 54.6781 1.99523 0.997616 0.0690113i \(-0.0219845\pi\)
0.997616 + 0.0690113i \(0.0219845\pi\)
\(752\) 0 0
\(753\) 24.7396i 0.901561i
\(754\) 0 0
\(755\) −3.84379 14.8112i −0.139890 0.539033i
\(756\) 0 0
\(757\) −32.3418 + 32.3418i −1.17548 + 1.17548i −0.194602 + 0.980882i \(0.562342\pi\)
−0.980882 + 0.194602i \(0.937658\pi\)
\(758\) 0 0
\(759\) 38.9443i 1.41359i
\(760\) 0 0
\(761\) 0.392110i 0.0142140i 0.999975 + 0.00710700i \(0.00226225\pi\)
−0.999975 + 0.00710700i \(0.997738\pi\)
\(762\) 0 0
\(763\) −0.725803 + 0.725803i −0.0262758 + 0.0262758i
\(764\) 0 0
\(765\) 10.8934 2.82705i 0.393851 0.102212i
\(766\) 0 0
\(767\) 1.20626i 0.0435556i
\(768\) 0 0
\(769\) −4.36080 −0.157255 −0.0786273 0.996904i \(-0.525054\pi\)
−0.0786273 + 0.996904i \(0.525054\pi\)
\(770\) 0 0
\(771\) −5.51668 + 5.51668i −0.198679 + 0.198679i
\(772\) 0 0
\(773\) 17.2357 17.2357i 0.619923 0.619923i −0.325588 0.945512i \(-0.605562\pi\)
0.945512 + 0.325588i \(0.105562\pi\)
\(774\) 0 0
\(775\) −28.0794 + 15.6268i −1.00864 + 0.561330i
\(776\) 0 0
\(777\) 10.4398 0.374526
\(778\) 0 0
\(779\) −3.33115 3.33115i −0.119351 0.119351i
\(780\) 0 0
\(781\) −2.18548 + 2.18548i −0.0782024 + 0.0782024i
\(782\) 0 0
\(783\) 1.43857i 0.0514103i
\(784\) 0 0
\(785\) −5.06988 2.98062i −0.180952 0.106383i
\(786\) 0 0
\(787\) 24.9814 + 24.9814i 0.890490 + 0.890490i 0.994569 0.104079i \(-0.0331895\pi\)
−0.104079 + 0.994569i \(0.533189\pi\)
\(788\) 0 0
\(789\) −8.43139 8.43139i −0.300165 0.300165i
\(790\) 0 0
\(791\) 4.62853i 0.164572i
\(792\) 0 0
\(793\) 1.33498 0.0474064
\(794\) 0 0
\(795\) −10.0125 + 2.59845i −0.355108 + 0.0921576i
\(796\) 0 0
\(797\) −18.8067 18.8067i −0.666166 0.666166i 0.290660 0.956826i \(-0.406125\pi\)
−0.956826 + 0.290660i \(0.906125\pi\)
\(798\) 0 0
\(799\) −45.8139 −1.62078
\(800\) 0 0
\(801\) 0.579554 0.0204775
\(802\) 0 0
\(803\) 21.1288 + 21.1288i 0.745618 + 0.745618i
\(804\) 0 0
\(805\) 78.2474 20.3067i 2.75786 0.715718i
\(806\) 0 0
\(807\) −11.6583 −0.410392
\(808\) 0 0
\(809\) 48.5593i 1.70726i −0.520883 0.853628i \(-0.674397\pi\)
0.520883 0.853628i \(-0.325603\pi\)
\(810\) 0 0
\(811\) 14.4543 + 14.4543i 0.507560 + 0.507560i 0.913777 0.406217i \(-0.133152\pi\)
−0.406217 + 0.913777i \(0.633152\pi\)
\(812\) 0 0
\(813\) 19.0183 + 19.0183i 0.667002 + 0.667002i
\(814\) 0 0
\(815\) 25.7077 + 15.1137i 0.900502 + 0.529411i
\(816\) 0 0
\(817\) 11.2787i 0.394591i
\(818\) 0 0
\(819\) −0.513114 + 0.513114i −0.0179296 + 0.0179296i
\(820\) 0 0
\(821\) 29.1579 + 29.1579i 1.01762 + 1.01762i 0.999842 + 0.0177763i \(0.00565868\pi\)
0.0177763 + 0.999842i \(0.494341\pi\)
\(822\) 0 0
\(823\) 7.17233 0.250012 0.125006 0.992156i \(-0.460105\pi\)
0.125006 + 0.992156i \(0.460105\pi\)
\(824\) 0 0
\(825\) −11.8287 21.2547i −0.411822 0.739994i
\(826\) 0 0
\(827\) 21.6132 21.6132i 0.751564 0.751564i −0.223207 0.974771i \(-0.571653\pi\)
0.974771 + 0.223207i \(0.0716526\pi\)
\(828\) 0 0
\(829\) 21.3762 21.3762i 0.742424 0.742424i −0.230620 0.973044i \(-0.574075\pi\)
0.973044 + 0.230620i \(0.0740753\pi\)
\(830\) 0 0
\(831\) −22.3862 −0.776569
\(832\) 0 0
\(833\) 67.4205i 2.33598i
\(834\) 0 0
\(835\) −46.0081 + 11.9400i −1.59217 + 0.413201i
\(836\) 0 0
\(837\) −4.54455 + 4.54455i −0.157083 + 0.157083i
\(838\) 0 0
\(839\) 1.15350i 0.0398234i 0.999802 + 0.0199117i \(0.00633851\pi\)
−0.999802 + 0.0199117i \(0.993661\pi\)
\(840\) 0 0
\(841\) 26.9305i 0.928638i
\(842\) 0 0
\(843\) −19.6965 + 19.6965i −0.678382 + 0.678382i
\(844\) 0 0
\(845\) 7.28755 + 28.0809i 0.250700 + 0.966013i
\(846\) 0 0
\(847\) 57.2070i 1.96566i
\(848\) 0 0
\(849\) 3.70928 0.127302
\(850\) 0 0
\(851\) 13.0852 13.0852i 0.448555 0.448555i
\(852\) 0 0
\(853\) −27.6979 + 27.6979i −0.948358 + 0.948358i −0.998730 0.0503728i \(-0.983959\pi\)
0.0503728 + 0.998730i \(0.483959\pi\)
\(854\) 0 0
\(855\) −2.70562 1.59065i −0.0925301 0.0543991i
\(856\) 0 0
\(857\) 49.0796 1.67653 0.838263 0.545266i \(-0.183571\pi\)
0.838263 + 0.545266i \(0.183571\pi\)
\(858\) 0 0
\(859\) 28.4421 + 28.4421i 0.970433 + 0.970433i 0.999575 0.0291421i \(-0.00927753\pi\)
−0.0291421 + 0.999575i \(0.509278\pi\)
\(860\) 0 0
\(861\) −10.7181 + 10.7181i −0.365272 + 0.365272i
\(862\) 0 0
\(863\) 24.2991i 0.827151i −0.910470 0.413576i \(-0.864280\pi\)
0.910470 0.413576i \(-0.135720\pi\)
\(864\) 0 0
\(865\) 10.6586 + 6.26627i 0.362404 + 0.213060i
\(866\) 0 0
\(867\) 5.89133 + 5.89133i 0.200080 + 0.200080i
\(868\) 0 0
\(869\) 6.07159 + 6.07159i 0.205965 + 0.205965i
\(870\) 0 0
\(871\) 0.426382i 0.0144474i
\(872\) 0 0
\(873\) −15.2769 −0.517045
\(874\) 0 0
\(875\) −36.5374 + 34.8492i −1.23519 + 1.17812i
\(876\) 0 0
\(877\) 14.7778 + 14.7778i 0.499010 + 0.499010i 0.911130 0.412120i \(-0.135211\pi\)
−0.412120 + 0.911130i \(0.635211\pi\)
\(878\) 0 0
\(879\) 10.9681 0.369943
\(880\) 0 0
\(881\) 29.8866 1.00691 0.503453 0.864023i \(-0.332063\pi\)
0.503453 + 0.864023i \(0.332063\pi\)
\(882\) 0 0
\(883\) 16.5411 + 16.5411i 0.556653 + 0.556653i 0.928353 0.371700i \(-0.121225\pi\)
−0.371700 + 0.928353i \(0.621225\pi\)
\(884\) 0 0
\(885\) 4.21680 + 16.2485i 0.141746 + 0.546186i
\(886\) 0 0
\(887\) −36.8915 −1.23870 −0.619348 0.785116i \(-0.712603\pi\)
−0.619348 + 0.785116i \(0.712603\pi\)
\(888\) 0 0
\(889\) 41.9625i 1.40738i
\(890\) 0 0
\(891\) −3.44000 3.44000i −0.115244 0.115244i
\(892\) 0 0
\(893\) 9.03432 + 9.03432i 0.302322 + 0.302322i
\(894\) 0 0
\(895\) 26.9700 45.8746i 0.901508 1.53342i
\(896\) 0 0
\(897\) 1.28627i 0.0429472i
\(898\) 0 0
\(899\) −6.53766 + 6.53766i −0.218043 + 0.218043i
\(900\) 0 0
\(901\) −16.4638 16.4638i −0.548487 0.548487i
\(902\) 0 0
\(903\) 36.2895 1.20764
\(904\) 0 0
\(905\) −28.3520 16.6683i −0.942452 0.554074i
\(906\) 0 0
\(907\) −19.6564 + 19.6564i −0.652679 + 0.652679i −0.953637 0.300958i \(-0.902694\pi\)
0.300958 + 0.953637i \(0.402694\pi\)
\(908\) 0 0
\(909\) −2.60639 + 2.60639i −0.0864486 + 0.0864486i
\(910\) 0 0
\(911\) −10.4327 −0.345650 −0.172825 0.984953i \(-0.555289\pi\)
−0.172825 + 0.984953i \(0.555289\pi\)
\(912\) 0 0
\(913\) 43.9749i 1.45536i
\(914\) 0 0
\(915\) 17.9823 4.66675i 0.594475 0.154278i
\(916\) 0 0
\(917\) 20.4924 20.4924i 0.676719 0.676719i
\(918\) 0 0
\(919\) 21.6666i 0.714715i 0.933968 + 0.357357i \(0.116322\pi\)
−0.933968 + 0.357357i \(0.883678\pi\)
\(920\) 0 0
\(921\) 3.68777i 0.121516i
\(922\) 0 0
\(923\) −0.0721827 + 0.0721827i −0.00237592 + 0.00237592i
\(924\) 0 0
\(925\) −3.16712 + 11.1160i −0.104134 + 0.365490i
\(926\) 0 0
\(927\) 9.26272i 0.304228i
\(928\) 0 0
\(929\) 6.46931 0.212251 0.106126 0.994353i \(-0.466155\pi\)
0.106126 + 0.994353i \(0.466155\pi\)
\(930\) 0 0
\(931\) 13.2951 13.2951i 0.435728 0.435728i
\(932\) 0 0
\(933\) 14.2582 14.2582i 0.466793 0.466793i
\(934\) 0 0
\(935\) 27.7482 47.1983i 0.907463 1.54355i
\(936\) 0 0
\(937\) 20.4235 0.667208 0.333604 0.942713i \(-0.391735\pi\)
0.333604 + 0.942713i \(0.391735\pi\)
\(938\) 0 0
\(939\) −16.4453 16.4453i −0.536672 0.536672i
\(940\) 0 0
\(941\) 28.2871 28.2871i 0.922134 0.922134i −0.0750464 0.997180i \(-0.523910\pi\)
0.997180 + 0.0750464i \(0.0239105\pi\)
\(942\) 0 0
\(943\) 26.8680i 0.874943i
\(944\) 0 0
\(945\) −5.11797 + 8.70541i −0.166488 + 0.283187i
\(946\) 0 0
\(947\) 8.81881 + 8.81881i 0.286573 + 0.286573i 0.835723 0.549151i \(-0.185049\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(948\) 0 0
\(949\) 0.697849 + 0.697849i 0.0226531 + 0.0226531i
\(950\) 0 0
\(951\) 24.2339i 0.785838i
\(952\) 0 0
\(953\) −43.7042 −1.41572 −0.707858 0.706354i \(-0.750339\pi\)
−0.707858 + 0.706354i \(0.750339\pi\)
\(954\) 0 0
\(955\) −45.0719 + 11.6970i −1.45849 + 0.378508i
\(956\) 0 0
\(957\) −4.94868 4.94868i −0.159968 0.159968i
\(958\) 0 0
\(959\) 2.02703 0.0654564
\(960\) 0 0
\(961\) 10.3059 0.332449
\(962\) 0 0
\(963\) −4.72776 4.72776i −0.152350 0.152350i
\(964\) 0 0
\(965\) −3.27206 12.6081i −0.105331 0.405870i
\(966\) 0 0
\(967\) −24.4130 −0.785068 −0.392534 0.919738i \(-0.628401\pi\)
−0.392534 + 0.919738i \(0.628401\pi\)
\(968\) 0 0
\(969\) 7.06441i 0.226942i
\(970\) 0 0
\(971\) 3.61271 + 3.61271i 0.115937 + 0.115937i 0.762695 0.646758i \(-0.223876\pi\)
−0.646758 + 0.762695i \(0.723876\pi\)
\(972\) 0 0
\(973\) 23.1529 + 23.1529i 0.742247 + 0.742247i
\(974\) 0 0
\(975\) −0.390683 0.702008i −0.0125119 0.0224823i
\(976\) 0 0
\(977\) 52.1693i 1.66904i −0.550975 0.834522i \(-0.685744\pi\)
0.550975 0.834522i \(-0.314256\pi\)
\(978\) 0 0
\(979\) 1.99367 1.99367i 0.0637179 0.0637179i
\(980\) 0 0
\(981\) −0.160713 0.160713i −0.00513117 0.00513117i
\(982\) 0 0
\(983\) −43.2396 −1.37913 −0.689564 0.724225i \(-0.742198\pi\)
−0.689564 + 0.724225i \(0.742198\pi\)
\(984\) 0 0
\(985\) −17.7345 + 30.1656i −0.565069 + 0.961155i
\(986\) 0 0
\(987\) 29.0683 29.0683i 0.925253 0.925253i
\(988\) 0 0
\(989\) 45.4851 45.4851i 1.44634 1.44634i
\(990\) 0 0
\(991\) −48.9048 −1.55351 −0.776756 0.629802i \(-0.783136\pi\)
−0.776756 + 0.629802i \(0.783136\pi\)
\(992\) 0 0
\(993\) 2.92273i 0.0927499i
\(994\) 0 0
\(995\) −3.95751 15.2494i −0.125462 0.483438i
\(996\) 0 0
\(997\) −41.0281 + 41.0281i −1.29937 + 1.29937i −0.370565 + 0.928806i \(0.620836\pi\)
−0.928806 + 0.370565i \(0.879164\pi\)
\(998\) 0 0
\(999\) 2.31167i 0.0731379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bl.a.1249.12 48
4.3 odd 2 1920.2.bl.b.1249.13 48
5.4 even 2 inner 1920.2.bl.a.1249.13 48
8.3 odd 2 960.2.bl.a.49.12 48
8.5 even 2 240.2.bl.a.229.12 yes 48
16.3 odd 4 1920.2.bl.b.289.12 48
16.5 even 4 240.2.bl.a.109.13 yes 48
16.11 odd 4 960.2.bl.a.529.18 48
16.13 even 4 inner 1920.2.bl.a.289.13 48
20.19 odd 2 1920.2.bl.b.1249.12 48
24.5 odd 2 720.2.bm.h.469.13 48
40.19 odd 2 960.2.bl.a.49.18 48
40.29 even 2 240.2.bl.a.229.13 yes 48
48.5 odd 4 720.2.bm.h.109.12 48
80.19 odd 4 1920.2.bl.b.289.13 48
80.29 even 4 inner 1920.2.bl.a.289.12 48
80.59 odd 4 960.2.bl.a.529.12 48
80.69 even 4 240.2.bl.a.109.12 48
120.29 odd 2 720.2.bm.h.469.12 48
240.149 odd 4 720.2.bm.h.109.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.bl.a.109.12 48 80.69 even 4
240.2.bl.a.109.13 yes 48 16.5 even 4
240.2.bl.a.229.12 yes 48 8.5 even 2
240.2.bl.a.229.13 yes 48 40.29 even 2
720.2.bm.h.109.12 48 48.5 odd 4
720.2.bm.h.109.13 48 240.149 odd 4
720.2.bm.h.469.12 48 120.29 odd 2
720.2.bm.h.469.13 48 24.5 odd 2
960.2.bl.a.49.12 48 8.3 odd 2
960.2.bl.a.49.18 48 40.19 odd 2
960.2.bl.a.529.12 48 80.59 odd 4
960.2.bl.a.529.18 48 16.11 odd 4
1920.2.bl.a.289.12 48 80.29 even 4 inner
1920.2.bl.a.289.13 48 16.13 even 4 inner
1920.2.bl.a.1249.12 48 1.1 even 1 trivial
1920.2.bl.a.1249.13 48 5.4 even 2 inner
1920.2.bl.b.289.12 48 16.3 odd 4
1920.2.bl.b.289.13 48 80.19 odd 4
1920.2.bl.b.1249.12 48 20.19 odd 2
1920.2.bl.b.1249.13 48 4.3 odd 2