Properties

Label 720.2.bm.h.109.13
Level $720$
Weight $2$
Character 720.109
Analytic conductor $5.749$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(109,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bm (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.13
Character \(\chi\) \(=\) 720.109
Dual form 720.2.bm.h.469.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.345118 + 1.37146i) q^{2} +(-1.76179 + 0.946629i) q^{4} +(-2.16437 - 0.561697i) q^{5} +4.51614 q^{7} +(-1.90629 - 2.08952i) q^{8} +(0.0233792 - 3.16219i) q^{10} +(3.44000 - 3.44000i) q^{11} +(-0.113618 + 0.113618i) q^{13} +(1.55860 + 6.19370i) q^{14} +(2.20779 - 3.33552i) q^{16} +5.03305i q^{17} +(-0.992498 - 0.992498i) q^{19} +(4.34488 - 1.05927i) q^{20} +(5.90502 + 3.53061i) q^{22} +8.00517 q^{23} +(4.36899 + 2.43144i) q^{25} +(-0.195033 - 0.116610i) q^{26} +(-7.95648 + 4.27512i) q^{28} +(1.01722 + 1.01722i) q^{29} -6.42697 q^{31} +(5.33647 + 1.87673i) q^{32} +(-6.90261 + 1.73700i) q^{34} +(-9.77461 - 2.53670i) q^{35} +(1.63459 + 1.63459i) q^{37} +(1.01864 - 1.70370i) q^{38} +(2.95223 + 5.59324i) q^{40} -3.35633i q^{41} +(5.68196 + 5.68196i) q^{43} +(-2.80414 + 9.31696i) q^{44} +(2.76273 + 10.9787i) q^{46} +9.10261i q^{47} +13.3956 q^{49} +(-1.82679 + 6.83102i) q^{50} +(0.0926163 - 0.307724i) q^{52} +(-3.27113 - 3.27113i) q^{53} +(-9.37767 + 5.51320i) q^{55} +(-8.60906 - 9.43655i) q^{56} +(-1.04401 + 1.74614i) q^{58} +(5.30843 - 5.30843i) q^{59} +(-5.87487 - 5.87487i) q^{61} +(-2.21806 - 8.81431i) q^{62} +(-0.732149 + 7.96643i) q^{64} +(0.309729 - 0.182092i) q^{65} +(-1.87639 + 1.87639i) q^{67} +(-4.76443 - 8.86716i) q^{68} +(0.105584 - 14.2809i) q^{70} +0.635312i q^{71} +6.14208 q^{73} +(-1.67765 + 2.80590i) q^{74} +(2.68810 + 0.809042i) q^{76} +(15.5355 - 15.5355i) q^{77} +1.76500 q^{79} +(-6.65201 + 5.97919i) q^{80} +(4.60307 - 1.15833i) q^{82} +(6.39170 - 6.39170i) q^{83} +(2.82705 - 10.8934i) q^{85} +(-5.83162 + 9.75352i) q^{86} +(-13.7456 - 0.630310i) q^{88} -0.579554i q^{89} +(-0.513114 + 0.513114i) q^{91} +(-14.1034 + 7.57793i) q^{92} +(-12.4838 + 3.14148i) q^{94} +(1.59065 + 2.70562i) q^{95} -15.2769i q^{97} +(4.62305 + 18.3714i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{10} + 16 q^{14} - 4 q^{16} + 8 q^{19} + 40 q^{26} - 48 q^{31} - 28 q^{34} - 24 q^{35} - 16 q^{40} + 40 q^{44} - 4 q^{46} + 48 q^{49} + 32 q^{50} - 48 q^{56} + 32 q^{59} + 16 q^{61} + 48 q^{64}+ \cdots + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.345118 + 1.37146i 0.244035 + 0.969766i
\(3\) 0 0
\(4\) −1.76179 + 0.946629i −0.880893 + 0.473315i
\(5\) −2.16437 0.561697i −0.967936 0.251198i
\(6\) 0 0
\(7\) 4.51614 1.70694 0.853471 0.521140i \(-0.174493\pi\)
0.853471 + 0.521140i \(0.174493\pi\)
\(8\) −1.90629 2.08952i −0.673974 0.738755i
\(9\) 0 0
\(10\) 0.0233792 3.16219i 0.00739317 0.999973i
\(11\) 3.44000 3.44000i 1.03720 1.03720i 0.0379186 0.999281i \(-0.487927\pi\)
0.999281 0.0379186i \(-0.0120728\pi\)
\(12\) 0 0
\(13\) −0.113618 + 0.113618i −0.0315119 + 0.0315119i −0.722687 0.691175i \(-0.757093\pi\)
0.691175 + 0.722687i \(0.257093\pi\)
\(14\) 1.55860 + 6.19370i 0.416554 + 1.65534i
\(15\) 0 0
\(16\) 2.20779 3.33552i 0.551946 0.833880i
\(17\) 5.03305i 1.22069i 0.792134 + 0.610347i \(0.208970\pi\)
−0.792134 + 0.610347i \(0.791030\pi\)
\(18\) 0 0
\(19\) −0.992498 0.992498i −0.227695 0.227695i 0.584034 0.811729i \(-0.301473\pi\)
−0.811729 + 0.584034i \(0.801473\pi\)
\(20\) 4.34488 1.05927i 0.971544 0.236859i
\(21\) 0 0
\(22\) 5.90502 + 3.53061i 1.25895 + 0.752728i
\(23\) 8.00517 1.66919 0.834596 0.550862i \(-0.185701\pi\)
0.834596 + 0.550862i \(0.185701\pi\)
\(24\) 0 0
\(25\) 4.36899 + 2.43144i 0.873799 + 0.486288i
\(26\) −0.195033 0.116610i −0.0382492 0.0228691i
\(27\) 0 0
\(28\) −7.95648 + 4.27512i −1.50363 + 0.807921i
\(29\) 1.01722 + 1.01722i 0.188894 + 0.188894i 0.795218 0.606324i \(-0.207357\pi\)
−0.606324 + 0.795218i \(0.707357\pi\)
\(30\) 0 0
\(31\) −6.42697 −1.15432 −0.577159 0.816632i \(-0.695839\pi\)
−0.577159 + 0.816632i \(0.695839\pi\)
\(32\) 5.33647 + 1.87673i 0.943363 + 0.331763i
\(33\) 0 0
\(34\) −6.90261 + 1.73700i −1.18379 + 0.297893i
\(35\) −9.77461 2.53670i −1.65221 0.428781i
\(36\) 0 0
\(37\) 1.63459 + 1.63459i 0.268726 + 0.268726i 0.828587 0.559861i \(-0.189145\pi\)
−0.559861 + 0.828587i \(0.689145\pi\)
\(38\) 1.01864 1.70370i 0.165245 0.276376i
\(39\) 0 0
\(40\) 2.95223 + 5.59324i 0.466789 + 0.884369i
\(41\) 3.35633i 0.524171i −0.965045 0.262086i \(-0.915590\pi\)
0.965045 0.262086i \(-0.0844103\pi\)
\(42\) 0 0
\(43\) 5.68196 + 5.68196i 0.866491 + 0.866491i 0.992082 0.125591i \(-0.0400826\pi\)
−0.125591 + 0.992082i \(0.540083\pi\)
\(44\) −2.80414 + 9.31696i −0.422740 + 1.40458i
\(45\) 0 0
\(46\) 2.76273 + 10.9787i 0.407342 + 1.61873i
\(47\) 9.10261i 1.32775i 0.747842 + 0.663876i \(0.231090\pi\)
−0.747842 + 0.663876i \(0.768910\pi\)
\(48\) 0 0
\(49\) 13.3956 1.91365
\(50\) −1.82679 + 6.83102i −0.258348 + 0.966052i
\(51\) 0 0
\(52\) 0.0926163 0.307724i 0.0128436 0.0426736i
\(53\) −3.27113 3.27113i −0.449324 0.449324i 0.445806 0.895130i \(-0.352917\pi\)
−0.895130 + 0.445806i \(0.852917\pi\)
\(54\) 0 0
\(55\) −9.37767 + 5.51320i −1.26449 + 0.743399i
\(56\) −8.60906 9.43655i −1.15043 1.26101i
\(57\) 0 0
\(58\) −1.04401 + 1.74614i −0.137086 + 0.229279i
\(59\) 5.30843 5.30843i 0.691098 0.691098i −0.271375 0.962474i \(-0.587478\pi\)
0.962474 + 0.271375i \(0.0874785\pi\)
\(60\) 0 0
\(61\) −5.87487 5.87487i −0.752199 0.752199i 0.222690 0.974889i \(-0.428516\pi\)
−0.974889 + 0.222690i \(0.928516\pi\)
\(62\) −2.21806 8.81431i −0.281694 1.11942i
\(63\) 0 0
\(64\) −0.732149 + 7.96643i −0.0915186 + 0.995803i
\(65\) 0.309729 0.182092i 0.0384172 0.0225857i
\(66\) 0 0
\(67\) −1.87639 + 1.87639i −0.229238 + 0.229238i −0.812374 0.583137i \(-0.801825\pi\)
0.583137 + 0.812374i \(0.301825\pi\)
\(68\) −4.76443 8.86716i −0.577772 1.07530i
\(69\) 0 0
\(70\) 0.105584 14.2809i 0.0126197 1.70690i
\(71\) 0.635312i 0.0753977i 0.999289 + 0.0376988i \(0.0120028\pi\)
−0.999289 + 0.0376988i \(0.987997\pi\)
\(72\) 0 0
\(73\) 6.14208 0.718876 0.359438 0.933169i \(-0.382968\pi\)
0.359438 + 0.933169i \(0.382968\pi\)
\(74\) −1.67765 + 2.80590i −0.195023 + 0.326180i
\(75\) 0 0
\(76\) 2.68810 + 0.809042i 0.308346 + 0.0928035i
\(77\) 15.5355 15.5355i 1.77044 1.77044i
\(78\) 0 0
\(79\) 1.76500 0.198578 0.0992888 0.995059i \(-0.468343\pi\)
0.0992888 + 0.995059i \(0.468343\pi\)
\(80\) −6.65201 + 5.97919i −0.743718 + 0.668494i
\(81\) 0 0
\(82\) 4.60307 1.15833i 0.508324 0.127916i
\(83\) 6.39170 6.39170i 0.701580 0.701580i −0.263169 0.964750i \(-0.584768\pi\)
0.964750 + 0.263169i \(0.0847678\pi\)
\(84\) 0 0
\(85\) 2.82705 10.8934i 0.306636 1.18155i
\(86\) −5.83162 + 9.75352i −0.628840 + 1.05175i
\(87\) 0 0
\(88\) −13.7456 0.630310i −1.46528 0.0671913i
\(89\) 0.579554i 0.0614326i −0.999528 0.0307163i \(-0.990221\pi\)
0.999528 0.0307163i \(-0.00977884\pi\)
\(90\) 0 0
\(91\) −0.513114 + 0.513114i −0.0537889 + 0.0537889i
\(92\) −14.1034 + 7.57793i −1.47038 + 0.790053i
\(93\) 0 0
\(94\) −12.4838 + 3.14148i −1.28761 + 0.324019i
\(95\) 1.59065 + 2.70562i 0.163197 + 0.277590i
\(96\) 0 0
\(97\) 15.2769i 1.55113i −0.631265 0.775567i \(-0.717464\pi\)
0.631265 0.775567i \(-0.282536\pi\)
\(98\) 4.62305 + 18.3714i 0.466999 + 1.85580i
\(99\) 0 0
\(100\) −9.99891 0.147859i −0.999891 0.0147859i
\(101\) 2.60639 2.60639i 0.259346 0.259346i −0.565442 0.824788i \(-0.691294\pi\)
0.824788 + 0.565442i \(0.191294\pi\)
\(102\) 0 0
\(103\) −9.26272 −0.912683 −0.456341 0.889805i \(-0.650840\pi\)
−0.456341 + 0.889805i \(0.650840\pi\)
\(104\) 0.453994 + 0.0208181i 0.0445177 + 0.00204138i
\(105\) 0 0
\(106\) 3.35729 5.61514i 0.326089 0.545391i
\(107\) −4.72776 4.72776i −0.457050 0.457050i 0.440636 0.897686i \(-0.354753\pi\)
−0.897686 + 0.440636i \(0.854753\pi\)
\(108\) 0 0
\(109\) 0.160713 + 0.160713i 0.0153935 + 0.0153935i 0.714762 0.699368i \(-0.246535\pi\)
−0.699368 + 0.714762i \(0.746535\pi\)
\(110\) −10.7975 10.9584i −1.02950 1.04484i
\(111\) 0 0
\(112\) 9.97068 15.0637i 0.942141 1.42338i
\(113\) 1.02489i 0.0964131i 0.998837 + 0.0482066i \(0.0153506\pi\)
−0.998837 + 0.0482066i \(0.984649\pi\)
\(114\) 0 0
\(115\) −17.3261 4.49648i −1.61567 0.419298i
\(116\) −2.75506 0.829197i −0.255801 0.0769890i
\(117\) 0 0
\(118\) 9.11231 + 5.44824i 0.838856 + 0.501551i
\(119\) 22.7300i 2.08365i
\(120\) 0 0
\(121\) 12.6672i 1.15157i
\(122\) 6.02960 10.0846i 0.545894 0.913021i
\(123\) 0 0
\(124\) 11.3229 6.08396i 1.01683 0.546355i
\(125\) −8.09039 7.71658i −0.723626 0.690192i
\(126\) 0 0
\(127\) 9.29167i 0.824502i 0.911070 + 0.412251i \(0.135257\pi\)
−0.911070 + 0.412251i \(0.864743\pi\)
\(128\) −11.1783 + 1.74525i −0.988030 + 0.154260i
\(129\) 0 0
\(130\) 0.356624 + 0.361937i 0.0312780 + 0.0317440i
\(131\) 4.53759 + 4.53759i 0.396451 + 0.396451i 0.876979 0.480528i \(-0.159555\pi\)
−0.480528 + 0.876979i \(0.659555\pi\)
\(132\) 0 0
\(133\) −4.48226 4.48226i −0.388662 0.388662i
\(134\) −3.22096 1.92581i −0.278249 0.166365i
\(135\) 0 0
\(136\) 10.5166 9.59443i 0.901794 0.822716i
\(137\) −0.448842 −0.0383471 −0.0191736 0.999816i \(-0.506104\pi\)
−0.0191736 + 0.999816i \(0.506104\pi\)
\(138\) 0 0
\(139\) −5.12669 + 5.12669i −0.434840 + 0.434840i −0.890271 0.455431i \(-0.849485\pi\)
0.455431 + 0.890271i \(0.349485\pi\)
\(140\) 19.6221 4.78380i 1.65837 0.404305i
\(141\) 0 0
\(142\) −0.871303 + 0.219258i −0.0731181 + 0.0183997i
\(143\) 0.781690i 0.0653682i
\(144\) 0 0
\(145\) −1.63028 2.77302i −0.135387 0.230287i
\(146\) 2.11974 + 8.42360i 0.175431 + 0.697142i
\(147\) 0 0
\(148\) −4.42716 1.33245i −0.363911 0.109527i
\(149\) −4.56510 + 4.56510i −0.373988 + 0.373988i −0.868927 0.494940i \(-0.835190\pi\)
0.494940 + 0.868927i \(0.335190\pi\)
\(150\) 0 0
\(151\) 6.84317i 0.556890i −0.960452 0.278445i \(-0.910181\pi\)
0.960452 0.278445i \(-0.0898189\pi\)
\(152\) −0.181855 + 3.96582i −0.0147504 + 0.321671i
\(153\) 0 0
\(154\) 26.6679 + 15.9447i 2.14896 + 1.28486i
\(155\) 13.9103 + 3.61001i 1.11730 + 0.289963i
\(156\) 0 0
\(157\) −1.85978 + 1.85978i −0.148426 + 0.148426i −0.777415 0.628988i \(-0.783469\pi\)
0.628988 + 0.777415i \(0.283469\pi\)
\(158\) 0.609132 + 2.42062i 0.0484600 + 0.192574i
\(159\) 0 0
\(160\) −10.4959 7.05942i −0.829776 0.558096i
\(161\) 36.1525 2.84922
\(162\) 0 0
\(163\) 9.43033 9.43033i 0.738641 0.738641i −0.233674 0.972315i \(-0.575075\pi\)
0.972315 + 0.233674i \(0.0750750\pi\)
\(164\) 3.17720 + 5.91314i 0.248098 + 0.461739i
\(165\) 0 0
\(166\) 10.9718 + 6.56005i 0.851580 + 0.509159i
\(167\) −21.2570 −1.64492 −0.822459 0.568824i \(-0.807398\pi\)
−0.822459 + 0.568824i \(0.807398\pi\)
\(168\) 0 0
\(169\) 12.9742i 0.998014i
\(170\) 15.9155 + 0.117669i 1.22066 + 0.00902479i
\(171\) 0 0
\(172\) −15.3891 4.63170i −1.17341 0.353164i
\(173\) −3.90989 + 3.90989i −0.297263 + 0.297263i −0.839941 0.542678i \(-0.817410\pi\)
0.542678 + 0.839941i \(0.317410\pi\)
\(174\) 0 0
\(175\) 19.7310 + 10.9807i 1.49152 + 0.830065i
\(176\) −3.87940 19.0690i −0.292421 1.43738i
\(177\) 0 0
\(178\) 0.794834 0.200015i 0.0595753 0.0149917i
\(179\) −16.8281 16.8281i −1.25779 1.25779i −0.952144 0.305651i \(-0.901126\pi\)
−0.305651 0.952144i \(-0.598874\pi\)
\(180\) 0 0
\(181\) −10.4003 + 10.4003i −0.773050 + 0.773050i −0.978639 0.205588i \(-0.934089\pi\)
0.205588 + 0.978639i \(0.434089\pi\)
\(182\) −0.880798 0.526628i −0.0652891 0.0390363i
\(183\) 0 0
\(184\) −15.2601 16.7269i −1.12499 1.23312i
\(185\) −2.61972 4.45601i −0.192606 0.327613i
\(186\) 0 0
\(187\) 17.3137 + 17.3137i 1.26610 + 1.26610i
\(188\) −8.61680 16.0369i −0.628445 1.16961i
\(189\) 0 0
\(190\) −3.16167 + 3.11526i −0.229372 + 0.226005i
\(191\) −20.8245 −1.50681 −0.753404 0.657558i \(-0.771589\pi\)
−0.753404 + 0.657558i \(0.771589\pi\)
\(192\) 0 0
\(193\) 5.82531i 0.419315i −0.977775 0.209657i \(-0.932765\pi\)
0.977775 0.209657i \(-0.0672349\pi\)
\(194\) 20.9516 5.27234i 1.50424 0.378532i
\(195\) 0 0
\(196\) −23.6001 + 12.6806i −1.68572 + 0.905760i
\(197\) 11.0656 + 11.0656i 0.788391 + 0.788391i 0.981230 0.192839i \(-0.0617695\pi\)
−0.192839 + 0.981230i \(0.561770\pi\)
\(198\) 0 0
\(199\) 7.04564i 0.499452i −0.968317 0.249726i \(-0.919659\pi\)
0.968317 0.249726i \(-0.0803406\pi\)
\(200\) −3.24802 13.7641i −0.229670 0.973269i
\(201\) 0 0
\(202\) 4.47407 + 2.67504i 0.314794 + 0.188215i
\(203\) 4.59393 + 4.59393i 0.322430 + 0.322430i
\(204\) 0 0
\(205\) −1.88524 + 7.26435i −0.131671 + 0.507364i
\(206\) −3.19673 12.7034i −0.222727 0.885089i
\(207\) 0 0
\(208\) 0.128130 + 0.629817i 0.00888424 + 0.0436700i
\(209\) −6.82839 −0.472329
\(210\) 0 0
\(211\) 0.158025 + 0.158025i 0.0108789 + 0.0108789i 0.712525 0.701646i \(-0.247551\pi\)
−0.701646 + 0.712525i \(0.747551\pi\)
\(212\) 8.85958 + 2.66649i 0.608479 + 0.183135i
\(213\) 0 0
\(214\) 4.85229 8.11556i 0.331695 0.554768i
\(215\) −9.10633 15.4894i −0.621047 1.05637i
\(216\) 0 0
\(217\) −29.0251 −1.97035
\(218\) −0.164946 + 0.275876i −0.0111715 + 0.0186847i
\(219\) 0 0
\(220\) 11.3025 18.5903i 0.762015 1.25336i
\(221\) −0.571843 0.571843i −0.0384663 0.0384663i
\(222\) 0 0
\(223\) 8.38138i 0.561259i −0.959816 0.280629i \(-0.909457\pi\)
0.959816 0.280629i \(-0.0905432\pi\)
\(224\) 24.1003 + 8.47561i 1.61027 + 0.566300i
\(225\) 0 0
\(226\) −1.40559 + 0.353707i −0.0934982 + 0.0235282i
\(227\) −6.73568 + 6.73568i −0.447063 + 0.447063i −0.894377 0.447314i \(-0.852381\pi\)
0.447314 + 0.894377i \(0.352381\pi\)
\(228\) 0 0
\(229\) −13.6770 + 13.6770i −0.903800 + 0.903800i −0.995762 0.0919626i \(-0.970686\pi\)
0.0919626 + 0.995762i \(0.470686\pi\)
\(230\) 0.187155 25.3139i 0.0123406 1.66915i
\(231\) 0 0
\(232\) 0.186385 4.06462i 0.0122368 0.266855i
\(233\) 1.62741 0.106615 0.0533077 0.998578i \(-0.483024\pi\)
0.0533077 + 0.998578i \(0.483024\pi\)
\(234\) 0 0
\(235\) 5.11291 19.7014i 0.333529 1.28518i
\(236\) −4.32720 + 14.3774i −0.281677 + 0.935891i
\(237\) 0 0
\(238\) −31.1732 + 7.84453i −2.02066 + 0.508485i
\(239\) 12.6908 0.820902 0.410451 0.911883i \(-0.365371\pi\)
0.410451 + 0.911883i \(0.365371\pi\)
\(240\) 0 0
\(241\) 21.1033 1.35938 0.679692 0.733498i \(-0.262114\pi\)
0.679692 + 0.733498i \(0.262114\pi\)
\(242\) 17.3725 4.37169i 1.11675 0.281023i
\(243\) 0 0
\(244\) 15.9116 + 4.78894i 1.01863 + 0.306581i
\(245\) −28.9930 7.52424i −1.85229 0.480706i
\(246\) 0 0
\(247\) 0.225531 0.0143502
\(248\) 12.2516 + 13.4292i 0.777980 + 0.852758i
\(249\) 0 0
\(250\) 7.79082 13.7587i 0.492735 0.870180i
\(251\) −17.4935 + 17.4935i −1.10418 + 1.10418i −0.110282 + 0.993900i \(0.535176\pi\)
−0.993900 + 0.110282i \(0.964824\pi\)
\(252\) 0 0
\(253\) 27.5378 27.5378i 1.73129 1.73129i
\(254\) −12.7431 + 3.20672i −0.799574 + 0.201208i
\(255\) 0 0
\(256\) −6.25136 14.7282i −0.390710 0.920514i
\(257\) 7.80177i 0.486661i −0.969943 0.243331i \(-0.921760\pi\)
0.969943 0.243331i \(-0.0782400\pi\)
\(258\) 0 0
\(259\) 7.38207 + 7.38207i 0.458699 + 0.458699i
\(260\) −0.373303 + 0.614006i −0.0231513 + 0.0380790i
\(261\) 0 0
\(262\) −4.65710 + 7.78911i −0.287717 + 0.481213i
\(263\) −11.9238 −0.735252 −0.367626 0.929974i \(-0.619829\pi\)
−0.367626 + 0.929974i \(0.619829\pi\)
\(264\) 0 0
\(265\) 5.24255 + 8.91732i 0.322047 + 0.547787i
\(266\) 4.60032 7.69414i 0.282064 0.471758i
\(267\) 0 0
\(268\) 1.52955 5.08205i 0.0934324 0.310435i
\(269\) 8.24368 + 8.24368i 0.502626 + 0.502626i 0.912253 0.409627i \(-0.134341\pi\)
−0.409627 + 0.912253i \(0.634341\pi\)
\(270\) 0 0
\(271\) −26.8960 −1.63381 −0.816907 0.576770i \(-0.804313\pi\)
−0.816907 + 0.576770i \(0.804313\pi\)
\(272\) 16.7878 + 11.1119i 1.01791 + 0.673758i
\(273\) 0 0
\(274\) −0.154903 0.615567i −0.00935806 0.0371878i
\(275\) 23.3935 6.66519i 1.41068 0.401926i
\(276\) 0 0
\(277\) −15.8294 15.8294i −0.951099 0.951099i 0.0477597 0.998859i \(-0.484792\pi\)
−0.998859 + 0.0477597i \(0.984792\pi\)
\(278\) −8.80035 5.26172i −0.527810 0.315577i
\(279\) 0 0
\(280\) 13.3327 + 25.2599i 0.796782 + 1.50957i
\(281\) 27.8550i 1.66169i −0.556503 0.830845i \(-0.687857\pi\)
0.556503 0.830845i \(-0.312143\pi\)
\(282\) 0 0
\(283\) 2.62285 + 2.62285i 0.155913 + 0.155913i 0.780753 0.624840i \(-0.214836\pi\)
−0.624840 + 0.780753i \(0.714836\pi\)
\(284\) −0.601405 1.11928i −0.0356868 0.0664173i
\(285\) 0 0
\(286\) −1.07205 + 0.269775i −0.0633919 + 0.0159522i
\(287\) 15.1577i 0.894730i
\(288\) 0 0
\(289\) −8.33160 −0.490094
\(290\) 3.24043 3.19287i 0.190285 0.187492i
\(291\) 0 0
\(292\) −10.8210 + 5.81428i −0.633253 + 0.340255i
\(293\) −7.75559 7.75559i −0.453086 0.453086i 0.443291 0.896378i \(-0.353811\pi\)
−0.896378 + 0.443291i \(0.853811\pi\)
\(294\) 0 0
\(295\) −14.4711 + 8.50767i −0.842541 + 0.495336i
\(296\) 0.299506 6.53152i 0.0174084 0.379637i
\(297\) 0 0
\(298\) −7.83634 4.68534i −0.453947 0.271414i
\(299\) −0.909528 + 0.909528i −0.0525994 + 0.0525994i
\(300\) 0 0
\(301\) 25.6606 + 25.6606i 1.47905 + 1.47905i
\(302\) 9.38512 2.36170i 0.540053 0.135901i
\(303\) 0 0
\(304\) −5.50172 + 1.11927i −0.315545 + 0.0641946i
\(305\) 9.41549 + 16.0153i 0.539129 + 0.917032i
\(306\) 0 0
\(307\) −2.60764 + 2.60764i −0.148826 + 0.148826i −0.777593 0.628767i \(-0.783560\pi\)
0.628767 + 0.777593i \(0.283560\pi\)
\(308\) −12.6639 + 42.0767i −0.721594 + 2.39754i
\(309\) 0 0
\(310\) −0.150258 + 20.3233i −0.00853406 + 1.15429i
\(311\) 20.1642i 1.14340i 0.820461 + 0.571702i \(0.193717\pi\)
−0.820461 + 0.571702i \(0.806283\pi\)
\(312\) 0 0
\(313\) 23.2572 1.31457 0.657286 0.753641i \(-0.271704\pi\)
0.657286 + 0.753641i \(0.271704\pi\)
\(314\) −3.19245 1.90876i −0.180160 0.107718i
\(315\) 0 0
\(316\) −3.10955 + 1.67080i −0.174926 + 0.0939897i
\(317\) −17.1360 + 17.1360i −0.962451 + 0.962451i −0.999320 0.0368693i \(-0.988261\pi\)
0.0368693 + 0.999320i \(0.488261\pi\)
\(318\) 0 0
\(319\) 6.99850 0.391841
\(320\) 6.05936 16.8310i 0.338728 0.940884i
\(321\) 0 0
\(322\) 12.4769 + 49.5816i 0.695309 + 2.76307i
\(323\) 4.99529 4.99529i 0.277945 0.277945i
\(324\) 0 0
\(325\) −0.772649 + 0.220140i −0.0428589 + 0.0122112i
\(326\) 16.1879 + 9.67871i 0.896563 + 0.536054i
\(327\) 0 0
\(328\) −7.01311 + 6.39813i −0.387234 + 0.353278i
\(329\) 41.1087i 2.26640i
\(330\) 0 0
\(331\) −2.06668 + 2.06668i −0.113595 + 0.113595i −0.761619 0.648025i \(-0.775595\pi\)
0.648025 + 0.761619i \(0.275595\pi\)
\(332\) −5.21024 + 17.3114i −0.285949 + 0.950086i
\(333\) 0 0
\(334\) −7.33619 29.1531i −0.401418 1.59519i
\(335\) 5.11517 3.00724i 0.279471 0.164303i
\(336\) 0 0
\(337\) 35.2657i 1.92105i 0.278201 + 0.960523i \(0.410262\pi\)
−0.278201 + 0.960523i \(0.589738\pi\)
\(338\) −17.7935 + 4.47763i −0.967840 + 0.243551i
\(339\) 0 0
\(340\) 5.33134 + 21.8680i 0.289132 + 1.18596i
\(341\) −22.1088 + 22.1088i −1.19726 + 1.19726i
\(342\) 0 0
\(343\) 28.8833 1.55955
\(344\) 1.04110 22.7040i 0.0561326 1.22412i
\(345\) 0 0
\(346\) −6.71161 4.01287i −0.360818 0.215733i
\(347\) −2.03686 2.03686i −0.109344 0.109344i 0.650318 0.759662i \(-0.274636\pi\)
−0.759662 + 0.650318i \(0.774636\pi\)
\(348\) 0 0
\(349\) −19.7731 19.7731i −1.05843 1.05843i −0.998184 0.0602455i \(-0.980812\pi\)
−0.0602455 0.998184i \(-0.519188\pi\)
\(350\) −8.25006 + 30.8499i −0.440984 + 1.64900i
\(351\) 0 0
\(352\) 24.8134 11.9015i 1.32256 0.634351i
\(353\) 10.5799i 0.563110i 0.959545 + 0.281555i \(0.0908502\pi\)
−0.959545 + 0.281555i \(0.909150\pi\)
\(354\) 0 0
\(355\) 0.356853 1.37505i 0.0189398 0.0729801i
\(356\) 0.548623 + 1.02105i 0.0290770 + 0.0541156i
\(357\) 0 0
\(358\) 17.2714 28.8868i 0.912820 1.52671i
\(359\) 32.7257i 1.72719i 0.504183 + 0.863597i \(0.331794\pi\)
−0.504183 + 0.863597i \(0.668206\pi\)
\(360\) 0 0
\(361\) 17.0299i 0.896310i
\(362\) −17.8529 10.6743i −0.938330 0.561026i
\(363\) 0 0
\(364\) 0.418269 1.38973i 0.0219232 0.0728414i
\(365\) −13.2937 3.44999i −0.695826 0.180581i
\(366\) 0 0
\(367\) 22.0267i 1.14978i −0.818230 0.574891i \(-0.805044\pi\)
0.818230 0.574891i \(-0.194956\pi\)
\(368\) 17.6737 26.7014i 0.921305 1.39191i
\(369\) 0 0
\(370\) 5.20712 5.13069i 0.270705 0.266732i
\(371\) −14.7729 14.7729i −0.766971 0.766971i
\(372\) 0 0
\(373\) 9.69407 + 9.69407i 0.501940 + 0.501940i 0.912040 0.410100i \(-0.134506\pi\)
−0.410100 + 0.912040i \(0.634506\pi\)
\(374\) −17.7697 + 29.7203i −0.918850 + 1.53680i
\(375\) 0 0
\(376\) 19.0201 17.3522i 0.980884 0.894871i
\(377\) −0.231149 −0.0119048
\(378\) 0 0
\(379\) −7.44766 + 7.44766i −0.382560 + 0.382560i −0.872024 0.489463i \(-0.837193\pi\)
0.489463 + 0.872024i \(0.337193\pi\)
\(380\) −5.36360 3.26096i −0.275147 0.167284i
\(381\) 0 0
\(382\) −7.18691 28.5599i −0.367714 1.46125i
\(383\) 7.30581i 0.373309i 0.982426 + 0.186655i \(0.0597645\pi\)
−0.982426 + 0.186655i \(0.940235\pi\)
\(384\) 0 0
\(385\) −42.3509 + 24.8984i −2.15840 + 1.26894i
\(386\) 7.98916 2.01042i 0.406637 0.102328i
\(387\) 0 0
\(388\) 14.4616 + 26.9147i 0.734175 + 1.36638i
\(389\) 10.6571 10.6571i 0.540338 0.540338i −0.383290 0.923628i \(-0.625209\pi\)
0.923628 + 0.383290i \(0.125209\pi\)
\(390\) 0 0
\(391\) 40.2904i 2.03757i
\(392\) −25.5358 27.9902i −1.28975 1.41372i
\(393\) 0 0
\(394\) −11.3571 + 18.9949i −0.572160 + 0.956951i
\(395\) −3.82011 0.991393i −0.192210 0.0498824i
\(396\) 0 0
\(397\) −3.10102 + 3.10102i −0.155636 + 0.155636i −0.780630 0.624994i \(-0.785101\pi\)
0.624994 + 0.780630i \(0.285101\pi\)
\(398\) 9.66279 2.43158i 0.484352 0.121884i
\(399\) 0 0
\(400\) 17.7559 9.20476i 0.887796 0.460238i
\(401\) 9.88608 0.493687 0.246844 0.969055i \(-0.420607\pi\)
0.246844 + 0.969055i \(0.420607\pi\)
\(402\) 0 0
\(403\) 0.730217 0.730217i 0.0363747 0.0363747i
\(404\) −2.12462 + 7.05920i −0.105704 + 0.351208i
\(405\) 0 0
\(406\) −4.71492 + 7.88582i −0.233998 + 0.391367i
\(407\) 11.2460 0.557444
\(408\) 0 0
\(409\) 11.6903i 0.578048i −0.957322 0.289024i \(-0.906669\pi\)
0.957322 0.289024i \(-0.0933307\pi\)
\(410\) −10.6134 0.0784685i −0.524157 0.00387528i
\(411\) 0 0
\(412\) 16.3189 8.76836i 0.803976 0.431986i
\(413\) 23.9736 23.9736i 1.17966 1.17966i
\(414\) 0 0
\(415\) −17.4242 + 10.2438i −0.855321 + 0.502849i
\(416\) −0.819547 + 0.393086i −0.0401816 + 0.0192727i
\(417\) 0 0
\(418\) −2.35660 9.36484i −0.115265 0.458049i
\(419\) −5.66521 5.66521i −0.276764 0.276764i 0.555052 0.831816i \(-0.312698\pi\)
−0.831816 + 0.555052i \(0.812698\pi\)
\(420\) 0 0
\(421\) 19.7440 19.7440i 0.962263 0.962263i −0.0370502 0.999313i \(-0.511796\pi\)
0.999313 + 0.0370502i \(0.0117961\pi\)
\(422\) −0.162187 + 0.271261i −0.00789514 + 0.0132048i
\(423\) 0 0
\(424\) −0.599368 + 13.0708i −0.0291079 + 0.634773i
\(425\) −12.2376 + 21.9894i −0.593609 + 1.06664i
\(426\) 0 0
\(427\) −26.5317 26.5317i −1.28396 1.28396i
\(428\) 12.8048 + 3.85387i 0.618941 + 0.186284i
\(429\) 0 0
\(430\) 18.1003 17.8346i 0.872874 0.860062i
\(431\) 10.8449 0.522382 0.261191 0.965287i \(-0.415885\pi\)
0.261191 + 0.965287i \(0.415885\pi\)
\(432\) 0 0
\(433\) 15.4885i 0.744330i 0.928167 + 0.372165i \(0.121384\pi\)
−0.928167 + 0.372165i \(0.878616\pi\)
\(434\) −10.0171 39.8067i −0.480836 1.91078i
\(435\) 0 0
\(436\) −0.435277 0.131006i −0.0208460 0.00627407i
\(437\) −7.94511 7.94511i −0.380066 0.380066i
\(438\) 0 0
\(439\) 10.4685i 0.499633i 0.968293 + 0.249816i \(0.0803702\pi\)
−0.968293 + 0.249816i \(0.919630\pi\)
\(440\) 29.3964 + 9.08506i 1.40142 + 0.433113i
\(441\) 0 0
\(442\) 0.586905 0.981612i 0.0279162 0.0466905i
\(443\) 15.6375 + 15.6375i 0.742961 + 0.742961i 0.973147 0.230186i \(-0.0739334\pi\)
−0.230186 + 0.973147i \(0.573933\pi\)
\(444\) 0 0
\(445\) −0.325534 + 1.25437i −0.0154318 + 0.0594628i
\(446\) 11.4947 2.89257i 0.544290 0.136967i
\(447\) 0 0
\(448\) −3.30649 + 35.9775i −0.156217 + 1.69978i
\(449\) −22.2119 −1.04825 −0.524123 0.851642i \(-0.675607\pi\)
−0.524123 + 0.851642i \(0.675607\pi\)
\(450\) 0 0
\(451\) −11.5458 11.5458i −0.543670 0.543670i
\(452\) −0.970187 1.80563i −0.0456337 0.0849297i
\(453\) 0 0
\(454\) −11.5623 6.91308i −0.542645 0.324447i
\(455\) 1.39878 0.822354i 0.0655759 0.0385525i
\(456\) 0 0
\(457\) −28.4752 −1.33201 −0.666006 0.745946i \(-0.731998\pi\)
−0.666006 + 0.745946i \(0.731998\pi\)
\(458\) −23.4776 14.0372i −1.09703 0.655916i
\(459\) 0 0
\(460\) 34.7815 8.47960i 1.62169 0.395363i
\(461\) −22.7778 22.7778i −1.06087 1.06087i −0.998023 0.0628456i \(-0.979982\pi\)
−0.0628456 0.998023i \(-0.520018\pi\)
\(462\) 0 0
\(463\) 24.5804i 1.14235i 0.820829 + 0.571174i \(0.193512\pi\)
−0.820829 + 0.571174i \(0.806488\pi\)
\(464\) 5.63877 1.14715i 0.261774 0.0532553i
\(465\) 0 0
\(466\) 0.561650 + 2.23193i 0.0260179 + 0.103392i
\(467\) −15.6837 + 15.6837i −0.725757 + 0.725757i −0.969772 0.244015i \(-0.921536\pi\)
0.244015 + 0.969772i \(0.421536\pi\)
\(468\) 0 0
\(469\) −8.47405 + 8.47405i −0.391295 + 0.391295i
\(470\) 28.7842 + 0.212812i 1.32772 + 0.00981629i
\(471\) 0 0
\(472\) −21.2114 0.972661i −0.976334 0.0447703i
\(473\) 39.0919 1.79745
\(474\) 0 0
\(475\) −1.92302 6.74941i −0.0882342 0.309684i
\(476\) −21.5169 40.0454i −0.986224 1.83548i
\(477\) 0 0
\(478\) 4.37984 + 17.4049i 0.200329 + 0.796083i
\(479\) 9.45943 0.432212 0.216106 0.976370i \(-0.430664\pi\)
0.216106 + 0.976370i \(0.430664\pi\)
\(480\) 0 0
\(481\) −0.371438 −0.0169361
\(482\) 7.28314 + 28.9423i 0.331738 + 1.31828i
\(483\) 0 0
\(484\) 11.9912 + 22.3169i 0.545053 + 1.01441i
\(485\) −8.58099 + 33.0649i −0.389643 + 1.50140i
\(486\) 0 0
\(487\) 9.95957 0.451311 0.225656 0.974207i \(-0.427548\pi\)
0.225656 + 0.974207i \(0.427548\pi\)
\(488\) −1.07645 + 23.4748i −0.0487286 + 1.06265i
\(489\) 0 0
\(490\) 0.313178 42.3593i 0.0141479 1.91360i
\(491\) −4.35184 + 4.35184i −0.196396 + 0.196396i −0.798453 0.602057i \(-0.794348\pi\)
0.602057 + 0.798453i \(0.294348\pi\)
\(492\) 0 0
\(493\) −5.11973 + 5.11973i −0.230581 + 0.230581i
\(494\) 0.0778347 + 0.309305i 0.00350195 + 0.0139163i
\(495\) 0 0
\(496\) −14.1894 + 21.4373i −0.637121 + 0.962562i
\(497\) 2.86916i 0.128700i
\(498\) 0 0
\(499\) 3.09455 + 3.09455i 0.138531 + 0.138531i 0.772972 0.634440i \(-0.218769\pi\)
−0.634440 + 0.772972i \(0.718769\pi\)
\(500\) 21.5583 + 5.93637i 0.964116 + 0.265483i
\(501\) 0 0
\(502\) −30.0290 17.9543i −1.34026 0.801339i
\(503\) −5.84356 −0.260552 −0.130276 0.991478i \(-0.541586\pi\)
−0.130276 + 0.991478i \(0.541586\pi\)
\(504\) 0 0
\(505\) −7.10520 + 4.17720i −0.316177 + 0.185883i
\(506\) 47.2707 + 28.2631i 2.10144 + 1.25645i
\(507\) 0 0
\(508\) −8.79576 16.3699i −0.390249 0.726298i
\(509\) −2.16459 2.16459i −0.0959436 0.0959436i 0.657506 0.753449i \(-0.271611\pi\)
−0.753449 + 0.657506i \(0.771611\pi\)
\(510\) 0 0
\(511\) 27.7385 1.22708
\(512\) 18.0417 13.6564i 0.797336 0.603536i
\(513\) 0 0
\(514\) 10.6998 2.69253i 0.471948 0.118763i
\(515\) 20.0479 + 5.20284i 0.883418 + 0.229264i
\(516\) 0 0
\(517\) 31.3130 + 31.3130i 1.37714 + 1.37714i
\(518\) −7.57650 + 12.6719i −0.332892 + 0.556770i
\(519\) 0 0
\(520\) −0.970916 0.300065i −0.0425775 0.0131587i
\(521\) 4.80746i 0.210619i 0.994440 + 0.105309i \(0.0335833\pi\)
−0.994440 + 0.105309i \(0.966417\pi\)
\(522\) 0 0
\(523\) −23.6204 23.6204i −1.03285 1.03285i −0.999442 0.0334047i \(-0.989365\pi\)
−0.0334047 0.999442i \(-0.510635\pi\)
\(524\) −12.2897 3.69885i −0.536877 0.161585i
\(525\) 0 0
\(526\) −4.11512 16.3530i −0.179428 0.713023i
\(527\) 32.3473i 1.40907i
\(528\) 0 0
\(529\) 41.0827 1.78620
\(530\) −10.4204 + 10.2675i −0.452634 + 0.445990i
\(531\) 0 0
\(532\) 12.1398 + 3.65375i 0.526329 + 0.158410i
\(533\) 0.381339 + 0.381339i 0.0165176 + 0.0165176i
\(534\) 0 0
\(535\) 7.57706 + 12.8882i 0.327585 + 0.557205i
\(536\) 7.49768 + 0.343810i 0.323851 + 0.0148503i
\(537\) 0 0
\(538\) −8.46080 + 14.1509i −0.364771 + 0.610088i
\(539\) 46.0808 46.0808i 1.98484 1.98484i
\(540\) 0 0
\(541\) −22.9002 22.9002i −0.984558 0.984558i 0.0153248 0.999883i \(-0.495122\pi\)
−0.999883 + 0.0153248i \(0.995122\pi\)
\(542\) −9.28229 36.8866i −0.398708 1.58442i
\(543\) 0 0
\(544\) −9.44570 + 26.8587i −0.404981 + 1.15156i
\(545\) −0.257570 0.438114i −0.0110331 0.0187667i
\(546\) 0 0
\(547\) −24.1611 + 24.1611i −1.03306 + 1.03306i −0.0336209 + 0.999435i \(0.510704\pi\)
−0.999435 + 0.0336209i \(0.989296\pi\)
\(548\) 0.790764 0.424887i 0.0337797 0.0181503i
\(549\) 0 0
\(550\) 17.2145 + 29.7829i 0.734031 + 1.26995i
\(551\) 2.01918i 0.0860201i
\(552\) 0 0
\(553\) 7.97098 0.338961
\(554\) 16.2464 27.1724i 0.690242 1.15445i
\(555\) 0 0
\(556\) 4.17906 13.8852i 0.177232 0.588864i
\(557\) −4.87106 + 4.87106i −0.206393 + 0.206393i −0.802733 0.596339i \(-0.796621\pi\)
0.596339 + 0.802733i \(0.296621\pi\)
\(558\) 0 0
\(559\) −1.29114 −0.0546095
\(560\) −30.0415 + 27.0029i −1.26948 + 1.14108i
\(561\) 0 0
\(562\) 38.2019 9.61327i 1.61145 0.405511i
\(563\) 1.64374 1.64374i 0.0692752 0.0692752i −0.671620 0.740896i \(-0.734401\pi\)
0.740896 + 0.671620i \(0.234401\pi\)
\(564\) 0 0
\(565\) 0.575675 2.21823i 0.0242188 0.0933217i
\(566\) −2.69194 + 4.50233i −0.113151 + 0.189247i
\(567\) 0 0
\(568\) 1.32749 1.21109i 0.0557004 0.0508161i
\(569\) 30.0890i 1.26140i −0.776028 0.630699i \(-0.782768\pi\)
0.776028 0.630699i \(-0.217232\pi\)
\(570\) 0 0
\(571\) 12.4422 12.4422i 0.520688 0.520688i −0.397091 0.917779i \(-0.629980\pi\)
0.917779 + 0.397091i \(0.129980\pi\)
\(572\) −0.739970 1.37717i −0.0309397 0.0575824i
\(573\) 0 0
\(574\) 20.7881 5.23119i 0.867679 0.218346i
\(575\) 34.9745 + 19.4641i 1.45854 + 0.811708i
\(576\) 0 0
\(577\) 38.4529i 1.60081i −0.599457 0.800407i \(-0.704617\pi\)
0.599457 0.800407i \(-0.295383\pi\)
\(578\) −2.87539 11.4264i −0.119600 0.475277i
\(579\) 0 0
\(580\) 5.49722 + 3.34220i 0.228260 + 0.138777i
\(581\) 28.8659 28.8659i 1.19756 1.19756i
\(582\) 0 0
\(583\) −22.5054 −0.932078
\(584\) −11.7086 12.8340i −0.484504 0.531074i
\(585\) 0 0
\(586\) 7.95986 13.3131i 0.328819 0.549957i
\(587\) 20.0374 + 20.0374i 0.827031 + 0.827031i 0.987105 0.160074i \(-0.0511734\pi\)
−0.160074 + 0.987105i \(0.551173\pi\)
\(588\) 0 0
\(589\) 6.37875 + 6.37875i 0.262832 + 0.262832i
\(590\) −16.6621 16.9104i −0.685970 0.696189i
\(591\) 0 0
\(592\) 9.06106 1.84339i 0.372407 0.0757627i
\(593\) 39.5143i 1.62266i −0.584590 0.811329i \(-0.698745\pi\)
0.584590 0.811329i \(-0.301255\pi\)
\(594\) 0 0
\(595\) 12.7674 49.1961i 0.523411 2.01684i
\(596\) 3.72128 12.3642i 0.152429 0.506457i
\(597\) 0 0
\(598\) −1.56127 0.933484i −0.0638452 0.0381730i
\(599\) 46.6476i 1.90597i −0.303022 0.952984i \(-0.597996\pi\)
0.303022 0.952984i \(-0.402004\pi\)
\(600\) 0 0
\(601\) 39.8224i 1.62439i 0.583386 + 0.812195i \(0.301727\pi\)
−0.583386 + 0.812195i \(0.698273\pi\)
\(602\) −26.3364 + 44.0483i −1.07339 + 1.79527i
\(603\) 0 0
\(604\) 6.47795 + 12.0562i 0.263584 + 0.490560i
\(605\) −7.11514 + 27.4165i −0.289271 + 1.11464i
\(606\) 0 0
\(607\) 29.2165i 1.18586i −0.805254 0.592930i \(-0.797971\pi\)
0.805254 0.592930i \(-0.202029\pi\)
\(608\) −3.43378 7.15909i −0.139258 0.290339i
\(609\) 0 0
\(610\) −18.7148 + 18.4401i −0.757740 + 0.746618i
\(611\) −1.03422 1.03422i −0.0418400 0.0418400i
\(612\) 0 0
\(613\) −19.6885 19.6885i −0.795212 0.795212i 0.187124 0.982336i \(-0.440083\pi\)
−0.982336 + 0.187124i \(0.940083\pi\)
\(614\) −4.47622 2.67633i −0.180645 0.108008i
\(615\) 0 0
\(616\) −62.0769 2.84657i −2.50115 0.114692i
\(617\) 10.8873 0.438306 0.219153 0.975691i \(-0.429671\pi\)
0.219153 + 0.975691i \(0.429671\pi\)
\(618\) 0 0
\(619\) 31.2108 31.2108i 1.25447 1.25447i 0.300773 0.953696i \(-0.402755\pi\)
0.953696 0.300773i \(-0.0972445\pi\)
\(620\) −27.9244 + 6.80787i −1.12147 + 0.273411i
\(621\) 0 0
\(622\) −27.6543 + 6.95902i −1.10884 + 0.279031i
\(623\) 2.61735i 0.104862i
\(624\) 0 0
\(625\) 13.1762 + 21.2459i 0.527048 + 0.849835i
\(626\) 8.02647 + 31.8962i 0.320802 + 1.27483i
\(627\) 0 0
\(628\) 1.51601 5.03705i 0.0604955 0.201000i
\(629\) −8.22700 + 8.22700i −0.328032 + 0.328032i
\(630\) 0 0
\(631\) 15.8570i 0.631257i 0.948883 + 0.315629i \(0.102215\pi\)
−0.948883 + 0.315629i \(0.897785\pi\)
\(632\) −3.36459 3.68799i −0.133836 0.146700i
\(633\) 0 0
\(634\) −29.4151 17.5873i −1.16822 0.698480i
\(635\) 5.21910 20.1106i 0.207114 0.798065i
\(636\) 0 0
\(637\) −1.52197 + 1.52197i −0.0603027 + 0.0603027i
\(638\) 2.41531 + 9.59813i 0.0956230 + 0.379994i
\(639\) 0 0
\(640\) 25.1742 + 2.50144i 0.995100 + 0.0988783i
\(641\) 10.9256 0.431535 0.215767 0.976445i \(-0.430775\pi\)
0.215767 + 0.976445i \(0.430775\pi\)
\(642\) 0 0
\(643\) 34.9865 34.9865i 1.37973 1.37973i 0.534675 0.845058i \(-0.320434\pi\)
0.845058 0.534675i \(-0.179566\pi\)
\(644\) −63.6930 + 34.2230i −2.50986 + 1.34858i
\(645\) 0 0
\(646\) 8.57479 + 5.12686i 0.337371 + 0.201714i
\(647\) −8.60364 −0.338244 −0.169122 0.985595i \(-0.554093\pi\)
−0.169122 + 0.985595i \(0.554093\pi\)
\(648\) 0 0
\(649\) 36.5220i 1.43361i
\(650\) −0.568568 0.983680i −0.0223011 0.0385831i
\(651\) 0 0
\(652\) −7.68721 + 25.5413i −0.301054 + 1.00027i
\(653\) −9.44853 + 9.44853i −0.369750 + 0.369750i −0.867386 0.497636i \(-0.834201\pi\)
0.497636 + 0.867386i \(0.334201\pi\)
\(654\) 0 0
\(655\) −7.27227 12.3698i −0.284151 0.483327i
\(656\) −11.1951 7.41006i −0.437096 0.289314i
\(657\) 0 0
\(658\) −56.3788 + 14.1874i −2.19788 + 0.553081i
\(659\) 4.77731 + 4.77731i 0.186098 + 0.186098i 0.794007 0.607909i \(-0.207991\pi\)
−0.607909 + 0.794007i \(0.707991\pi\)
\(660\) 0 0
\(661\) 14.2928 14.2928i 0.555927 0.555927i −0.372218 0.928145i \(-0.621403\pi\)
0.928145 + 0.372218i \(0.121403\pi\)
\(662\) −3.54761 2.12111i −0.137882 0.0824394i
\(663\) 0 0
\(664\) −25.5400 1.17115i −0.991143 0.0454494i
\(665\) 7.18360 + 12.2189i 0.278568 + 0.473831i
\(666\) 0 0
\(667\) 8.14304 + 8.14304i 0.315300 + 0.315300i
\(668\) 37.4504 20.1225i 1.44900 0.778564i
\(669\) 0 0
\(670\) 5.88964 + 5.97737i 0.227537 + 0.230926i
\(671\) −40.4191 −1.56036
\(672\) 0 0
\(673\) 19.6076i 0.755818i 0.925843 + 0.377909i \(0.123357\pi\)
−0.925843 + 0.377909i \(0.876643\pi\)
\(674\) −48.3654 + 12.1708i −1.86297 + 0.468803i
\(675\) 0 0
\(676\) −12.2817 22.8577i −0.472375 0.879144i
\(677\) 1.22231 + 1.22231i 0.0469773 + 0.0469773i 0.730205 0.683228i \(-0.239424\pi\)
−0.683228 + 0.730205i \(0.739424\pi\)
\(678\) 0 0
\(679\) 68.9927i 2.64770i
\(680\) −28.1511 + 14.8587i −1.07954 + 0.569807i
\(681\) 0 0
\(682\) −37.9514 22.6911i −1.45323 0.868887i
\(683\) −27.1537 27.1537i −1.03901 1.03901i −0.999208 0.0398011i \(-0.987328\pi\)
−0.0398011 0.999208i \(-0.512672\pi\)
\(684\) 0 0
\(685\) 0.971460 + 0.252113i 0.0371176 + 0.00963274i
\(686\) 9.96815 + 39.6122i 0.380586 + 1.51240i
\(687\) 0 0
\(688\) 31.4969 6.40773i 1.20081 0.244293i
\(689\) 0.743316 0.0283181
\(690\) 0 0
\(691\) 14.8065 + 14.8065i 0.563266 + 0.563266i 0.930234 0.366968i \(-0.119604\pi\)
−0.366968 + 0.930234i \(0.619604\pi\)
\(692\) 3.18717 10.5896i 0.121158 0.402556i
\(693\) 0 0
\(694\) 2.09051 3.49643i 0.0793547 0.132723i
\(695\) 13.9757 8.21641i 0.530129 0.311666i
\(696\) 0 0
\(697\) 16.8926 0.639853
\(698\) 20.2939 33.9420i 0.768135 1.28472i
\(699\) 0 0
\(700\) −45.1565 0.667754i −1.70676 0.0252387i
\(701\) 0.259714 + 0.259714i 0.00980927 + 0.00980927i 0.711994 0.702185i \(-0.247792\pi\)
−0.702185 + 0.711994i \(0.747792\pi\)
\(702\) 0 0
\(703\) 3.24466i 0.122375i
\(704\) 24.8859 + 29.9231i 0.937924 + 1.12777i
\(705\) 0 0
\(706\) −14.5098 + 3.65131i −0.546085 + 0.137419i
\(707\) 11.7708 11.7708i 0.442688 0.442688i
\(708\) 0 0
\(709\) −16.6998 + 16.6998i −0.627173 + 0.627173i −0.947356 0.320183i \(-0.896256\pi\)
0.320183 + 0.947356i \(0.396256\pi\)
\(710\) 2.00898 + 0.0148531i 0.0753956 + 0.000557428i
\(711\) 0 0
\(712\) −1.21099 + 1.10480i −0.0453837 + 0.0414040i
\(713\) −51.4489 −1.92678
\(714\) 0 0
\(715\) 0.439073 1.69187i 0.0164204 0.0632722i
\(716\) 45.5776 + 13.7176i 1.70332 + 0.512650i
\(717\) 0 0
\(718\) −44.8818 + 11.2942i −1.67497 + 0.421496i
\(719\) −0.0356124 −0.00132812 −0.000664059 1.00000i \(-0.500211\pi\)
−0.000664059 1.00000i \(0.500211\pi\)
\(720\) 0 0
\(721\) −41.8318 −1.55790
\(722\) 23.3558 5.87733i 0.869212 0.218731i
\(723\) 0 0
\(724\) 8.47791 28.1684i 0.315079 1.04687i
\(725\) 1.97093 + 6.91755i 0.0731983 + 0.256912i
\(726\) 0 0
\(727\) 35.1597 1.30400 0.652000 0.758219i \(-0.273930\pi\)
0.652000 + 0.758219i \(0.273930\pi\)
\(728\) 2.05030 + 0.0940176i 0.0759892 + 0.00348453i
\(729\) 0 0
\(730\) 0.143597 19.4224i 0.00531477 0.718857i
\(731\) −28.5976 + 28.5976i −1.05772 + 1.05772i
\(732\) 0 0
\(733\) −27.9959 + 27.9959i −1.03405 + 1.03405i −0.0346524 + 0.999399i \(0.511032\pi\)
−0.999399 + 0.0346524i \(0.988968\pi\)
\(734\) 30.2086 7.60180i 1.11502 0.280588i
\(735\) 0 0
\(736\) 42.7193 + 15.0236i 1.57465 + 0.553776i
\(737\) 12.9096i 0.475530i
\(738\) 0 0
\(739\) 22.3803 + 22.3803i 0.823274 + 0.823274i 0.986576 0.163302i \(-0.0522145\pi\)
−0.163302 + 0.986576i \(0.552215\pi\)
\(740\) 8.83358 + 5.37064i 0.324729 + 0.197429i
\(741\) 0 0
\(742\) 15.1620 25.3588i 0.556614 0.930950i
\(743\) −11.3806 −0.417514 −0.208757 0.977968i \(-0.566942\pi\)
−0.208757 + 0.977968i \(0.566942\pi\)
\(744\) 0 0
\(745\) 12.4448 7.31637i 0.455941 0.268051i
\(746\) −9.94940 + 16.6406i −0.364273 + 0.609256i
\(747\) 0 0
\(748\) −46.8927 14.1134i −1.71457 0.516037i
\(749\) −21.3513 21.3513i −0.780158 0.780158i
\(750\) 0 0
\(751\) 54.6781 1.99523 0.997616 0.0690113i \(-0.0219845\pi\)
0.997616 + 0.0690113i \(0.0219845\pi\)
\(752\) 30.3619 + 20.0966i 1.10719 + 0.732848i
\(753\) 0 0
\(754\) −0.0797737 0.317011i −0.00290519 0.0115448i
\(755\) −3.84379 + 14.8112i −0.139890 + 0.539033i
\(756\) 0 0
\(757\) 32.3418 + 32.3418i 1.17548 + 1.17548i 0.980882 + 0.194602i \(0.0623416\pi\)
0.194602 + 0.980882i \(0.437658\pi\)
\(758\) −12.7845 7.64382i −0.464353 0.277636i
\(759\) 0 0
\(760\) 2.62119 8.48136i 0.0950806 0.307651i
\(761\) 0.392110i 0.0142140i 0.999975 + 0.00710700i \(0.00226225\pi\)
−0.999975 + 0.00710700i \(0.997738\pi\)
\(762\) 0 0
\(763\) 0.725803 + 0.725803i 0.0262758 + 0.0262758i
\(764\) 36.6883 19.7131i 1.32734 0.713194i
\(765\) 0 0
\(766\) −10.0196 + 2.52137i −0.362023 + 0.0911007i
\(767\) 1.20626i 0.0435556i
\(768\) 0 0
\(769\) −4.36080 −0.157255 −0.0786273 0.996904i \(-0.525054\pi\)
−0.0786273 + 0.996904i \(0.525054\pi\)
\(770\) −48.7632 49.4896i −1.75730 1.78348i
\(771\) 0 0
\(772\) 5.51441 + 10.2630i 0.198468 + 0.369372i
\(773\) 17.2357 + 17.2357i 0.619923 + 0.619923i 0.945512 0.325588i \(-0.105562\pi\)
−0.325588 + 0.945512i \(0.605562\pi\)
\(774\) 0 0
\(775\) −28.0794 15.6268i −1.00864 0.561330i
\(776\) −31.9213 + 29.1221i −1.14591 + 1.04542i
\(777\) 0 0
\(778\) 18.2938 + 10.9378i 0.655863 + 0.392140i
\(779\) −3.33115 + 3.33115i −0.119351 + 0.119351i
\(780\) 0 0
\(781\) 2.18548 + 2.18548i 0.0782024 + 0.0782024i
\(782\) −55.2565 + 13.9050i −1.97597 + 0.497240i
\(783\) 0 0
\(784\) 29.5745 44.6811i 1.05623 1.59576i
\(785\) 5.06988 2.98062i 0.180952 0.106383i
\(786\) 0 0
\(787\) −24.9814 + 24.9814i −0.890490 + 0.890490i −0.994569 0.104079i \(-0.966811\pi\)
0.104079 + 0.994569i \(0.466811\pi\)
\(788\) −29.9703 9.02021i −1.06765 0.321332i
\(789\) 0 0
\(790\) 0.0412643 5.58126i 0.00146812 0.198572i
\(791\) 4.62853i 0.164572i
\(792\) 0 0
\(793\) 1.33498 0.0474064
\(794\) −5.32314 3.18270i −0.188911 0.112950i
\(795\) 0 0
\(796\) 6.66961 + 12.4129i 0.236398 + 0.439964i
\(797\) −18.8067 + 18.8067i −0.666166 + 0.666166i −0.956826 0.290660i \(-0.906125\pi\)
0.290660 + 0.956826i \(0.406125\pi\)
\(798\) 0 0
\(799\) −45.8139 −1.62078
\(800\) 18.7518 + 21.1747i 0.662977 + 0.748640i
\(801\) 0 0
\(802\) 3.41187 + 13.5583i 0.120477 + 0.478761i
\(803\) 21.1288 21.1288i 0.745618 0.745618i
\(804\) 0 0
\(805\) −78.2474 20.3067i −2.75786 0.715718i
\(806\) 1.25347 + 0.749450i 0.0441517 + 0.0263982i
\(807\) 0 0
\(808\) −10.4146 0.477568i −0.366385 0.0168008i
\(809\) 48.5593i 1.70726i −0.520883 0.853628i \(-0.674397\pi\)
0.520883 0.853628i \(-0.325603\pi\)
\(810\) 0 0
\(811\) −14.4543 + 14.4543i −0.507560 + 0.507560i −0.913777 0.406217i \(-0.866848\pi\)
0.406217 + 0.913777i \(0.366848\pi\)
\(812\) −12.4423 3.74477i −0.436638 0.131416i
\(813\) 0 0
\(814\) 3.88121 + 15.4234i 0.136036 + 0.540591i
\(815\) −25.7077 + 15.1137i −0.900502 + 0.529411i
\(816\) 0 0
\(817\) 11.2787i 0.394591i
\(818\) 16.0327 4.03453i 0.560571 0.141064i
\(819\) 0 0
\(820\) −3.55525 14.5829i −0.124155 0.509255i
\(821\) 29.1579 29.1579i 1.01762 1.01762i 0.0177763 0.999842i \(-0.494341\pi\)
0.999842 0.0177763i \(-0.00565868\pi\)
\(822\) 0 0
\(823\) 7.17233 0.250012 0.125006 0.992156i \(-0.460105\pi\)
0.125006 + 0.992156i \(0.460105\pi\)
\(824\) 17.6574 + 19.3546i 0.615124 + 0.674249i
\(825\) 0 0
\(826\) 41.1525 + 24.6050i 1.43188 + 0.856119i
\(827\) 21.6132 + 21.6132i 0.751564 + 0.751564i 0.974771 0.223207i \(-0.0716526\pi\)
−0.223207 + 0.974771i \(0.571653\pi\)
\(828\) 0 0
\(829\) −21.3762 21.3762i −0.742424 0.742424i 0.230620 0.973044i \(-0.425925\pi\)
−0.973044 + 0.230620i \(0.925925\pi\)
\(830\) −20.0623 20.3612i −0.696374 0.706748i
\(831\) 0 0
\(832\) −0.821942 0.988312i −0.0284957 0.0342635i
\(833\) 67.4205i 2.33598i
\(834\) 0 0
\(835\) 46.0081 + 11.9400i 1.59217 + 0.413201i
\(836\) 12.0302 6.46395i 0.416072 0.223560i
\(837\) 0 0
\(838\) 5.81443 9.72476i 0.200856 0.335936i
\(839\) 1.15350i 0.0398234i 0.999802 + 0.0199117i \(0.00633851\pi\)
−0.999802 + 0.0199117i \(0.993661\pi\)
\(840\) 0 0
\(841\) 26.9305i 0.928638i
\(842\) 33.8920 + 20.2640i 1.16800 + 0.698344i
\(843\) 0 0
\(844\) −0.427997 0.128815i −0.0147323 0.00443400i
\(845\) 7.28755 28.0809i 0.250700 0.966013i
\(846\) 0 0
\(847\) 57.2070i 1.96566i
\(848\) −18.1329 + 3.68896i −0.622685 + 0.126679i
\(849\) 0 0
\(850\) −34.3809 9.19434i −1.17925 0.315363i
\(851\) 13.0852 + 13.0852i 0.448555 + 0.448555i
\(852\) 0 0
\(853\) 27.6979 + 27.6979i 0.948358 + 0.948358i 0.998730 0.0503728i \(-0.0160410\pi\)
−0.0503728 + 0.998730i \(0.516041\pi\)
\(854\) 27.2305 45.5437i 0.931810 1.55847i
\(855\) 0 0
\(856\) −0.866266 + 18.8912i −0.0296084 + 0.645688i
\(857\) −49.0796 −1.67653 −0.838263 0.545266i \(-0.816429\pi\)
−0.838263 + 0.545266i \(0.816429\pi\)
\(858\) 0 0
\(859\) −28.4421 + 28.4421i −0.970433 + 0.970433i −0.999575 0.0291421i \(-0.990722\pi\)
0.0291421 + 0.999575i \(0.490722\pi\)
\(860\) 30.7061 + 18.6687i 1.04707 + 0.636598i
\(861\) 0 0
\(862\) 3.74278 + 14.8734i 0.127480 + 0.506589i
\(863\) 24.2991i 0.827151i −0.910470 0.413576i \(-0.864280\pi\)
0.910470 0.413576i \(-0.135720\pi\)
\(864\) 0 0
\(865\) 10.6586 6.26627i 0.362404 0.213060i
\(866\) −21.2418 + 5.34536i −0.721826 + 0.181643i
\(867\) 0 0
\(868\) 51.1361 27.4760i 1.73567 0.932597i
\(869\) 6.07159 6.07159i 0.205965 0.205965i
\(870\) 0 0
\(871\) 0.426382i 0.0144474i
\(872\) 0.0294474 0.642177i 0.000997214 0.0217469i
\(873\) 0 0
\(874\) 8.15437 13.6384i 0.275826 0.461325i
\(875\) −36.5374 34.8492i −1.23519 1.17812i
\(876\) 0 0
\(877\) −14.7778 + 14.7778i −0.499010 + 0.499010i −0.911130 0.412120i \(-0.864789\pi\)
0.412120 + 0.911130i \(0.364789\pi\)
\(878\) −14.3570 + 3.61286i −0.484527 + 0.121928i
\(879\) 0 0
\(880\) −2.31452 + 43.4514i −0.0780225 + 1.46475i
\(881\) −29.8866 −1.00691 −0.503453 0.864023i \(-0.667937\pi\)
−0.503453 + 0.864023i \(0.667937\pi\)
\(882\) 0 0
\(883\) −16.5411 + 16.5411i −0.556653 + 0.556653i −0.928353 0.371700i \(-0.878775\pi\)
0.371700 + 0.928353i \(0.378775\pi\)
\(884\) 1.54879 + 0.466142i 0.0520914 + 0.0156781i
\(885\) 0 0
\(886\) −16.0494 + 26.8430i −0.539190 + 0.901807i
\(887\) 36.8915 1.23870 0.619348 0.785116i \(-0.287397\pi\)
0.619348 + 0.785116i \(0.287397\pi\)
\(888\) 0 0
\(889\) 41.9625i 1.40738i
\(890\) −1.83266 0.0135495i −0.0614309 0.000454182i
\(891\) 0 0
\(892\) 7.93406 + 14.7662i 0.265652 + 0.494409i
\(893\) 9.03432 9.03432i 0.302322 0.302322i
\(894\) 0 0
\(895\) 26.9700 + 45.8746i 0.901508 + 1.53342i
\(896\) −50.4828 + 7.88179i −1.68651 + 0.263312i
\(897\) 0 0
\(898\) −7.66575 30.4627i −0.255809 1.01655i
\(899\) −6.53766 6.53766i −0.218043 0.218043i
\(900\) 0 0
\(901\) 16.4638 16.4638i 0.548487 0.548487i
\(902\) 11.8499 19.8192i 0.394558 0.659908i
\(903\) 0 0
\(904\) 2.14151 1.95372i 0.0712257 0.0649799i
\(905\) 28.3520 16.6683i 0.942452 0.554074i
\(906\) 0 0
\(907\) 19.6564 + 19.6564i 0.652679 + 0.652679i 0.953637 0.300958i \(-0.0973064\pi\)
−0.300958 + 0.953637i \(0.597306\pi\)
\(908\) 5.49064 18.2430i 0.182213 0.605416i
\(909\) 0 0
\(910\) 1.61057 + 1.63456i 0.0533898 + 0.0541851i
\(911\) 10.4327 0.345650 0.172825 0.984953i \(-0.444711\pi\)
0.172825 + 0.984953i \(0.444711\pi\)
\(912\) 0 0
\(913\) 43.9749i 1.45536i
\(914\) −9.82730 39.0525i −0.325058 1.29174i
\(915\) 0 0
\(916\) 11.1489 37.0429i 0.368370 1.22393i
\(917\) 20.4924 + 20.4924i 0.676719 + 0.676719i
\(918\) 0 0
\(919\) 21.6666i 0.714715i −0.933968 0.357357i \(-0.883678\pi\)
0.933968 0.357357i \(-0.116322\pi\)
\(920\) 23.6331 + 44.7748i 0.779161 + 1.47618i
\(921\) 0 0
\(922\) 23.3778 39.0998i 0.769905 1.28768i
\(923\) −0.0721827 0.0721827i −0.00237592 0.00237592i
\(924\) 0 0
\(925\) 3.16712 + 11.1160i 0.104134 + 0.365490i
\(926\) −33.7109 + 8.48314i −1.10781 + 0.278773i
\(927\) 0 0
\(928\) 3.51932 + 7.33743i 0.115527 + 0.240863i
\(929\) −6.46931 −0.212251 −0.106126 0.994353i \(-0.533845\pi\)
−0.106126 + 0.994353i \(0.533845\pi\)
\(930\) 0 0
\(931\) −13.2951 13.2951i −0.435728 0.435728i
\(932\) −2.86716 + 1.54056i −0.0939168 + 0.0504626i
\(933\) 0 0
\(934\) −26.9223 16.0968i −0.880925 0.526704i
\(935\) −27.7482 47.1983i −0.907463 1.54355i
\(936\) 0 0
\(937\) 20.4235 0.667208 0.333604 0.942713i \(-0.391735\pi\)
0.333604 + 0.942713i \(0.391735\pi\)
\(938\) −14.5463 8.69724i −0.474955 0.283975i
\(939\) 0 0
\(940\) 9.64209 + 39.5497i 0.314490 + 1.28997i
\(941\) 28.2871 + 28.2871i 0.922134 + 0.922134i 0.997180 0.0750464i \(-0.0239105\pi\)
−0.0750464 + 0.997180i \(0.523910\pi\)
\(942\) 0 0
\(943\) 26.8680i 0.874943i
\(944\) −5.98648 29.4262i −0.194843 0.957742i
\(945\) 0 0
\(946\) 13.4913 + 53.6129i 0.438641 + 1.74311i
\(947\) 8.81881 8.81881i 0.286573 0.286573i −0.549151 0.835723i \(-0.685049\pi\)
0.835723 + 0.549151i \(0.185049\pi\)
\(948\) 0 0
\(949\) −0.697849 + 0.697849i −0.0226531 + 0.0226531i
\(950\) 8.59286 4.96668i 0.278789 0.161140i
\(951\) 0 0
\(952\) 47.4947 43.3298i 1.53931 1.40433i
\(953\) 43.7042 1.41572 0.707858 0.706354i \(-0.249661\pi\)
0.707858 + 0.706354i \(0.249661\pi\)
\(954\) 0 0
\(955\) 45.0719 + 11.6970i 1.45849 + 0.378508i
\(956\) −22.3586 + 12.0135i −0.723127 + 0.388545i
\(957\) 0 0
\(958\) 3.26462 + 12.9732i 0.105475 + 0.419145i
\(959\) −2.02703 −0.0654564
\(960\) 0 0
\(961\) 10.3059 0.332449
\(962\) −0.128190 0.509411i −0.00413301 0.0164241i
\(963\) 0 0
\(964\) −37.1795 + 19.9770i −1.19747 + 0.643416i
\(965\) −3.27206 + 12.6081i −0.105331 + 0.405870i
\(966\) 0 0
\(967\) −24.4130 −0.785068 −0.392534 0.919738i \(-0.628401\pi\)
−0.392534 + 0.919738i \(0.628401\pi\)
\(968\) −26.4684 + 24.1473i −0.850725 + 0.776125i
\(969\) 0 0
\(970\) −48.3085 0.357162i −1.55109 0.0114678i
\(971\) 3.61271 3.61271i 0.115937 0.115937i −0.646758 0.762695i \(-0.723876\pi\)
0.762695 + 0.646758i \(0.223876\pi\)
\(972\) 0 0
\(973\) −23.1529 + 23.1529i −0.742247 + 0.742247i
\(974\) 3.43723 + 13.6591i 0.110136 + 0.437666i
\(975\) 0 0
\(976\) −32.5662 + 6.62527i −1.04242 + 0.212070i
\(977\) 52.1693i 1.66904i −0.550975 0.834522i \(-0.685744\pi\)
0.550975 0.834522i \(-0.314256\pi\)
\(978\) 0 0
\(979\) −1.99367 1.99367i −0.0637179 0.0637179i
\(980\) 58.2021 14.1895i 1.85920 0.453266i
\(981\) 0 0
\(982\) −7.47026 4.46646i −0.238386 0.142531i
\(983\) 43.2396 1.37913 0.689564 0.724225i \(-0.257802\pi\)
0.689564 + 0.724225i \(0.257802\pi\)
\(984\) 0 0
\(985\) −17.7345 30.1656i −0.565069 0.961155i
\(986\) −8.78841 5.25458i −0.279880 0.167340i
\(987\) 0 0
\(988\) −0.397337 + 0.213494i −0.0126410 + 0.00679214i
\(989\) 45.4851 + 45.4851i 1.44634 + 1.44634i
\(990\) 0 0
\(991\) −48.9048 −1.55351 −0.776756 0.629802i \(-0.783136\pi\)
−0.776756 + 0.629802i \(0.783136\pi\)
\(992\) −34.2973 12.0617i −1.08894 0.382960i
\(993\) 0 0
\(994\) −3.93493 + 0.990200i −0.124808 + 0.0314072i
\(995\) −3.95751 + 15.2494i −0.125462 + 0.483438i
\(996\) 0 0
\(997\) 41.0281 + 41.0281i 1.29937 + 1.29937i 0.928806 + 0.370565i \(0.120836\pi\)
0.370565 + 0.928806i \(0.379164\pi\)
\(998\) −3.17606 + 5.31203i −0.100536 + 0.168149i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bm.h.109.13 48
3.2 odd 2 240.2.bl.a.109.12 48
5.4 even 2 inner 720.2.bm.h.109.12 48
12.11 even 2 960.2.bl.a.529.12 48
15.14 odd 2 240.2.bl.a.109.13 yes 48
16.5 even 4 inner 720.2.bm.h.469.12 48
24.5 odd 2 1920.2.bl.a.289.12 48
24.11 even 2 1920.2.bl.b.289.13 48
48.5 odd 4 240.2.bl.a.229.13 yes 48
48.11 even 4 960.2.bl.a.49.18 48
48.29 odd 4 1920.2.bl.a.1249.13 48
48.35 even 4 1920.2.bl.b.1249.12 48
60.59 even 2 960.2.bl.a.529.18 48
80.69 even 4 inner 720.2.bm.h.469.13 48
120.29 odd 2 1920.2.bl.a.289.13 48
120.59 even 2 1920.2.bl.b.289.12 48
240.29 odd 4 1920.2.bl.a.1249.12 48
240.59 even 4 960.2.bl.a.49.12 48
240.149 odd 4 240.2.bl.a.229.12 yes 48
240.179 even 4 1920.2.bl.b.1249.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.bl.a.109.12 48 3.2 odd 2
240.2.bl.a.109.13 yes 48 15.14 odd 2
240.2.bl.a.229.12 yes 48 240.149 odd 4
240.2.bl.a.229.13 yes 48 48.5 odd 4
720.2.bm.h.109.12 48 5.4 even 2 inner
720.2.bm.h.109.13 48 1.1 even 1 trivial
720.2.bm.h.469.12 48 16.5 even 4 inner
720.2.bm.h.469.13 48 80.69 even 4 inner
960.2.bl.a.49.12 48 240.59 even 4
960.2.bl.a.49.18 48 48.11 even 4
960.2.bl.a.529.12 48 12.11 even 2
960.2.bl.a.529.18 48 60.59 even 2
1920.2.bl.a.289.12 48 24.5 odd 2
1920.2.bl.a.289.13 48 120.29 odd 2
1920.2.bl.a.1249.12 48 240.29 odd 4
1920.2.bl.a.1249.13 48 48.29 odd 4
1920.2.bl.b.289.12 48 120.59 even 2
1920.2.bl.b.289.13 48 24.11 even 2
1920.2.bl.b.1249.12 48 48.35 even 4
1920.2.bl.b.1249.13 48 240.179 even 4