Properties

Label 1920.2.h.j.1151.4
Level $1920$
Weight $2$
Character 1920.1151
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(1151,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.4
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1151
Dual form 1920.2.h.j.1151.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 1.22474i) q^{3} +1.00000i q^{5} +0.449490i q^{7} +3.00000i q^{9} +2.00000 q^{11} -2.89898 q^{13} +(-1.22474 + 1.22474i) q^{15} +2.00000i q^{17} +2.00000i q^{19} +(-0.550510 + 0.550510i) q^{21} -4.44949 q^{23} -1.00000 q^{25} +(-3.67423 + 3.67423i) q^{27} -0.898979i q^{29} +8.00000i q^{31} +(2.44949 + 2.44949i) q^{33} -0.449490 q^{35} +6.00000 q^{37} +(-3.55051 - 3.55051i) q^{39} +7.79796i q^{41} -6.44949i q^{43} -3.00000 q^{45} -8.44949 q^{47} +6.79796 q^{49} +(-2.44949 + 2.44949i) q^{51} -6.89898i q^{53} +2.00000i q^{55} +(-2.44949 + 2.44949i) q^{57} +1.10102 q^{59} -8.89898 q^{61} -1.34847 q^{63} -2.89898i q^{65} +11.3485i q^{67} +(-5.44949 - 5.44949i) q^{69} -0.898979 q^{71} +10.8990 q^{73} +(-1.22474 - 1.22474i) q^{75} +0.898979i q^{77} +4.89898i q^{79} -9.00000 q^{81} -12.2474 q^{83} -2.00000 q^{85} +(1.10102 - 1.10102i) q^{87} +9.79796i q^{89} -1.30306i q^{91} +(-9.79796 + 9.79796i) q^{93} -2.00000 q^{95} +18.8990 q^{97} +6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{11} + 8 q^{13} - 12 q^{21} - 8 q^{23} - 4 q^{25} + 8 q^{35} + 24 q^{37} - 24 q^{39} - 12 q^{45} - 24 q^{47} - 12 q^{49} + 24 q^{59} - 16 q^{61} + 24 q^{63} - 12 q^{69} + 16 q^{71} + 24 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 + 1.22474i 0.707107 + 0.707107i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.449490i 0.169891i 0.996386 + 0.0849456i \(0.0270716\pi\)
−0.996386 + 0.0849456i \(0.972928\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.89898 −0.804032 −0.402016 0.915633i \(-0.631690\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(14\) 0 0
\(15\) −1.22474 + 1.22474i −0.316228 + 0.316228i
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) −0.550510 + 0.550510i −0.120131 + 0.120131i
\(22\) 0 0
\(23\) −4.44949 −0.927783 −0.463891 0.885892i \(-0.653547\pi\)
−0.463891 + 0.885892i \(0.653547\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 0.898979i 0.166936i −0.996510 0.0834681i \(-0.973400\pi\)
0.996510 0.0834681i \(-0.0265997\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i 0.695608 + 0.718421i \(0.255135\pi\)
−0.695608 + 0.718421i \(0.744865\pi\)
\(32\) 0 0
\(33\) 2.44949 + 2.44949i 0.426401 + 0.426401i
\(34\) 0 0
\(35\) −0.449490 −0.0759776
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) −3.55051 3.55051i −0.568537 0.568537i
\(40\) 0 0
\(41\) 7.79796i 1.21784i 0.793233 + 0.608918i \(0.208396\pi\)
−0.793233 + 0.608918i \(0.791604\pi\)
\(42\) 0 0
\(43\) 6.44949i 0.983538i −0.870726 0.491769i \(-0.836350\pi\)
0.870726 0.491769i \(-0.163650\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −8.44949 −1.23248 −0.616242 0.787557i \(-0.711346\pi\)
−0.616242 + 0.787557i \(0.711346\pi\)
\(48\) 0 0
\(49\) 6.79796 0.971137
\(50\) 0 0
\(51\) −2.44949 + 2.44949i −0.342997 + 0.342997i
\(52\) 0 0
\(53\) 6.89898i 0.947648i −0.880620 0.473824i \(-0.842873\pi\)
0.880620 0.473824i \(-0.157127\pi\)
\(54\) 0 0
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) −2.44949 + 2.44949i −0.324443 + 0.324443i
\(58\) 0 0
\(59\) 1.10102 0.143341 0.0716703 0.997428i \(-0.477167\pi\)
0.0716703 + 0.997428i \(0.477167\pi\)
\(60\) 0 0
\(61\) −8.89898 −1.13940 −0.569699 0.821854i \(-0.692940\pi\)
−0.569699 + 0.821854i \(0.692940\pi\)
\(62\) 0 0
\(63\) −1.34847 −0.169891
\(64\) 0 0
\(65\) 2.89898i 0.359574i
\(66\) 0 0
\(67\) 11.3485i 1.38644i 0.720728 + 0.693218i \(0.243808\pi\)
−0.720728 + 0.693218i \(0.756192\pi\)
\(68\) 0 0
\(69\) −5.44949 5.44949i −0.656041 0.656041i
\(70\) 0 0
\(71\) −0.898979 −0.106689 −0.0533446 0.998576i \(-0.516988\pi\)
−0.0533446 + 0.998576i \(0.516988\pi\)
\(72\) 0 0
\(73\) 10.8990 1.27563 0.637815 0.770190i \(-0.279839\pi\)
0.637815 + 0.770190i \(0.279839\pi\)
\(74\) 0 0
\(75\) −1.22474 1.22474i −0.141421 0.141421i
\(76\) 0 0
\(77\) 0.898979i 0.102448i
\(78\) 0 0
\(79\) 4.89898i 0.551178i 0.961276 + 0.275589i \(0.0888729\pi\)
−0.961276 + 0.275589i \(0.911127\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) −12.2474 −1.34433 −0.672166 0.740400i \(-0.734636\pi\)
−0.672166 + 0.740400i \(0.734636\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 1.10102 1.10102i 0.118042 0.118042i
\(88\) 0 0
\(89\) 9.79796i 1.03858i 0.854598 + 0.519291i \(0.173804\pi\)
−0.854598 + 0.519291i \(0.826196\pi\)
\(90\) 0 0
\(91\) 1.30306i 0.136598i
\(92\) 0 0
\(93\) −9.79796 + 9.79796i −1.01600 + 1.01600i
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) 18.8990 1.91890 0.959450 0.281878i \(-0.0909573\pi\)
0.959450 + 0.281878i \(0.0909573\pi\)
\(98\) 0 0
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) 12.8990i 1.28350i −0.766915 0.641748i \(-0.778209\pi\)
0.766915 0.641748i \(-0.221791\pi\)
\(102\) 0 0
\(103\) 1.34847i 0.132869i −0.997791 0.0664343i \(-0.978838\pi\)
0.997791 0.0664343i \(-0.0211623\pi\)
\(104\) 0 0
\(105\) −0.550510 0.550510i −0.0537243 0.0537243i
\(106\) 0 0
\(107\) −5.55051 −0.536588 −0.268294 0.963337i \(-0.586460\pi\)
−0.268294 + 0.963337i \(0.586460\pi\)
\(108\) 0 0
\(109\) 3.10102 0.297024 0.148512 0.988911i \(-0.452552\pi\)
0.148512 + 0.988911i \(0.452552\pi\)
\(110\) 0 0
\(111\) 7.34847 + 7.34847i 0.697486 + 0.697486i
\(112\) 0 0
\(113\) 10.8990i 1.02529i −0.858601 0.512645i \(-0.828666\pi\)
0.858601 0.512645i \(-0.171334\pi\)
\(114\) 0 0
\(115\) 4.44949i 0.414917i
\(116\) 0 0
\(117\) 8.69694i 0.804032i
\(118\) 0 0
\(119\) −0.898979 −0.0824093
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −9.55051 + 9.55051i −0.861141 + 0.861141i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 5.34847i 0.474600i 0.971436 + 0.237300i \(0.0762624\pi\)
−0.971436 + 0.237300i \(0.923738\pi\)
\(128\) 0 0
\(129\) 7.89898 7.89898i 0.695466 0.695466i
\(130\) 0 0
\(131\) −0.202041 −0.0176524 −0.00882620 0.999961i \(-0.502810\pi\)
−0.00882620 + 0.999961i \(0.502810\pi\)
\(132\) 0 0
\(133\) −0.898979 −0.0779514
\(134\) 0 0
\(135\) −3.67423 3.67423i −0.316228 0.316228i
\(136\) 0 0
\(137\) 1.10102i 0.0940665i −0.998893 0.0470333i \(-0.985023\pi\)
0.998893 0.0470333i \(-0.0149767\pi\)
\(138\) 0 0
\(139\) 2.00000i 0.169638i 0.996396 + 0.0848189i \(0.0270312\pi\)
−0.996396 + 0.0848189i \(0.972969\pi\)
\(140\) 0 0
\(141\) −10.3485 10.3485i −0.871498 0.871498i
\(142\) 0 0
\(143\) −5.79796 −0.484850
\(144\) 0 0
\(145\) 0.898979 0.0746562
\(146\) 0 0
\(147\) 8.32577 + 8.32577i 0.686698 + 0.686698i
\(148\) 0 0
\(149\) 3.79796i 0.311141i −0.987825 0.155570i \(-0.950278\pi\)
0.987825 0.155570i \(-0.0497216\pi\)
\(150\) 0 0
\(151\) 23.5959i 1.92021i 0.279642 + 0.960104i \(0.409784\pi\)
−0.279642 + 0.960104i \(0.590216\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 8.44949 8.44949i 0.670088 0.670088i
\(160\) 0 0
\(161\) 2.00000i 0.157622i
\(162\) 0 0
\(163\) 5.55051i 0.434750i −0.976088 0.217375i \(-0.930251\pi\)
0.976088 0.217375i \(-0.0697494\pi\)
\(164\) 0 0
\(165\) −2.44949 + 2.44949i −0.190693 + 0.190693i
\(166\) 0 0
\(167\) 21.3485 1.65199 0.825997 0.563674i \(-0.190613\pi\)
0.825997 + 0.563674i \(0.190613\pi\)
\(168\) 0 0
\(169\) −4.59592 −0.353532
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 7.79796i 0.592868i 0.955053 + 0.296434i \(0.0957975\pi\)
−0.955053 + 0.296434i \(0.904203\pi\)
\(174\) 0 0
\(175\) 0.449490i 0.0339782i
\(176\) 0 0
\(177\) 1.34847 + 1.34847i 0.101357 + 0.101357i
\(178\) 0 0
\(179\) −22.8990 −1.71155 −0.855775 0.517348i \(-0.826919\pi\)
−0.855775 + 0.517348i \(0.826919\pi\)
\(180\) 0 0
\(181\) 17.5959 1.30789 0.653947 0.756540i \(-0.273112\pi\)
0.653947 + 0.756540i \(0.273112\pi\)
\(182\) 0 0
\(183\) −10.8990 10.8990i −0.805676 0.805676i
\(184\) 0 0
\(185\) 6.00000i 0.441129i
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 0 0
\(189\) −1.65153 1.65153i −0.120131 0.120131i
\(190\) 0 0
\(191\) −3.10102 −0.224382 −0.112191 0.993687i \(-0.535787\pi\)
−0.112191 + 0.993687i \(0.535787\pi\)
\(192\) 0 0
\(193\) 24.6969 1.77772 0.888862 0.458175i \(-0.151497\pi\)
0.888862 + 0.458175i \(0.151497\pi\)
\(194\) 0 0
\(195\) 3.55051 3.55051i 0.254257 0.254257i
\(196\) 0 0
\(197\) 20.6969i 1.47460i −0.675568 0.737298i \(-0.736101\pi\)
0.675568 0.737298i \(-0.263899\pi\)
\(198\) 0 0
\(199\) 12.8990i 0.914384i 0.889368 + 0.457192i \(0.151145\pi\)
−0.889368 + 0.457192i \(0.848855\pi\)
\(200\) 0 0
\(201\) −13.8990 + 13.8990i −0.980358 + 0.980358i
\(202\) 0 0
\(203\) 0.404082 0.0283610
\(204\) 0 0
\(205\) −7.79796 −0.544633
\(206\) 0 0
\(207\) 13.3485i 0.927783i
\(208\) 0 0
\(209\) 4.00000i 0.276686i
\(210\) 0 0
\(211\) 18.8990i 1.30106i −0.759481 0.650530i \(-0.774547\pi\)
0.759481 0.650530i \(-0.225453\pi\)
\(212\) 0 0
\(213\) −1.10102 1.10102i −0.0754407 0.0754407i
\(214\) 0 0
\(215\) 6.44949 0.439852
\(216\) 0 0
\(217\) −3.59592 −0.244107
\(218\) 0 0
\(219\) 13.3485 + 13.3485i 0.902006 + 0.902006i
\(220\) 0 0
\(221\) 5.79796i 0.390013i
\(222\) 0 0
\(223\) 12.4495i 0.833679i −0.908980 0.416840i \(-0.863138\pi\)
0.908980 0.416840i \(-0.136862\pi\)
\(224\) 0 0
\(225\) 3.00000i 0.200000i
\(226\) 0 0
\(227\) 21.1464 1.40354 0.701769 0.712405i \(-0.252394\pi\)
0.701769 + 0.712405i \(0.252394\pi\)
\(228\) 0 0
\(229\) 19.7980 1.30829 0.654143 0.756371i \(-0.273029\pi\)
0.654143 + 0.756371i \(0.273029\pi\)
\(230\) 0 0
\(231\) −1.10102 + 1.10102i −0.0724418 + 0.0724418i
\(232\) 0 0
\(233\) 11.7980i 0.772910i −0.922308 0.386455i \(-0.873699\pi\)
0.922308 0.386455i \(-0.126301\pi\)
\(234\) 0 0
\(235\) 8.44949i 0.551184i
\(236\) 0 0
\(237\) −6.00000 + 6.00000i −0.389742 + 0.389742i
\(238\) 0 0
\(239\) 6.20204 0.401177 0.200588 0.979676i \(-0.435715\pi\)
0.200588 + 0.979676i \(0.435715\pi\)
\(240\) 0 0
\(241\) −23.5959 −1.51995 −0.759973 0.649954i \(-0.774788\pi\)
−0.759973 + 0.649954i \(0.774788\pi\)
\(242\) 0 0
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) 0 0
\(245\) 6.79796i 0.434306i
\(246\) 0 0
\(247\) 5.79796i 0.368915i
\(248\) 0 0
\(249\) −15.0000 15.0000i −0.950586 0.950586i
\(250\) 0 0
\(251\) 27.7980 1.75459 0.877296 0.479950i \(-0.159345\pi\)
0.877296 + 0.479950i \(0.159345\pi\)
\(252\) 0 0
\(253\) −8.89898 −0.559474
\(254\) 0 0
\(255\) −2.44949 2.44949i −0.153393 0.153393i
\(256\) 0 0
\(257\) 10.8990i 0.679860i 0.940451 + 0.339930i \(0.110403\pi\)
−0.940451 + 0.339930i \(0.889597\pi\)
\(258\) 0 0
\(259\) 2.69694i 0.167580i
\(260\) 0 0
\(261\) 2.69694 0.166936
\(262\) 0 0
\(263\) −12.4495 −0.767668 −0.383834 0.923402i \(-0.625397\pi\)
−0.383834 + 0.923402i \(0.625397\pi\)
\(264\) 0 0
\(265\) 6.89898 0.423801
\(266\) 0 0
\(267\) −12.0000 + 12.0000i −0.734388 + 0.734388i
\(268\) 0 0
\(269\) 21.5959i 1.31673i 0.752700 + 0.658363i \(0.228751\pi\)
−0.752700 + 0.658363i \(0.771249\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i 0.931214 + 0.364474i \(0.118751\pi\)
−0.931214 + 0.364474i \(0.881249\pi\)
\(272\) 0 0
\(273\) 1.59592 1.59592i 0.0965893 0.0965893i
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 17.5959i 1.04968i 0.851200 + 0.524842i \(0.175876\pi\)
−0.851200 + 0.524842i \(0.824124\pi\)
\(282\) 0 0
\(283\) 13.1464i 0.781474i −0.920502 0.390737i \(-0.872220\pi\)
0.920502 0.390737i \(-0.127780\pi\)
\(284\) 0 0
\(285\) −2.44949 2.44949i −0.145095 0.145095i
\(286\) 0 0
\(287\) −3.50510 −0.206900
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 23.1464 + 23.1464i 1.35687 + 1.35687i
\(292\) 0 0
\(293\) 27.7980i 1.62397i 0.583675 + 0.811987i \(0.301614\pi\)
−0.583675 + 0.811987i \(0.698386\pi\)
\(294\) 0 0
\(295\) 1.10102i 0.0641039i
\(296\) 0 0
\(297\) −7.34847 + 7.34847i −0.426401 + 0.426401i
\(298\) 0 0
\(299\) 12.8990 0.745967
\(300\) 0 0
\(301\) 2.89898 0.167094
\(302\) 0 0
\(303\) 15.7980 15.7980i 0.907569 0.907569i
\(304\) 0 0
\(305\) 8.89898i 0.509554i
\(306\) 0 0
\(307\) 27.3485i 1.56086i −0.625243 0.780430i \(-0.715000\pi\)
0.625243 0.780430i \(-0.285000\pi\)
\(308\) 0 0
\(309\) 1.65153 1.65153i 0.0939523 0.0939523i
\(310\) 0 0
\(311\) 24.4949 1.38898 0.694489 0.719503i \(-0.255630\pi\)
0.694489 + 0.719503i \(0.255630\pi\)
\(312\) 0 0
\(313\) −0.202041 −0.0114200 −0.00571002 0.999984i \(-0.501818\pi\)
−0.00571002 + 0.999984i \(0.501818\pi\)
\(314\) 0 0
\(315\) 1.34847i 0.0759776i
\(316\) 0 0
\(317\) 20.6969i 1.16246i 0.813741 + 0.581228i \(0.197428\pi\)
−0.813741 + 0.581228i \(0.802572\pi\)
\(318\) 0 0
\(319\) 1.79796i 0.100666i
\(320\) 0 0
\(321\) −6.79796 6.79796i −0.379425 0.379425i
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 2.89898 0.160806
\(326\) 0 0
\(327\) 3.79796 + 3.79796i 0.210028 + 0.210028i
\(328\) 0 0
\(329\) 3.79796i 0.209388i
\(330\) 0 0
\(331\) 13.1010i 0.720097i 0.932934 + 0.360049i \(0.117240\pi\)
−0.932934 + 0.360049i \(0.882760\pi\)
\(332\) 0 0
\(333\) 18.0000i 0.986394i
\(334\) 0 0
\(335\) −11.3485 −0.620033
\(336\) 0 0
\(337\) −4.20204 −0.228900 −0.114450 0.993429i \(-0.536511\pi\)
−0.114450 + 0.993429i \(0.536511\pi\)
\(338\) 0 0
\(339\) 13.3485 13.3485i 0.724989 0.724989i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 6.20204i 0.334879i
\(344\) 0 0
\(345\) 5.44949 5.44949i 0.293391 0.293391i
\(346\) 0 0
\(347\) 17.1464 0.920468 0.460234 0.887798i \(-0.347765\pi\)
0.460234 + 0.887798i \(0.347765\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 10.6515 10.6515i 0.568537 0.568537i
\(352\) 0 0
\(353\) 26.4949i 1.41018i −0.709117 0.705091i \(-0.750906\pi\)
0.709117 0.705091i \(-0.249094\pi\)
\(354\) 0 0
\(355\) 0.898979i 0.0477129i
\(356\) 0 0
\(357\) −1.10102 1.10102i −0.0582722 0.0582722i
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) −8.57321 8.57321i −0.449977 0.449977i
\(364\) 0 0
\(365\) 10.8990i 0.570479i
\(366\) 0 0
\(367\) 4.44949i 0.232261i 0.993234 + 0.116131i \(0.0370492\pi\)
−0.993234 + 0.116131i \(0.962951\pi\)
\(368\) 0 0
\(369\) −23.3939 −1.21784
\(370\) 0 0
\(371\) 3.10102 0.160997
\(372\) 0 0
\(373\) −5.59592 −0.289746 −0.144873 0.989450i \(-0.546277\pi\)
−0.144873 + 0.989450i \(0.546277\pi\)
\(374\) 0 0
\(375\) 1.22474 1.22474i 0.0632456 0.0632456i
\(376\) 0 0
\(377\) 2.60612i 0.134222i
\(378\) 0 0
\(379\) 10.0000i 0.513665i −0.966456 0.256833i \(-0.917321\pi\)
0.966456 0.256833i \(-0.0826790\pi\)
\(380\) 0 0
\(381\) −6.55051 + 6.55051i −0.335593 + 0.335593i
\(382\) 0 0
\(383\) −35.1464 −1.79590 −0.897949 0.440099i \(-0.854943\pi\)
−0.897949 + 0.440099i \(0.854943\pi\)
\(384\) 0 0
\(385\) −0.898979 −0.0458162
\(386\) 0 0
\(387\) 19.3485 0.983538
\(388\) 0 0
\(389\) 0.202041i 0.0102439i 0.999987 + 0.00512194i \(0.00163037\pi\)
−0.999987 + 0.00512194i \(0.998370\pi\)
\(390\) 0 0
\(391\) 8.89898i 0.450041i
\(392\) 0 0
\(393\) −0.247449 0.247449i −0.0124821 0.0124821i
\(394\) 0 0
\(395\) −4.89898 −0.246494
\(396\) 0 0
\(397\) 38.4949 1.93200 0.966002 0.258535i \(-0.0832399\pi\)
0.966002 + 0.258535i \(0.0832399\pi\)
\(398\) 0 0
\(399\) −1.10102 1.10102i −0.0551200 0.0551200i
\(400\) 0 0
\(401\) 15.5959i 0.778823i −0.921064 0.389411i \(-0.872678\pi\)
0.921064 0.389411i \(-0.127322\pi\)
\(402\) 0 0
\(403\) 23.1918i 1.15527i
\(404\) 0 0
\(405\) 9.00000i 0.447214i
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) 0 0
\(411\) 1.34847 1.34847i 0.0665151 0.0665151i
\(412\) 0 0
\(413\) 0.494897i 0.0243523i
\(414\) 0 0
\(415\) 12.2474i 0.601204i
\(416\) 0 0
\(417\) −2.44949 + 2.44949i −0.119952 + 0.119952i
\(418\) 0 0
\(419\) −7.30306 −0.356778 −0.178389 0.983960i \(-0.557089\pi\)
−0.178389 + 0.983960i \(0.557089\pi\)
\(420\) 0 0
\(421\) 36.4949 1.77865 0.889326 0.457273i \(-0.151174\pi\)
0.889326 + 0.457273i \(0.151174\pi\)
\(422\) 0 0
\(423\) 25.3485i 1.23248i
\(424\) 0 0
\(425\) 2.00000i 0.0970143i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) −7.10102 7.10102i −0.342841 0.342841i
\(430\) 0 0
\(431\) 16.4949 0.794531 0.397266 0.917704i \(-0.369959\pi\)
0.397266 + 0.917704i \(0.369959\pi\)
\(432\) 0 0
\(433\) 9.10102 0.437367 0.218684 0.975796i \(-0.429824\pi\)
0.218684 + 0.975796i \(0.429824\pi\)
\(434\) 0 0
\(435\) 1.10102 + 1.10102i 0.0527899 + 0.0527899i
\(436\) 0 0
\(437\) 8.89898i 0.425696i
\(438\) 0 0
\(439\) 28.4949i 1.35999i −0.733218 0.679994i \(-0.761983\pi\)
0.733218 0.679994i \(-0.238017\pi\)
\(440\) 0 0
\(441\) 20.3939i 0.971137i
\(442\) 0 0
\(443\) 24.2474 1.15203 0.576016 0.817439i \(-0.304607\pi\)
0.576016 + 0.817439i \(0.304607\pi\)
\(444\) 0 0
\(445\) −9.79796 −0.464468
\(446\) 0 0
\(447\) 4.65153 4.65153i 0.220010 0.220010i
\(448\) 0 0
\(449\) 25.5959i 1.20795i 0.797005 + 0.603973i \(0.206417\pi\)
−0.797005 + 0.603973i \(0.793583\pi\)
\(450\) 0 0
\(451\) 15.5959i 0.734383i
\(452\) 0 0
\(453\) −28.8990 + 28.8990i −1.35779 + 1.35779i
\(454\) 0 0
\(455\) 1.30306 0.0610885
\(456\) 0 0
\(457\) −27.7980 −1.30033 −0.650167 0.759791i \(-0.725301\pi\)
−0.650167 + 0.759791i \(0.725301\pi\)
\(458\) 0 0
\(459\) −7.34847 7.34847i −0.342997 0.342997i
\(460\) 0 0
\(461\) 42.2929i 1.96977i −0.173196 0.984887i \(-0.555409\pi\)
0.173196 0.984887i \(-0.444591\pi\)
\(462\) 0 0
\(463\) 25.8434i 1.20104i −0.799609 0.600522i \(-0.794960\pi\)
0.799609 0.600522i \(-0.205040\pi\)
\(464\) 0 0
\(465\) −9.79796 9.79796i −0.454369 0.454369i
\(466\) 0 0
\(467\) −13.1464 −0.608344 −0.304172 0.952617i \(-0.598380\pi\)
−0.304172 + 0.952617i \(0.598380\pi\)
\(468\) 0 0
\(469\) −5.10102 −0.235543
\(470\) 0 0
\(471\) 12.2474 + 12.2474i 0.564333 + 0.564333i
\(472\) 0 0
\(473\) 12.8990i 0.593096i
\(474\) 0 0
\(475\) 2.00000i 0.0917663i
\(476\) 0 0
\(477\) 20.6969 0.947648
\(478\) 0 0
\(479\) 41.3939 1.89133 0.945667 0.325136i \(-0.105410\pi\)
0.945667 + 0.325136i \(0.105410\pi\)
\(480\) 0 0
\(481\) −17.3939 −0.793093
\(482\) 0 0
\(483\) 2.44949 2.44949i 0.111456 0.111456i
\(484\) 0 0
\(485\) 18.8990i 0.858158i
\(486\) 0 0
\(487\) 17.3485i 0.786134i 0.919510 + 0.393067i \(0.128586\pi\)
−0.919510 + 0.393067i \(0.871414\pi\)
\(488\) 0 0
\(489\) 6.79796 6.79796i 0.307414 0.307414i
\(490\) 0 0
\(491\) 3.79796 0.171399 0.0856997 0.996321i \(-0.472687\pi\)
0.0856997 + 0.996321i \(0.472687\pi\)
\(492\) 0 0
\(493\) 1.79796 0.0809760
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 0.404082i 0.0181256i
\(498\) 0 0
\(499\) 27.3939i 1.22632i −0.789959 0.613159i \(-0.789898\pi\)
0.789959 0.613159i \(-0.210102\pi\)
\(500\) 0 0
\(501\) 26.1464 + 26.1464i 1.16814 + 1.16814i
\(502\) 0 0
\(503\) −16.9444 −0.755513 −0.377756 0.925905i \(-0.623304\pi\)
−0.377756 + 0.925905i \(0.623304\pi\)
\(504\) 0 0
\(505\) 12.8990 0.573997
\(506\) 0 0
\(507\) −5.62883 5.62883i −0.249985 0.249985i
\(508\) 0 0
\(509\) 16.8990i 0.749034i 0.927220 + 0.374517i \(0.122191\pi\)
−0.927220 + 0.374517i \(0.877809\pi\)
\(510\) 0 0
\(511\) 4.89898i 0.216718i
\(512\) 0 0
\(513\) −7.34847 7.34847i −0.324443 0.324443i
\(514\) 0 0
\(515\) 1.34847 0.0594207
\(516\) 0 0
\(517\) −16.8990 −0.743216
\(518\) 0 0
\(519\) −9.55051 + 9.55051i −0.419221 + 0.419221i
\(520\) 0 0
\(521\) 6.20204i 0.271716i −0.990728 0.135858i \(-0.956621\pi\)
0.990728 0.135858i \(-0.0433791\pi\)
\(522\) 0 0
\(523\) 40.2474i 1.75990i −0.475068 0.879949i \(-0.657577\pi\)
0.475068 0.879949i \(-0.342423\pi\)
\(524\) 0 0
\(525\) 0.550510 0.550510i 0.0240262 0.0240262i
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) −3.20204 −0.139219
\(530\) 0 0
\(531\) 3.30306i 0.143341i
\(532\) 0 0
\(533\) 22.6061i 0.979180i
\(534\) 0 0
\(535\) 5.55051i 0.239969i
\(536\) 0 0
\(537\) −28.0454 28.0454i −1.21025 1.21025i
\(538\) 0 0
\(539\) 13.5959 0.585618
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 0 0
\(543\) 21.5505 + 21.5505i 0.924821 + 0.924821i
\(544\) 0 0
\(545\) 3.10102i 0.132833i
\(546\) 0 0
\(547\) 18.0454i 0.771566i 0.922590 + 0.385783i \(0.126069\pi\)
−0.922590 + 0.385783i \(0.873931\pi\)
\(548\) 0 0
\(549\) 26.6969i 1.13940i
\(550\) 0 0
\(551\) 1.79796 0.0765956
\(552\) 0 0
\(553\) −2.20204 −0.0936403
\(554\) 0 0
\(555\) −7.34847 + 7.34847i −0.311925 + 0.311925i
\(556\) 0 0
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) 18.6969i 0.790796i
\(560\) 0 0
\(561\) −4.89898 + 4.89898i −0.206835 + 0.206835i
\(562\) 0 0
\(563\) −18.4495 −0.777553 −0.388777 0.921332i \(-0.627102\pi\)
−0.388777 + 0.921332i \(0.627102\pi\)
\(564\) 0 0
\(565\) 10.8990 0.458524
\(566\) 0 0
\(567\) 4.04541i 0.169891i
\(568\) 0 0
\(569\) 9.59592i 0.402282i −0.979562 0.201141i \(-0.935535\pi\)
0.979562 0.201141i \(-0.0644649\pi\)
\(570\) 0 0
\(571\) 28.6969i 1.20093i 0.799651 + 0.600465i \(0.205018\pi\)
−0.799651 + 0.600465i \(0.794982\pi\)
\(572\) 0 0
\(573\) −3.79796 3.79796i −0.158662 0.158662i
\(574\) 0 0
\(575\) 4.44949 0.185557
\(576\) 0 0
\(577\) −11.7980 −0.491155 −0.245578 0.969377i \(-0.578978\pi\)
−0.245578 + 0.969377i \(0.578978\pi\)
\(578\) 0 0
\(579\) 30.2474 + 30.2474i 1.25704 + 1.25704i
\(580\) 0 0
\(581\) 5.50510i 0.228390i
\(582\) 0 0
\(583\) 13.7980i 0.571453i
\(584\) 0 0
\(585\) 8.69694 0.359574
\(586\) 0 0
\(587\) −4.24745 −0.175311 −0.0876555 0.996151i \(-0.527937\pi\)
−0.0876555 + 0.996151i \(0.527937\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 25.3485 25.3485i 1.04270 1.04270i
\(592\) 0 0
\(593\) 11.3031i 0.464161i −0.972697 0.232081i \(-0.925447\pi\)
0.972697 0.232081i \(-0.0745533\pi\)
\(594\) 0 0
\(595\) 0.898979i 0.0368546i
\(596\) 0 0
\(597\) −15.7980 + 15.7980i −0.646567 + 0.646567i
\(598\) 0 0
\(599\) 41.3939 1.69131 0.845654 0.533732i \(-0.179211\pi\)
0.845654 + 0.533732i \(0.179211\pi\)
\(600\) 0 0
\(601\) 13.7980 0.562830 0.281415 0.959586i \(-0.409196\pi\)
0.281415 + 0.959586i \(0.409196\pi\)
\(602\) 0 0
\(603\) −34.0454 −1.38644
\(604\) 0 0
\(605\) 7.00000i 0.284590i
\(606\) 0 0
\(607\) 37.3485i 1.51593i 0.652297 + 0.757964i \(0.273806\pi\)
−0.652297 + 0.757964i \(0.726194\pi\)
\(608\) 0 0
\(609\) 0.494897 + 0.494897i 0.0200543 + 0.0200543i
\(610\) 0 0
\(611\) 24.4949 0.990957
\(612\) 0 0
\(613\) −6.49490 −0.262326 −0.131163 0.991361i \(-0.541871\pi\)
−0.131163 + 0.991361i \(0.541871\pi\)
\(614\) 0 0
\(615\) −9.55051 9.55051i −0.385114 0.385114i
\(616\) 0 0
\(617\) 46.0000i 1.85189i −0.377658 0.925945i \(-0.623271\pi\)
0.377658 0.925945i \(-0.376729\pi\)
\(618\) 0 0
\(619\) 11.7980i 0.474200i −0.971485 0.237100i \(-0.923803\pi\)
0.971485 0.237100i \(-0.0761969\pi\)
\(620\) 0 0
\(621\) 16.3485 16.3485i 0.656041 0.656041i
\(622\) 0 0
\(623\) −4.40408 −0.176446
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.89898 + 4.89898i −0.195646 + 0.195646i
\(628\) 0 0
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) 16.0000i 0.636950i −0.947931 0.318475i \(-0.896829\pi\)
0.947931 0.318475i \(-0.103171\pi\)
\(632\) 0 0
\(633\) 23.1464 23.1464i 0.919988 0.919988i
\(634\) 0 0
\(635\) −5.34847 −0.212248
\(636\) 0 0
\(637\) −19.7071 −0.780825
\(638\) 0 0
\(639\) 2.69694i 0.106689i
\(640\) 0 0
\(641\) 6.00000i 0.236986i −0.992955 0.118493i \(-0.962194\pi\)
0.992955 0.118493i \(-0.0378063\pi\)
\(642\) 0 0
\(643\) 23.3485i 0.920774i 0.887718 + 0.460387i \(0.152289\pi\)
−0.887718 + 0.460387i \(0.847711\pi\)
\(644\) 0 0
\(645\) 7.89898 + 7.89898i 0.311022 + 0.311022i
\(646\) 0 0
\(647\) 30.2474 1.18915 0.594575 0.804040i \(-0.297320\pi\)
0.594575 + 0.804040i \(0.297320\pi\)
\(648\) 0 0
\(649\) 2.20204 0.0864377
\(650\) 0 0
\(651\) −4.40408 4.40408i −0.172610 0.172610i
\(652\) 0 0
\(653\) 1.10102i 0.0430863i 0.999768 + 0.0215431i \(0.00685792\pi\)
−0.999768 + 0.0215431i \(0.993142\pi\)
\(654\) 0 0
\(655\) 0.202041i 0.00789440i
\(656\) 0 0
\(657\) 32.6969i 1.27563i
\(658\) 0 0
\(659\) −34.4949 −1.34373 −0.671865 0.740673i \(-0.734507\pi\)
−0.671865 + 0.740673i \(0.734507\pi\)
\(660\) 0 0
\(661\) 7.10102 0.276198 0.138099 0.990418i \(-0.455901\pi\)
0.138099 + 0.990418i \(0.455901\pi\)
\(662\) 0 0
\(663\) 7.10102 7.10102i 0.275781 0.275781i
\(664\) 0 0
\(665\) 0.898979i 0.0348609i
\(666\) 0 0
\(667\) 4.00000i 0.154881i
\(668\) 0 0
\(669\) 15.2474 15.2474i 0.589500 0.589500i
\(670\) 0 0
\(671\) −17.7980 −0.687083
\(672\) 0 0
\(673\) −3.30306 −0.127324 −0.0636618 0.997972i \(-0.520278\pi\)
−0.0636618 + 0.997972i \(0.520278\pi\)
\(674\) 0 0
\(675\) 3.67423 3.67423i 0.141421 0.141421i
\(676\) 0 0
\(677\) 12.6969i 0.487983i −0.969777 0.243991i \(-0.921543\pi\)
0.969777 0.243991i \(-0.0784569\pi\)
\(678\) 0 0
\(679\) 8.49490i 0.326004i
\(680\) 0 0
\(681\) 25.8990 + 25.8990i 0.992451 + 0.992451i
\(682\) 0 0
\(683\) 4.65153 0.177986 0.0889929 0.996032i \(-0.471635\pi\)
0.0889929 + 0.996032i \(0.471635\pi\)
\(684\) 0 0
\(685\) 1.10102 0.0420678
\(686\) 0 0
\(687\) 24.2474 + 24.2474i 0.925098 + 0.925098i
\(688\) 0 0
\(689\) 20.0000i 0.761939i
\(690\) 0 0
\(691\) 20.6969i 0.787349i 0.919250 + 0.393674i \(0.128796\pi\)
−0.919250 + 0.393674i \(0.871204\pi\)
\(692\) 0 0
\(693\) −2.69694 −0.102448
\(694\) 0 0
\(695\) −2.00000 −0.0758643
\(696\) 0 0
\(697\) −15.5959 −0.590738
\(698\) 0 0
\(699\) 14.4495 14.4495i 0.546530 0.546530i
\(700\) 0 0
\(701\) 43.3939i 1.63896i −0.573105 0.819482i \(-0.694261\pi\)
0.573105 0.819482i \(-0.305739\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) 10.3485 10.3485i 0.389746 0.389746i
\(706\) 0 0
\(707\) 5.79796 0.218055
\(708\) 0 0
\(709\) −43.7980 −1.64487 −0.822433 0.568861i \(-0.807384\pi\)
−0.822433 + 0.568861i \(0.807384\pi\)
\(710\) 0 0
\(711\) −14.6969 −0.551178
\(712\) 0 0
\(713\) 35.5959i 1.33308i
\(714\) 0 0
\(715\) 5.79796i 0.216831i
\(716\) 0 0
\(717\) 7.59592 + 7.59592i 0.283675 + 0.283675i
\(718\) 0 0
\(719\) −33.3939 −1.24538 −0.622691 0.782468i \(-0.713961\pi\)
−0.622691 + 0.782468i \(0.713961\pi\)
\(720\) 0 0
\(721\) 0.606123 0.0225732
\(722\) 0 0
\(723\) −28.8990 28.8990i −1.07476 1.07476i
\(724\) 0 0
\(725\) 0.898979i 0.0333873i
\(726\) 0 0
\(727\) 3.14643i 0.116695i 0.998296 + 0.0583473i \(0.0185831\pi\)
−0.998296 + 0.0583473i \(0.981417\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 12.8990 0.477086
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −8.32577 + 8.32577i −0.307100 + 0.307100i
\(736\) 0 0
\(737\) 22.6969i 0.836052i
\(738\) 0 0
\(739\) 3.79796i 0.139710i 0.997557 + 0.0698551i \(0.0222537\pi\)
−0.997557 + 0.0698551i \(0.977746\pi\)
\(740\) 0 0
\(741\) 7.10102 7.10102i 0.260863 0.260863i
\(742\) 0 0
\(743\) 0.853572 0.0313145 0.0156573 0.999877i \(-0.495016\pi\)
0.0156573 + 0.999877i \(0.495016\pi\)
\(744\) 0 0
\(745\) 3.79796 0.139146
\(746\) 0 0
\(747\) 36.7423i 1.34433i
\(748\) 0 0
\(749\) 2.49490i 0.0911616i
\(750\) 0 0
\(751\) 9.39388i 0.342787i 0.985203 + 0.171394i \(0.0548270\pi\)
−0.985203 + 0.171394i \(0.945173\pi\)
\(752\) 0 0
\(753\) 34.0454 + 34.0454i 1.24068 + 1.24068i
\(754\) 0 0
\(755\) −23.5959 −0.858743
\(756\) 0 0
\(757\) −19.3939 −0.704882 −0.352441 0.935834i \(-0.614648\pi\)
−0.352441 + 0.935834i \(0.614648\pi\)
\(758\) 0 0
\(759\) −10.8990 10.8990i −0.395608 0.395608i
\(760\) 0 0
\(761\) 33.7980i 1.22518i 0.790403 + 0.612588i \(0.209871\pi\)
−0.790403 + 0.612588i \(0.790129\pi\)
\(762\) 0 0
\(763\) 1.39388i 0.0504617i
\(764\) 0 0
\(765\) 6.00000i 0.216930i
\(766\) 0 0
\(767\) −3.19184 −0.115251
\(768\) 0 0
\(769\) −31.7980 −1.14666 −0.573332 0.819323i \(-0.694349\pi\)
−0.573332 + 0.819323i \(0.694349\pi\)
\(770\) 0 0
\(771\) −13.3485 + 13.3485i −0.480733 + 0.480733i
\(772\) 0 0
\(773\) 24.6969i 0.888287i 0.895956 + 0.444144i \(0.146492\pi\)
−0.895956 + 0.444144i \(0.853508\pi\)
\(774\) 0 0
\(775\) 8.00000i 0.287368i
\(776\) 0 0
\(777\) −3.30306 + 3.30306i −0.118497 + 0.118497i
\(778\) 0 0
\(779\) −15.5959 −0.558782
\(780\) 0 0
\(781\) −1.79796 −0.0643360
\(782\) 0 0
\(783\) 3.30306 + 3.30306i 0.118042 + 0.118042i
\(784\) 0 0
\(785\) 10.0000i 0.356915i
\(786\) 0 0
\(787\) 13.1464i 0.468620i −0.972162 0.234310i \(-0.924717\pi\)
0.972162 0.234310i \(-0.0752830\pi\)
\(788\) 0 0
\(789\) −15.2474 15.2474i −0.542824 0.542824i
\(790\) 0 0
\(791\) 4.89898 0.174188
\(792\) 0 0
\(793\) 25.7980 0.916112
\(794\) 0 0
\(795\) 8.44949 + 8.44949i 0.299673 + 0.299673i
\(796\) 0 0
\(797\) 1.10102i 0.0390001i 0.999810 + 0.0195001i \(0.00620746\pi\)
−0.999810 + 0.0195001i \(0.993793\pi\)
\(798\) 0 0
\(799\) 16.8990i 0.597843i
\(800\) 0 0
\(801\) −29.3939 −1.03858
\(802\) 0 0
\(803\) 21.7980 0.769233
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) −26.4495 + 26.4495i −0.931066 + 0.931066i
\(808\) 0 0
\(809\) 8.40408i 0.295472i 0.989027 + 0.147736i \(0.0471986\pi\)
−0.989027 + 0.147736i \(0.952801\pi\)
\(810\) 0 0
\(811\) 1.50510i 0.0528513i 0.999651 + 0.0264256i \(0.00841252\pi\)
−0.999651 + 0.0264256i \(0.991587\pi\)
\(812\) 0 0
\(813\) −14.6969 + 14.6969i −0.515444 + 0.515444i
\(814\) 0 0
\(815\) 5.55051 0.194426
\(816\) 0 0
\(817\) 12.8990 0.451278
\(818\) 0 0
\(819\) 3.90918 0.136598
\(820\) 0 0
\(821\) 37.5959i 1.31211i 0.754715 + 0.656053i \(0.227775\pi\)
−0.754715 + 0.656053i \(0.772225\pi\)
\(822\) 0 0
\(823\) 7.55051i 0.263194i −0.991303 0.131597i \(-0.957989\pi\)
0.991303 0.131597i \(-0.0420105\pi\)
\(824\) 0 0
\(825\) −2.44949 2.44949i −0.0852803 0.0852803i
\(826\) 0 0
\(827\) −1.14643 −0.0398652 −0.0199326 0.999801i \(-0.506345\pi\)
−0.0199326 + 0.999801i \(0.506345\pi\)
\(828\) 0 0
\(829\) 24.4949 0.850743 0.425371 0.905019i \(-0.360143\pi\)
0.425371 + 0.905019i \(0.360143\pi\)
\(830\) 0 0
\(831\) 2.44949 + 2.44949i 0.0849719 + 0.0849719i
\(832\) 0 0
\(833\) 13.5959i 0.471071i
\(834\) 0 0
\(835\) 21.3485i 0.738794i
\(836\) 0 0
\(837\) −29.3939 29.3939i −1.01600 1.01600i
\(838\) 0 0
\(839\) −17.7980 −0.614454 −0.307227 0.951636i \(-0.599401\pi\)
−0.307227 + 0.951636i \(0.599401\pi\)
\(840\) 0 0
\(841\) 28.1918 0.972132
\(842\) 0 0
\(843\) −21.5505 + 21.5505i −0.742239 + 0.742239i
\(844\) 0 0
\(845\) 4.59592i 0.158104i
\(846\) 0 0
\(847\) 3.14643i 0.108113i
\(848\) 0 0
\(849\) 16.1010 16.1010i 0.552586 0.552586i
\(850\) 0 0
\(851\) −26.6969 −0.915159
\(852\) 0 0
\(853\) −50.8990 −1.74275 −0.871374 0.490619i \(-0.836771\pi\)
−0.871374 + 0.490619i \(0.836771\pi\)
\(854\) 0 0
\(855\) 6.00000i 0.205196i
\(856\) 0 0
\(857\) 8.69694i 0.297082i 0.988906 + 0.148541i \(0.0474577\pi\)
−0.988906 + 0.148541i \(0.952542\pi\)
\(858\) 0 0
\(859\) 37.5959i 1.28276i 0.767225 + 0.641378i \(0.221637\pi\)
−0.767225 + 0.641378i \(0.778363\pi\)
\(860\) 0 0
\(861\) −4.29286 4.29286i −0.146300 0.146300i
\(862\) 0 0
\(863\) −44.9444 −1.52992 −0.764962 0.644075i \(-0.777242\pi\)
−0.764962 + 0.644075i \(0.777242\pi\)
\(864\) 0 0
\(865\) −7.79796 −0.265139
\(866\) 0 0
\(867\) 15.9217 + 15.9217i 0.540729 + 0.540729i
\(868\) 0 0
\(869\) 9.79796i 0.332373i
\(870\) 0 0
\(871\) 32.8990i 1.11474i
\(872\) 0 0
\(873\) 56.6969i 1.91890i
\(874\) 0 0
\(875\) 0.449490 0.0151955
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) −34.0454 + 34.0454i −1.14832 + 1.14832i
\(880\) 0 0
\(881\) 8.20204i 0.276334i −0.990409 0.138167i \(-0.955879\pi\)
0.990409 0.138167i \(-0.0441210\pi\)
\(882\) 0 0
\(883\) 18.4495i 0.620875i 0.950594 + 0.310437i \(0.100476\pi\)
−0.950594 + 0.310437i \(0.899524\pi\)
\(884\) 0 0
\(885\) −1.34847 + 1.34847i −0.0453283 + 0.0453283i
\(886\) 0 0
\(887\) −47.1464 −1.58302 −0.791511 0.611155i \(-0.790705\pi\)
−0.791511 + 0.611155i \(0.790705\pi\)
\(888\) 0 0
\(889\) −2.40408 −0.0806303
\(890\) 0 0
\(891\) −18.0000 −0.603023
\(892\) 0 0
\(893\) 16.8990i 0.565503i
\(894\) 0 0
\(895\) 22.8990i 0.765428i
\(896\) 0 0
\(897\) 15.7980 + 15.7980i 0.527478 + 0.527478i
\(898\) 0 0
\(899\) 7.19184 0.239861
\(900\) 0 0
\(901\) 13.7980 0.459677
\(902\) 0 0
\(903\) 3.55051 + 3.55051i 0.118154 + 0.118154i
\(904\) 0 0
\(905\) 17.5959i 0.584908i
\(906\) 0 0
\(907\) 2.94439i 0.0977668i 0.998804 + 0.0488834i \(0.0155663\pi\)
−0.998804 + 0.0488834i \(0.984434\pi\)
\(908\) 0 0
\(909\) 38.6969 1.28350
\(910\) 0 0
\(911\) −14.6969 −0.486931 −0.243466 0.969910i \(-0.578284\pi\)
−0.243466 + 0.969910i \(0.578284\pi\)
\(912\) 0 0
\(913\) −24.4949 −0.810663
\(914\) 0 0
\(915\) 10.8990 10.8990i 0.360309 0.360309i
\(916\) 0 0
\(917\) 0.0908154i 0.00299899i
\(918\) 0 0
\(919\) 44.4949i 1.46775i 0.679284 + 0.733876i \(0.262291\pi\)
−0.679284 + 0.733876i \(0.737709\pi\)
\(920\) 0 0
\(921\) 33.4949 33.4949i 1.10369 1.10369i
\(922\) 0 0
\(923\) 2.60612 0.0857816
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 4.04541 0.132869
\(928\) 0 0
\(929\) 34.0000i 1.11550i 0.830008 + 0.557752i \(0.188336\pi\)
−0.830008 + 0.557752i \(0.811664\pi\)
\(930\) 0 0
\(931\) 13.5959i 0.445588i
\(932\) 0 0
\(933\) 30.0000 + 30.0000i 0.982156 + 0.982156i
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 2.49490 0.0815047 0.0407524 0.999169i \(-0.487025\pi\)
0.0407524 + 0.999169i \(0.487025\pi\)
\(938\) 0 0
\(939\) −0.247449 0.247449i −0.00807518 0.00807518i
\(940\) 0 0
\(941\) 24.4949i 0.798511i −0.916840 0.399255i \(-0.869269\pi\)
0.916840 0.399255i \(-0.130731\pi\)
\(942\) 0 0
\(943\) 34.6969i 1.12989i
\(944\) 0 0
\(945\) 1.65153 1.65153i 0.0537243 0.0537243i
\(946\) 0 0
\(947\) −6.44949 −0.209580 −0.104790 0.994494i \(-0.533417\pi\)
−0.104790 + 0.994494i \(0.533417\pi\)
\(948\) 0 0
\(949\) −31.5959 −1.02565
\(950\) 0 0
\(951\) −25.3485 + 25.3485i −0.821980 + 0.821980i
\(952\) 0 0
\(953\) 10.8990i 0.353053i −0.984296 0.176526i \(-0.943514\pi\)
0.984296 0.176526i \(-0.0564861\pi\)
\(954\) 0 0
\(955\) 3.10102i 0.100347i
\(956\) 0 0
\(957\) 2.20204 2.20204i 0.0711819 0.0711819i
\(958\) 0 0
\(959\) 0.494897 0.0159811
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 16.6515i 0.536588i
\(964\) 0 0
\(965\) 24.6969i 0.795023i
\(966\) 0 0
\(967\) 5.75255i 0.184990i −0.995713 0.0924948i \(-0.970516\pi\)
0.995713 0.0924948i \(-0.0294841\pi\)
\(968\) 0 0
\(969\) −4.89898 4.89898i −0.157378 0.157378i
\(970\) 0 0
\(971\) 20.2020 0.648314 0.324157 0.946003i \(-0.394919\pi\)
0.324157 + 0.946003i \(0.394919\pi\)
\(972\) 0 0
\(973\) −0.898979 −0.0288200
\(974\) 0 0
\(975\) 3.55051 + 3.55051i 0.113707 + 0.113707i
\(976\) 0 0
\(977\) 45.1918i 1.44581i 0.690945 + 0.722907i \(0.257195\pi\)
−0.690945 + 0.722907i \(0.742805\pi\)
\(978\) 0 0
\(979\) 19.5959i 0.626288i
\(980\) 0 0
\(981\) 9.30306i 0.297024i
\(982\) 0 0
\(983\) −7.95459 −0.253712 −0.126856 0.991921i \(-0.540489\pi\)
−0.126856 + 0.991921i \(0.540489\pi\)
\(984\) 0 0
\(985\) 20.6969 0.659459
\(986\) 0 0
\(987\) 4.65153 4.65153i 0.148060 0.148060i
\(988\) 0 0
\(989\) 28.6969i 0.912510i
\(990\) 0 0
\(991\) 47.1918i 1.49910i 0.661949 + 0.749549i \(0.269730\pi\)
−0.661949 + 0.749549i \(0.730270\pi\)
\(992\) 0 0
\(993\) −16.0454 + 16.0454i −0.509186 + 0.509186i
\(994\) 0 0
\(995\) −12.8990 −0.408925
\(996\) 0 0
\(997\) −42.0908 −1.33303 −0.666515 0.745492i \(-0.732215\pi\)
−0.666515 + 0.745492i \(0.732215\pi\)
\(998\) 0 0
\(999\) −22.0454 + 22.0454i −0.697486 + 0.697486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.h.j.1151.4 yes 4
3.2 odd 2 1920.2.h.h.1151.2 yes 4
4.3 odd 2 1920.2.h.h.1151.1 yes 4
8.3 odd 2 1920.2.h.i.1151.4 yes 4
8.5 even 2 1920.2.h.g.1151.1 4
12.11 even 2 inner 1920.2.h.j.1151.3 yes 4
24.5 odd 2 1920.2.h.i.1151.3 yes 4
24.11 even 2 1920.2.h.g.1151.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.h.g.1151.1 4 8.5 even 2
1920.2.h.g.1151.2 yes 4 24.11 even 2
1920.2.h.h.1151.1 yes 4 4.3 odd 2
1920.2.h.h.1151.2 yes 4 3.2 odd 2
1920.2.h.i.1151.3 yes 4 24.5 odd 2
1920.2.h.i.1151.4 yes 4 8.3 odd 2
1920.2.h.j.1151.3 yes 4 12.11 even 2 inner
1920.2.h.j.1151.4 yes 4 1.1 even 1 trivial