Properties

Label 1920.2.m.k.959.1
Level 19201920
Weight 22
Character 1920.959
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+1 x^{4} + 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 959.1
Root 1.93185i1.93185i of defining polynomial
Character χ\chi == 1920.959
Dual form 1920.2.m.k.959.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.73205q3+(1.732051.41421i)q52.00000q7+3.00000q9+5.65685iq11+(3.00000+2.44949i)q15+3.46410q21+(1.000004.89898i)q255.19615q2710.3923q294.89898iq319.79796iq33+(3.46410+2.82843i)q35+(5.196154.24264i)q453.00000q49+14.1421iq53+(8.00000+9.79796i)q55+11.3137iq596.00000q63+9.79796iq73+(1.73205+8.48528i)q7511.3137iq7714.6969iq79+9.00000q8117.3205q83+18.0000q87+8.48528iq93+19.5959iq97+16.9706iq99+O(q100)q-1.73205 q^{3} +(1.73205 - 1.41421i) q^{5} -2.00000 q^{7} +3.00000 q^{9} +5.65685i q^{11} +(-3.00000 + 2.44949i) q^{15} +3.46410 q^{21} +(1.00000 - 4.89898i) q^{25} -5.19615 q^{27} -10.3923 q^{29} -4.89898i q^{31} -9.79796i q^{33} +(-3.46410 + 2.82843i) q^{35} +(5.19615 - 4.24264i) q^{45} -3.00000 q^{49} +14.1421i q^{53} +(8.00000 + 9.79796i) q^{55} +11.3137i q^{59} -6.00000 q^{63} +9.79796i q^{73} +(-1.73205 + 8.48528i) q^{75} -11.3137i q^{77} -14.6969i q^{79} +9.00000 q^{81} -17.3205 q^{83} +18.0000 q^{87} +8.48528i q^{93} +19.5959i q^{97} +16.9706i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q7+12q912q15+4q2512q49+32q5524q63+36q81+72q87+O(q100) 4 q - 8 q^{7} + 12 q^{9} - 12 q^{15} + 4 q^{25} - 12 q^{49} + 32 q^{55} - 24 q^{63} + 36 q^{81} + 72 q^{87}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −1.73205 −1.00000
44 0 0
55 1.73205 1.41421i 0.774597 0.632456i
66 0 0
77 −2.00000 −0.755929 −0.377964 0.925820i 0.623376π-0.623376\pi
−0.377964 + 0.925820i 0.623376π0.623376\pi
88 0 0
99 3.00000 1.00000
1010 0 0
1111 5.65685i 1.70561i 0.522233 + 0.852803i 0.325099π0.325099\pi
−0.522233 + 0.852803i 0.674901π0.674901\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −3.00000 + 2.44949i −0.774597 + 0.632456i
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 3.46410 0.755929
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 1.00000 4.89898i 0.200000 0.979796i
2626 0 0
2727 −5.19615 −1.00000
2828 0 0
2929 −10.3923 −1.92980 −0.964901 0.262613i 0.915416π-0.915416\pi
−0.964901 + 0.262613i 0.915416π0.915416\pi
3030 0 0
3131 4.89898i 0.879883i −0.898027 0.439941i 0.854999π-0.854999\pi
0.898027 0.439941i 0.145001π-0.145001\pi
3232 0 0
3333 9.79796i 1.70561i
3434 0 0
3535 −3.46410 + 2.82843i −0.585540 + 0.478091i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 5.19615 4.24264i 0.774597 0.632456i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −3.00000 −0.428571
5050 0 0
5151 0 0
5252 0 0
5353 14.1421i 1.94257i 0.237915 + 0.971286i 0.423536π0.423536\pi
−0.237915 + 0.971286i 0.576464π0.576464\pi
5454 0 0
5555 8.00000 + 9.79796i 1.07872 + 1.32116i
5656 0 0
5757 0 0
5858 0 0
5959 11.3137i 1.47292i 0.676481 + 0.736460i 0.263504π0.263504\pi
−0.676481 + 0.736460i 0.736496π0.736496\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −6.00000 −0.755929
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 9.79796i 1.14676i 0.819288 + 0.573382i 0.194369π0.194369\pi
−0.819288 + 0.573382i 0.805631π0.805631\pi
7474 0 0
7575 −1.73205 + 8.48528i −0.200000 + 0.979796i
7676 0 0
7777 11.3137i 1.28932i
7878 0 0
7979 14.6969i 1.65353i −0.562544 0.826767i 0.690177π-0.690177\pi
0.562544 0.826767i 0.309823π-0.309823\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 −17.3205 −1.90117 −0.950586 0.310460i 0.899517π-0.899517\pi
−0.950586 + 0.310460i 0.899517π0.899517\pi
8484 0 0
8585 0 0
8686 0 0
8787 18.0000 1.92980
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 8.48528i 0.879883i
9494 0 0
9595 0 0
9696 0 0
9797 19.5959i 1.98966i 0.101535 + 0.994832i 0.467625π0.467625\pi
−0.101535 + 0.994832i 0.532375π0.532375\pi
9898 0 0
9999 16.9706i 1.70561i
100100 0 0
101101 −3.46410 −0.344691 −0.172345 0.985037i 0.555135π-0.555135\pi
−0.172345 + 0.985037i 0.555135π0.555135\pi
102102 0 0
103103 14.0000 1.37946 0.689730 0.724066i 0.257729π-0.257729\pi
0.689730 + 0.724066i 0.257729π0.257729\pi
104104 0 0
105105 6.00000 4.89898i 0.585540 0.478091i
106106 0 0
107107 −17.3205 −1.67444 −0.837218 0.546869i 0.815820π-0.815820\pi
−0.837218 + 0.546869i 0.815820π0.815820\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −21.0000 −1.90909
122122 0 0
123123 0 0
124124 0 0
125125 −5.19615 9.89949i −0.464758 0.885438i
126126 0 0
127127 −22.0000 −1.95218 −0.976092 0.217357i 0.930256π-0.930256\pi
−0.976092 + 0.217357i 0.930256π0.930256\pi
128128 0 0
129129 0 0
130130 0 0
131131 22.6274i 1.97697i 0.151330 + 0.988483i 0.451644π0.451644\pi
−0.151330 + 0.988483i 0.548356π0.548356\pi
132132 0 0
133133 0 0
134134 0 0
135135 −9.00000 + 7.34847i −0.774597 + 0.632456i
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 −18.0000 + 14.6969i −1.49482 + 1.22051i
146146 0 0
147147 5.19615 0.428571
148148 0 0
149149 24.2487 1.98653 0.993266 0.115857i 0.0369614π-0.0369614\pi
0.993266 + 0.115857i 0.0369614π0.0369614\pi
150150 0 0
151151 24.4949i 1.99337i 0.0813788 + 0.996683i 0.474068π0.474068\pi
−0.0813788 + 0.996683i 0.525932π0.525932\pi
152152 0 0
153153 0 0
154154 0 0
155155 −6.92820 8.48528i −0.556487 0.681554i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 24.4949i 1.94257i
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 −13.8564 16.9706i −1.07872 1.32116i
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 19.7990i 1.50529i 0.658427 + 0.752645i 0.271222π0.271222\pi
−0.658427 + 0.752645i 0.728778π0.728778\pi
174174 0 0
175175 −2.00000 + 9.79796i −0.151186 + 0.740656i
176176 0 0
177177 19.5959i 1.47292i
178178 0 0
179179 11.3137i 0.845626i −0.906217 0.422813i 0.861043π-0.861043\pi
0.906217 0.422813i 0.138957π-0.138957\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 10.3923 0.755929
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 9.79796i 0.705273i 0.935760 + 0.352636i 0.114715π0.114715\pi
−0.935760 + 0.352636i 0.885285π0.885285\pi
194194 0 0
195195 0 0
196196 0 0
197197 14.1421i 1.00759i −0.863825 0.503793i 0.831938π-0.831938\pi
0.863825 0.503793i 0.168062π-0.168062\pi
198198 0 0
199199 24.4949i 1.73640i −0.496217 0.868199i 0.665278π-0.665278\pi
0.496217 0.868199i 0.334722π-0.334722\pi
200200 0 0
201201 0 0
202202 0 0
203203 20.7846 1.45879
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 9.79796i 0.665129i
218218 0 0
219219 16.9706i 1.14676i
220220 0 0
221221 0 0
222222 0 0
223223 −26.0000 −1.74109 −0.870544 0.492090i 0.836233π-0.836233\pi
−0.870544 + 0.492090i 0.836233π0.836233\pi
224224 0 0
225225 3.00000 14.6969i 0.200000 0.979796i
226226 0 0
227227 10.3923 0.689761 0.344881 0.938647i 0.387919π-0.387919\pi
0.344881 + 0.938647i 0.387919π0.387919\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 19.5959i 1.28932i
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 25.4558i 1.65353i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 10.0000 0.644157 0.322078 0.946713i 0.395619π-0.395619\pi
0.322078 + 0.946713i 0.395619π0.395619\pi
242242 0 0
243243 −15.5885 −1.00000
244244 0 0
245245 −5.19615 + 4.24264i −0.331970 + 0.271052i
246246 0 0
247247 0 0
248248 0 0
249249 30.0000 1.90117
250250 0 0
251251 5.65685i 0.357057i −0.983935 0.178529i 0.942866π-0.942866\pi
0.983935 0.178529i 0.0571337π-0.0571337\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 −31.1769 −1.92980
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 20.0000 + 24.4949i 1.22859 + 1.50471i
266266 0 0
267267 0 0
268268 0 0
269269 10.3923 0.633630 0.316815 0.948487i 0.397387π-0.397387\pi
0.316815 + 0.948487i 0.397387π0.397387\pi
270270 0 0
271271 24.4949i 1.48796i 0.668202 + 0.743980i 0.267064π0.267064\pi
−0.668202 + 0.743980i 0.732936π0.732936\pi
272272 0 0
273273 0 0
274274 0 0
275275 27.7128 + 5.65685i 1.67115 + 0.341121i
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 14.6969i 0.879883i
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 33.9411i 1.98966i
292292 0 0
293293 14.1421i 0.826192i 0.910687 + 0.413096i 0.135553π0.135553\pi
−0.910687 + 0.413096i 0.864447π0.864447\pi
294294 0 0
295295 16.0000 + 19.5959i 0.931556 + 1.14092i
296296 0 0
297297 29.3939i 1.70561i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 6.00000 0.344691
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 −24.2487 −1.37946
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 9.79796i 0.553813i −0.960897 0.276907i 0.910691π-0.910691\pi
0.960897 0.276907i 0.0893093π-0.0893093\pi
314314 0 0
315315 −10.3923 + 8.48528i −0.585540 + 0.478091i
316316 0 0
317317 31.1127i 1.74746i −0.486408 0.873732i 0.661693π-0.661693\pi
0.486408 0.873732i 0.338307π-0.338307\pi
318318 0 0
319319 58.7878i 3.29148i
320320 0 0
321321 30.0000 1.67444
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 29.3939i 1.60119i −0.599208 0.800593i 0.704518π-0.704518\pi
0.599208 0.800593i 0.295482π-0.295482\pi
338338 0 0
339339 0 0
340340 0 0
341341 27.7128 1.50073
342342 0 0
343343 20.0000 1.07990
344344 0 0
345345 0 0
346346 0 0
347347 24.2487 1.30174 0.650870 0.759190i 0.274404π-0.274404\pi
0.650870 + 0.759190i 0.274404π0.274404\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 36.3731 1.90909
364364 0 0
365365 13.8564 + 16.9706i 0.725277 + 0.888280i
366366 0 0
367367 38.0000 1.98358 0.991792 0.127862i 0.0408116π-0.0408116\pi
0.991792 + 0.127862i 0.0408116π0.0408116\pi
368368 0 0
369369 0 0
370370 0 0
371371 28.2843i 1.46845i
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 9.00000 + 17.1464i 0.464758 + 0.885438i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 38.1051 1.95218
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 −16.0000 19.5959i −0.815436 0.998700i
386386 0 0
387387 0 0
388388 0 0
389389 −24.2487 −1.22946 −0.614729 0.788738i 0.710735π-0.710735\pi
−0.614729 + 0.788738i 0.710735π0.710735\pi
390390 0 0
391391 0 0
392392 0 0
393393 39.1918i 1.97697i
394394 0 0
395395 −20.7846 25.4558i −1.04579 1.28082i
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 15.5885 12.7279i 0.774597 0.632456i
406406 0 0
407407 0 0
408408 0 0
409409 10.0000 0.494468 0.247234 0.968956i 0.420478π-0.420478\pi
0.247234 + 0.968956i 0.420478π0.420478\pi
410410 0 0
411411 0 0
412412 0 0
413413 22.6274i 1.11342i
414414 0 0
415415 −30.0000 + 24.4949i −1.47264 + 1.20241i
416416 0 0
417417 0 0
418418 0 0
419419 39.5980i 1.93449i −0.253849 0.967244i 0.581697π-0.581697\pi
0.253849 0.967244i 0.418303π-0.418303\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 39.1918i 1.88344i 0.336399 + 0.941720i 0.390791π0.390791\pi
−0.336399 + 0.941720i 0.609209π0.609209\pi
434434 0 0
435435 31.1769 25.4558i 1.49482 1.22051i
436436 0 0
437437 0 0
438438 0 0
439439 24.4949i 1.16908i −0.811366 0.584539i 0.801275π-0.801275\pi
0.811366 0.584539i 0.198725π-0.198725\pi
440440 0 0
441441 −9.00000 −0.428571
442442 0 0
443443 31.1769 1.48126 0.740630 0.671913i 0.234527π-0.234527\pi
0.740630 + 0.671913i 0.234527π0.234527\pi
444444 0 0
445445 0 0
446446 0 0
447447 −42.0000 −1.98653
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 42.4264i 1.99337i
454454 0 0
455455 0 0
456456 0 0
457457 19.5959i 0.916658i 0.888783 + 0.458329i 0.151552π0.151552\pi
−0.888783 + 0.458329i 0.848448π0.848448\pi
458458 0 0
459459 0 0
460460 0 0
461461 −38.1051 −1.77473 −0.887366 0.461065i 0.847467π-0.847467\pi
−0.887366 + 0.461065i 0.847467π0.847467\pi
462462 0 0
463463 26.0000 1.20832 0.604161 0.796862i 0.293508π-0.293508\pi
0.604161 + 0.796862i 0.293508π0.293508\pi
464464 0 0
465465 12.0000 + 14.6969i 0.556487 + 0.681554i
466466 0 0
467467 17.3205 0.801498 0.400749 0.916188i 0.368750π-0.368750\pi
0.400749 + 0.916188i 0.368750π0.368750\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 42.4264i 1.94257i
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 27.7128 + 33.9411i 1.25837 + 1.54119i
486486 0 0
487487 2.00000 0.0906287 0.0453143 0.998973i 0.485571π-0.485571\pi
0.0453143 + 0.998973i 0.485571π0.485571\pi
488488 0 0
489489 0 0
490490 0 0
491491 22.6274i 1.02116i −0.859830 0.510581i 0.829431π-0.829431\pi
0.859830 0.510581i 0.170569π-0.170569\pi
492492 0 0
493493 0 0
494494 0 0
495495 24.0000 + 29.3939i 1.07872 + 1.32116i
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 −6.00000 + 4.89898i −0.266996 + 0.218002i
506506 0 0
507507 22.5167 1.00000
508508 0 0
509509 −45.0333 −1.99607 −0.998033 0.0626839i 0.980034π-0.980034\pi
−0.998033 + 0.0626839i 0.980034π0.980034\pi
510510 0 0
511511 19.5959i 0.866872i
512512 0 0
513513 0 0
514514 0 0
515515 24.2487 19.7990i 1.06853 0.872448i
516516 0 0
517517 0 0
518518 0 0
519519 34.2929i 1.50529i
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 3.46410 16.9706i 0.151186 0.740656i
526526 0 0
527527 0 0
528528 0 0
529529 23.0000 1.00000
530530 0 0
531531 33.9411i 1.47292i
532532 0 0
533533 0 0
534534 0 0
535535 −30.0000 + 24.4949i −1.29701 + 1.05901i
536536 0 0
537537 19.5959i 0.845626i
538538 0 0
539539 16.9706i 0.730974i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 29.3939i 1.24995i
554554 0 0
555555 0 0
556556 0 0
557557 14.1421i 0.599222i −0.954062 0.299611i 0.903143π-0.903143\pi
0.954062 0.299611i 0.0968568π-0.0968568\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −38.1051 −1.60594 −0.802970 0.596020i 0.796748π-0.796748\pi
−0.802970 + 0.596020i 0.796748π0.796748\pi
564564 0 0
565565 0 0
566566 0 0
567567 −18.0000 −0.755929
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 29.3939i 1.22368i 0.790980 + 0.611842i 0.209571π0.209571\pi
−0.790980 + 0.611842i 0.790429π0.790429\pi
578578 0 0
579579 16.9706i 0.705273i
580580 0 0
581581 34.6410 1.43715
582582 0 0
583583 −80.0000 −3.31326
584584 0 0
585585 0 0
586586 0 0
587587 −17.3205 −0.714894 −0.357447 0.933933i 0.616353π-0.616353\pi
−0.357447 + 0.933933i 0.616353π0.616353\pi
588588 0 0
589589 0 0
590590 0 0
591591 24.4949i 1.00759i
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 42.4264i 1.73640i
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −2.00000 −0.0815817 −0.0407909 0.999168i 0.512988π-0.512988\pi
−0.0407909 + 0.999168i 0.512988π0.512988\pi
602602 0 0
603603 0 0
604604 0 0
605605 −36.3731 + 29.6985i −1.47878 + 1.20742i
606606 0 0
607607 22.0000 0.892952 0.446476 0.894795i 0.352679π-0.352679\pi
0.446476 + 0.894795i 0.352679π0.352679\pi
608608 0 0
609609 −36.0000 −1.45879
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −23.0000 9.79796i −0.920000 0.391918i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 4.89898i 0.195025i −0.995234 0.0975126i 0.968911π-0.968911\pi
0.995234 0.0975126i 0.0310886π-0.0310886\pi
632632 0 0
633633 0 0
634634 0 0
635635 −38.1051 + 31.1127i −1.51216 + 1.23467i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 −64.0000 −2.51222
650650 0 0
651651 16.9706i 0.665129i
652652 0 0
653653 48.0833i 1.88164i −0.338902 0.940822i 0.610055π-0.610055\pi
0.338902 0.940822i 0.389945π-0.389945\pi
654654 0 0
655655 32.0000 + 39.1918i 1.25034 + 1.53135i
656656 0 0
657657 29.3939i 1.14676i
658658 0 0
659659 45.2548i 1.76288i 0.472298 + 0.881439i 0.343425π0.343425\pi
−0.472298 + 0.881439i 0.656575π0.656575\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 45.0333 1.74109
670670 0 0
671671 0 0
672672 0 0
673673 39.1918i 1.51073i −0.655302 0.755367i 0.727459π-0.727459\pi
0.655302 0.755367i 0.272541π-0.272541\pi
674674 0 0
675675 −5.19615 + 25.4558i −0.200000 + 0.979796i
676676 0 0
677677 2.82843i 0.108705i 0.998522 + 0.0543526i 0.0173095π0.0173095\pi
−0.998522 + 0.0543526i 0.982690π0.982690\pi
678678 0 0
679679 39.1918i 1.50404i
680680 0 0
681681 −18.0000 −0.689761
682682 0 0
683683 51.9615 1.98825 0.994126 0.108227i 0.0345173π-0.0345173\pi
0.994126 + 0.108227i 0.0345173π0.0345173\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 33.9411i 1.28932i
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −38.1051 −1.43921 −0.719605 0.694383i 0.755677π-0.755677\pi
−0.719605 + 0.694383i 0.755677π0.755677\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 6.92820 0.260562
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 44.0908i 1.65353i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −28.0000 −1.04277
722722 0 0
723723 −17.3205 −0.644157
724724 0 0
725725 −10.3923 + 50.9117i −0.385961 + 1.89081i
726726 0 0
727727 2.00000 0.0741759 0.0370879 0.999312i 0.488192π-0.488192\pi
0.0370879 + 0.999312i 0.488192π0.488192\pi
728728 0 0
729729 27.0000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 9.00000 7.34847i 0.331970 0.271052i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 42.0000 34.2929i 1.53876 1.25639i
746746 0 0
747747 −51.9615 −1.90117
748748 0 0
749749 34.6410 1.26576
750750 0 0
751751 53.8888i 1.96643i 0.182453 + 0.983215i 0.441596π0.441596\pi
−0.182453 + 0.983215i 0.558404π0.558404\pi
752752 0 0
753753 9.79796i 0.357057i
754754 0 0
755755 34.6410 + 42.4264i 1.26072 + 1.54406i
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 26.0000 0.937584 0.468792 0.883309i 0.344689π-0.344689\pi
0.468792 + 0.883309i 0.344689π0.344689\pi
770770 0 0
771771 0 0
772772 0 0
773773 19.7990i 0.712120i 0.934463 + 0.356060i 0.115880π0.115880\pi
−0.934463 + 0.356060i 0.884120π0.884120\pi
774774 0 0
775775 −24.0000 4.89898i −0.862105 0.175977i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 54.0000 1.92980
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 −34.6410 42.4264i −1.22859 1.50471i
796796 0 0
797797 53.7401i 1.90357i −0.306762 0.951786i 0.599246π-0.599246\pi
0.306762 0.951786i 0.400754π-0.400754\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 −55.4256 −1.95593
804804 0 0
805805 0 0
806806 0 0
807807 −18.0000 −0.633630
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 42.4264i 1.48796i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −31.1769 −1.08808 −0.544041 0.839059i 0.683106π-0.683106\pi
−0.544041 + 0.839059i 0.683106π0.683106\pi
822822 0 0
823823 46.0000 1.60346 0.801730 0.597687i 0.203913π-0.203913\pi
0.801730 + 0.597687i 0.203913π0.203913\pi
824824 0 0
825825 −48.0000 9.79796i −1.67115 0.341121i
826826 0 0
827827 −10.3923 −0.361376 −0.180688 0.983540i 0.557832π-0.557832\pi
−0.180688 + 0.983540i 0.557832π0.557832\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 25.4558i 0.879883i
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 79.0000 2.72414
842842 0 0
843843 0 0
844844 0 0
845845 −22.5167 + 18.3848i −0.774597 + 0.632456i
846846 0 0
847847 42.0000 1.44314
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 28.0000 + 34.2929i 0.952029 + 1.16599i
866866 0 0
867867 29.4449 1.00000
868868 0 0
869869 83.1384 2.82028
870870 0 0
871871 0 0
872872 0 0
873873 58.7878i 1.98966i
874874 0 0
875875 10.3923 + 19.7990i 0.351324 + 0.669328i
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 24.4949i 0.826192i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 −27.7128 33.9411i −0.931556 1.14092i
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 44.0000 1.47571
890890 0 0
891891 50.9117i 1.70561i
892892 0 0
893893 0 0
894894 0 0
895895 −16.0000 19.5959i −0.534821 0.655019i
896896 0 0
897897 0 0
898898 0 0
899899 50.9117i 1.69800i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 −10.3923 −0.344691
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 97.9796i 3.24265i
914914 0 0
915915 0 0
916916 0 0
917917 45.2548i 1.49445i
918918 0 0
919919 34.2929i 1.13122i −0.824674 0.565608i 0.808641π-0.808641\pi
0.824674 0.565608i 0.191359π-0.191359\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 42.0000 1.37946
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 19.5959i 0.640171i −0.947389 0.320085i 0.896288π-0.896288\pi
0.947389 0.320085i 0.103712π-0.103712\pi
938938 0 0
939939 16.9706i 0.553813i
940940 0 0
941941 38.1051 1.24219 0.621096 0.783735i 0.286688π-0.286688\pi
0.621096 + 0.783735i 0.286688π0.286688\pi
942942 0 0
943943 0 0
944944 0 0
945945 18.0000 14.6969i 0.585540 0.478091i
946946 0 0
947947 −24.2487 −0.787977 −0.393989 0.919115i 0.628905π-0.628905\pi
−0.393989 + 0.919115i 0.628905π0.628905\pi
948948 0 0
949949 0 0
950950 0 0
951951 53.8888i 1.74746i
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 101.823i 3.29148i
958958 0 0
959959 0 0
960960 0 0
961961 7.00000 0.225806
962962 0 0
963963 −51.9615 −1.67444
964964 0 0
965965 13.8564 + 16.9706i 0.446054 + 0.546302i
966966 0 0
967967 −62.0000 −1.99379 −0.996893 0.0787703i 0.974901π-0.974901\pi
−0.996893 + 0.0787703i 0.974901π0.974901\pi
968968 0 0
969969 0 0
970970 0 0
971971 62.2254i 1.99691i 0.0555842 + 0.998454i 0.482298π0.482298\pi
−0.0555842 + 0.998454i 0.517702π0.517702\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −20.0000 24.4949i −0.637253 0.780472i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 24.4949i 0.778106i 0.921215 + 0.389053i 0.127198π0.127198\pi
−0.921215 + 0.389053i 0.872802π0.872802\pi
992992 0 0
993993 0 0
994994 0 0
995995 −34.6410 42.4264i −1.09819 1.34501i
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.k.959.1 4
3.2 odd 2 inner 1920.2.m.k.959.4 yes 4
4.3 odd 2 1920.2.m.l.959.3 yes 4
5.4 even 2 1920.2.m.l.959.4 yes 4
8.3 odd 2 1920.2.m.l.959.2 yes 4
8.5 even 2 inner 1920.2.m.k.959.4 yes 4
12.11 even 2 1920.2.m.l.959.2 yes 4
15.14 odd 2 1920.2.m.l.959.1 yes 4
20.19 odd 2 inner 1920.2.m.k.959.2 yes 4
24.5 odd 2 CM 1920.2.m.k.959.1 4
24.11 even 2 1920.2.m.l.959.3 yes 4
40.19 odd 2 inner 1920.2.m.k.959.3 yes 4
40.29 even 2 1920.2.m.l.959.1 yes 4
60.59 even 2 inner 1920.2.m.k.959.3 yes 4
120.29 odd 2 1920.2.m.l.959.4 yes 4
120.59 even 2 inner 1920.2.m.k.959.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.k.959.1 4 1.1 even 1 trivial
1920.2.m.k.959.1 4 24.5 odd 2 CM
1920.2.m.k.959.2 yes 4 20.19 odd 2 inner
1920.2.m.k.959.2 yes 4 120.59 even 2 inner
1920.2.m.k.959.3 yes 4 40.19 odd 2 inner
1920.2.m.k.959.3 yes 4 60.59 even 2 inner
1920.2.m.k.959.4 yes 4 3.2 odd 2 inner
1920.2.m.k.959.4 yes 4 8.5 even 2 inner
1920.2.m.l.959.1 yes 4 15.14 odd 2
1920.2.m.l.959.1 yes 4 40.29 even 2
1920.2.m.l.959.2 yes 4 8.3 odd 2
1920.2.m.l.959.2 yes 4 12.11 even 2
1920.2.m.l.959.3 yes 4 4.3 odd 2
1920.2.m.l.959.3 yes 4 24.11 even 2
1920.2.m.l.959.4 yes 4 5.4 even 2
1920.2.m.l.959.4 yes 4 120.29 odd 2