Properties

Label 1920.2.y.j.1567.2
Level $1920$
Weight $2$
Character 1920.1567
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(223,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.223");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1567.2
Root \(-1.40988 + 0.110627i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1567
Dual form 1920.2.y.j.223.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.06823 + 0.849960i) q^{5} +(2.08016 + 2.08016i) q^{7} +1.00000 q^{9} +(3.33354 - 3.33354i) q^{11} -6.13735i q^{13} +(-2.06823 + 0.849960i) q^{15} +(-2.33136 - 2.33136i) q^{17} +(0.834324 - 0.834324i) q^{19} +(2.08016 + 2.08016i) q^{21} +(-2.95105 + 2.95105i) q^{23} +(3.55514 - 3.51582i) q^{25} +1.00000 q^{27} +(0.576185 + 0.576185i) q^{29} -2.62300i q^{31} +(3.33354 - 3.33354i) q^{33} +(-6.07029 - 2.53419i) q^{35} -2.07309i q^{37} -6.13735i q^{39} +10.8873i q^{41} -5.16088i q^{43} +(-2.06823 + 0.849960i) q^{45} +(8.65772 - 8.65772i) q^{47} +1.65411i q^{49} +(-2.33136 - 2.33136i) q^{51} +1.58490 q^{53} +(-4.06115 + 9.72791i) q^{55} +(0.834324 - 0.834324i) q^{57} +(2.32603 + 2.32603i) q^{59} +(7.22499 - 7.22499i) q^{61} +(2.08016 + 2.08016i) q^{63} +(5.21651 + 12.6934i) q^{65} -0.885549i q^{67} +(-2.95105 + 2.95105i) q^{69} -2.56877 q^{71} +(7.35033 + 7.35033i) q^{73} +(3.55514 - 3.51582i) q^{75} +13.8686 q^{77} +7.72612 q^{79} +1.00000 q^{81} -8.67714 q^{83} +(6.80334 + 2.84022i) q^{85} +(0.576185 + 0.576185i) q^{87} -8.70590 q^{89} +(12.7667 - 12.7667i) q^{91} -2.62300i q^{93} +(-1.01643 + 2.43472i) q^{95} +(11.9985 + 11.9985i) q^{97} +(3.33354 - 3.33354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 4 q^{5} + 4 q^{7} + 16 q^{9} + 4 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{21} + 32 q^{25} + 16 q^{27} - 12 q^{29} - 20 q^{35} + 4 q^{45} + 32 q^{47} - 8 q^{51} - 16 q^{53} + 4 q^{55} + 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.06823 + 0.849960i −0.924940 + 0.380114i
\(6\) 0 0
\(7\) 2.08016 + 2.08016i 0.786226 + 0.786226i 0.980873 0.194647i \(-0.0623563\pi\)
−0.194647 + 0.980873i \(0.562356\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.33354 3.33354i 1.00510 1.00510i 0.00511408 0.999987i \(-0.498372\pi\)
0.999987 0.00511408i \(-0.00162787\pi\)
\(12\) 0 0
\(13\) 6.13735i 1.70220i −0.525007 0.851098i \(-0.675937\pi\)
0.525007 0.851098i \(-0.324063\pi\)
\(14\) 0 0
\(15\) −2.06823 + 0.849960i −0.534014 + 0.219459i
\(16\) 0 0
\(17\) −2.33136 2.33136i −0.565437 0.565437i 0.365410 0.930847i \(-0.380929\pi\)
−0.930847 + 0.365410i \(0.880929\pi\)
\(18\) 0 0
\(19\) 0.834324 0.834324i 0.191407 0.191407i −0.604897 0.796304i \(-0.706786\pi\)
0.796304 + 0.604897i \(0.206786\pi\)
\(20\) 0 0
\(21\) 2.08016 + 2.08016i 0.453928 + 0.453928i
\(22\) 0 0
\(23\) −2.95105 + 2.95105i −0.615336 + 0.615336i −0.944331 0.328996i \(-0.893290\pi\)
0.328996 + 0.944331i \(0.393290\pi\)
\(24\) 0 0
\(25\) 3.55514 3.51582i 0.711027 0.703165i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.576185 + 0.576185i 0.106995 + 0.106995i 0.758578 0.651583i \(-0.225895\pi\)
−0.651583 + 0.758578i \(0.725895\pi\)
\(30\) 0 0
\(31\) 2.62300i 0.471106i −0.971862 0.235553i \(-0.924310\pi\)
0.971862 0.235553i \(-0.0756900\pi\)
\(32\) 0 0
\(33\) 3.33354 3.33354i 0.580295 0.580295i
\(34\) 0 0
\(35\) −6.07029 2.53419i −1.02607 0.428356i
\(36\) 0 0
\(37\) 2.07309i 0.340814i −0.985374 0.170407i \(-0.945492\pi\)
0.985374 0.170407i \(-0.0545083\pi\)
\(38\) 0 0
\(39\) 6.13735i 0.982763i
\(40\) 0 0
\(41\) 10.8873i 1.70031i 0.526533 + 0.850154i \(0.323492\pi\)
−0.526533 + 0.850154i \(0.676508\pi\)
\(42\) 0 0
\(43\) 5.16088i 0.787027i −0.919319 0.393514i \(-0.871259\pi\)
0.919319 0.393514i \(-0.128741\pi\)
\(44\) 0 0
\(45\) −2.06823 + 0.849960i −0.308313 + 0.126705i
\(46\) 0 0
\(47\) 8.65772 8.65772i 1.26286 1.26286i 0.313156 0.949702i \(-0.398614\pi\)
0.949702 0.313156i \(-0.101386\pi\)
\(48\) 0 0
\(49\) 1.65411i 0.236302i
\(50\) 0 0
\(51\) −2.33136 2.33136i −0.326455 0.326455i
\(52\) 0 0
\(53\) 1.58490 0.217703 0.108851 0.994058i \(-0.465283\pi\)
0.108851 + 0.994058i \(0.465283\pi\)
\(54\) 0 0
\(55\) −4.06115 + 9.72791i −0.547605 + 1.31171i
\(56\) 0 0
\(57\) 0.834324 0.834324i 0.110509 0.110509i
\(58\) 0 0
\(59\) 2.32603 + 2.32603i 0.302824 + 0.302824i 0.842118 0.539294i \(-0.181309\pi\)
−0.539294 + 0.842118i \(0.681309\pi\)
\(60\) 0 0
\(61\) 7.22499 7.22499i 0.925065 0.925065i −0.0723167 0.997382i \(-0.523039\pi\)
0.997382 + 0.0723167i \(0.0230392\pi\)
\(62\) 0 0
\(63\) 2.08016 + 2.08016i 0.262075 + 0.262075i
\(64\) 0 0
\(65\) 5.21651 + 12.6934i 0.647028 + 1.57443i
\(66\) 0 0
\(67\) 0.885549i 0.108187i −0.998536 0.0540935i \(-0.982773\pi\)
0.998536 0.0540935i \(-0.0172269\pi\)
\(68\) 0 0
\(69\) −2.95105 + 2.95105i −0.355264 + 0.355264i
\(70\) 0 0
\(71\) −2.56877 −0.304857 −0.152428 0.988315i \(-0.548709\pi\)
−0.152428 + 0.988315i \(0.548709\pi\)
\(72\) 0 0
\(73\) 7.35033 + 7.35033i 0.860291 + 0.860291i 0.991372 0.131081i \(-0.0418447\pi\)
−0.131081 + 0.991372i \(0.541845\pi\)
\(74\) 0 0
\(75\) 3.55514 3.51582i 0.410512 0.405972i
\(76\) 0 0
\(77\) 13.8686 1.58047
\(78\) 0 0
\(79\) 7.72612 0.869256 0.434628 0.900610i \(-0.356880\pi\)
0.434628 + 0.900610i \(0.356880\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.67714 −0.952440 −0.476220 0.879326i \(-0.657993\pi\)
−0.476220 + 0.879326i \(0.657993\pi\)
\(84\) 0 0
\(85\) 6.80334 + 2.84022i 0.737926 + 0.308065i
\(86\) 0 0
\(87\) 0.576185 + 0.576185i 0.0617735 + 0.0617735i
\(88\) 0 0
\(89\) −8.70590 −0.922823 −0.461412 0.887186i \(-0.652657\pi\)
−0.461412 + 0.887186i \(0.652657\pi\)
\(90\) 0 0
\(91\) 12.7667 12.7667i 1.33831 1.33831i
\(92\) 0 0
\(93\) 2.62300i 0.271993i
\(94\) 0 0
\(95\) −1.01643 + 2.43472i −0.104284 + 0.249797i
\(96\) 0 0
\(97\) 11.9985 + 11.9985i 1.21826 + 1.21826i 0.968240 + 0.250021i \(0.0804375\pi\)
0.250021 + 0.968240i \(0.419562\pi\)
\(98\) 0 0
\(99\) 3.33354 3.33354i 0.335034 0.335034i
\(100\) 0 0
\(101\) 6.69380 + 6.69380i 0.666058 + 0.666058i 0.956801 0.290743i \(-0.0939024\pi\)
−0.290743 + 0.956801i \(0.593902\pi\)
\(102\) 0 0
\(103\) 13.4242 13.4242i 1.32272 1.32272i 0.411158 0.911564i \(-0.365124\pi\)
0.911564 0.411158i \(-0.134876\pi\)
\(104\) 0 0
\(105\) −6.07029 2.53419i −0.592400 0.247312i
\(106\) 0 0
\(107\) −10.9567 −1.05922 −0.529612 0.848240i \(-0.677663\pi\)
−0.529612 + 0.848240i \(0.677663\pi\)
\(108\) 0 0
\(109\) −0.643941 0.643941i −0.0616784 0.0616784i 0.675595 0.737273i \(-0.263887\pi\)
−0.737273 + 0.675595i \(0.763887\pi\)
\(110\) 0 0
\(111\) 2.07309i 0.196769i
\(112\) 0 0
\(113\) 9.19571 9.19571i 0.865060 0.865060i −0.126861 0.991921i \(-0.540490\pi\)
0.991921 + 0.126861i \(0.0404901\pi\)
\(114\) 0 0
\(115\) 3.59517 8.61171i 0.335251 0.803046i
\(116\) 0 0
\(117\) 6.13735i 0.567398i
\(118\) 0 0
\(119\) 9.69918i 0.889122i
\(120\) 0 0
\(121\) 11.2250i 1.02046i
\(122\) 0 0
\(123\) 10.8873i 0.981674i
\(124\) 0 0
\(125\) −4.36452 + 10.2932i −0.390375 + 0.920656i
\(126\) 0 0
\(127\) −4.80716 + 4.80716i −0.426567 + 0.426567i −0.887457 0.460890i \(-0.847530\pi\)
0.460890 + 0.887457i \(0.347530\pi\)
\(128\) 0 0
\(129\) 5.16088i 0.454391i
\(130\) 0 0
\(131\) −3.53632 3.53632i −0.308970 0.308970i 0.535540 0.844510i \(-0.320108\pi\)
−0.844510 + 0.535540i \(0.820108\pi\)
\(132\) 0 0
\(133\) 3.47105 0.300978
\(134\) 0 0
\(135\) −2.06823 + 0.849960i −0.178005 + 0.0731529i
\(136\) 0 0
\(137\) 7.54548 7.54548i 0.644654 0.644654i −0.307042 0.951696i \(-0.599339\pi\)
0.951696 + 0.307042i \(0.0993392\pi\)
\(138\) 0 0
\(139\) −2.84263 2.84263i −0.241109 0.241109i 0.576200 0.817309i \(-0.304535\pi\)
−0.817309 + 0.576200i \(0.804535\pi\)
\(140\) 0 0
\(141\) 8.65772 8.65772i 0.729111 0.729111i
\(142\) 0 0
\(143\) −20.4591 20.4591i −1.71088 1.71088i
\(144\) 0 0
\(145\) −1.68142 0.701948i −0.139634 0.0582936i
\(146\) 0 0
\(147\) 1.65411i 0.136429i
\(148\) 0 0
\(149\) −3.20287 + 3.20287i −0.262389 + 0.262389i −0.826024 0.563635i \(-0.809403\pi\)
0.563635 + 0.826024i \(0.309403\pi\)
\(150\) 0 0
\(151\) −8.82773 −0.718390 −0.359195 0.933262i \(-0.616949\pi\)
−0.359195 + 0.933262i \(0.616949\pi\)
\(152\) 0 0
\(153\) −2.33136 2.33136i −0.188479 0.188479i
\(154\) 0 0
\(155\) 2.22945 + 5.42497i 0.179074 + 0.435744i
\(156\) 0 0
\(157\) −15.5186 −1.23852 −0.619258 0.785187i \(-0.712567\pi\)
−0.619258 + 0.785187i \(0.712567\pi\)
\(158\) 0 0
\(159\) 1.58490 0.125691
\(160\) 0 0
\(161\) −12.2773 −0.967586
\(162\) 0 0
\(163\) 8.65221 0.677694 0.338847 0.940842i \(-0.389963\pi\)
0.338847 + 0.940842i \(0.389963\pi\)
\(164\) 0 0
\(165\) −4.06115 + 9.72791i −0.316160 + 0.757316i
\(166\) 0 0
\(167\) −2.86613 2.86613i −0.221788 0.221788i 0.587463 0.809251i \(-0.300127\pi\)
−0.809251 + 0.587463i \(0.800127\pi\)
\(168\) 0 0
\(169\) −24.6671 −1.89747
\(170\) 0 0
\(171\) 0.834324 0.834324i 0.0638024 0.0638024i
\(172\) 0 0
\(173\) 15.1143i 1.14912i 0.818464 + 0.574558i \(0.194826\pi\)
−0.818464 + 0.574558i \(0.805174\pi\)
\(174\) 0 0
\(175\) 14.7087 + 0.0817750i 1.11187 + 0.00618161i
\(176\) 0 0
\(177\) 2.32603 + 2.32603i 0.174835 + 0.174835i
\(178\) 0 0
\(179\) −12.3666 + 12.3666i −0.924324 + 0.924324i −0.997331 0.0730070i \(-0.976740\pi\)
0.0730070 + 0.997331i \(0.476740\pi\)
\(180\) 0 0
\(181\) 9.58991 + 9.58991i 0.712813 + 0.712813i 0.967123 0.254310i \(-0.0818484\pi\)
−0.254310 + 0.967123i \(0.581848\pi\)
\(182\) 0 0
\(183\) 7.22499 7.22499i 0.534087 0.534087i
\(184\) 0 0
\(185\) 1.76205 + 4.28763i 0.129548 + 0.315233i
\(186\) 0 0
\(187\) −15.5434 −1.13664
\(188\) 0 0
\(189\) 2.08016 + 2.08016i 0.151309 + 0.151309i
\(190\) 0 0
\(191\) 14.5044i 1.04950i −0.851257 0.524750i \(-0.824159\pi\)
0.851257 0.524750i \(-0.175841\pi\)
\(192\) 0 0
\(193\) −1.68153 + 1.68153i −0.121039 + 0.121039i −0.765032 0.643992i \(-0.777277\pi\)
0.643992 + 0.765032i \(0.277277\pi\)
\(194\) 0 0
\(195\) 5.21651 + 12.6934i 0.373562 + 0.908996i
\(196\) 0 0
\(197\) 8.65121i 0.616373i −0.951326 0.308187i \(-0.900278\pi\)
0.951326 0.308187i \(-0.0997221\pi\)
\(198\) 0 0
\(199\) 22.3275i 1.58275i 0.611328 + 0.791377i \(0.290635\pi\)
−0.611328 + 0.791377i \(0.709365\pi\)
\(200\) 0 0
\(201\) 0.885549i 0.0624618i
\(202\) 0 0
\(203\) 2.39711i 0.168244i
\(204\) 0 0
\(205\) −9.25376 22.5174i −0.646311 1.57268i
\(206\) 0 0
\(207\) −2.95105 + 2.95105i −0.205112 + 0.205112i
\(208\) 0 0
\(209\) 5.56251i 0.384767i
\(210\) 0 0
\(211\) 5.27613 + 5.27613i 0.363224 + 0.363224i 0.864998 0.501775i \(-0.167319\pi\)
−0.501775 + 0.864998i \(0.667319\pi\)
\(212\) 0 0
\(213\) −2.56877 −0.176009
\(214\) 0 0
\(215\) 4.38655 + 10.6739i 0.299160 + 0.727953i
\(216\) 0 0
\(217\) 5.45626 5.45626i 0.370395 0.370395i
\(218\) 0 0
\(219\) 7.35033 + 7.35033i 0.496689 + 0.496689i
\(220\) 0 0
\(221\) −14.3084 + 14.3084i −0.962484 + 0.962484i
\(222\) 0 0
\(223\) −13.8202 13.8202i −0.925469 0.925469i 0.0719400 0.997409i \(-0.477081\pi\)
−0.997409 + 0.0719400i \(0.977081\pi\)
\(224\) 0 0
\(225\) 3.55514 3.51582i 0.237009 0.234388i
\(226\) 0 0
\(227\) 1.66286i 0.110368i −0.998476 0.0551839i \(-0.982425\pi\)
0.998476 0.0551839i \(-0.0175745\pi\)
\(228\) 0 0
\(229\) −11.3744 + 11.3744i −0.751643 + 0.751643i −0.974786 0.223142i \(-0.928368\pi\)
0.223142 + 0.974786i \(0.428368\pi\)
\(230\) 0 0
\(231\) 13.8686 0.912486
\(232\) 0 0
\(233\) 9.38976 + 9.38976i 0.615143 + 0.615143i 0.944282 0.329138i \(-0.106758\pi\)
−0.329138 + 0.944282i \(0.606758\pi\)
\(234\) 0 0
\(235\) −10.5474 + 25.2649i −0.688038 + 1.64810i
\(236\) 0 0
\(237\) 7.72612 0.501865
\(238\) 0 0
\(239\) −8.88914 −0.574991 −0.287495 0.957782i \(-0.592823\pi\)
−0.287495 + 0.957782i \(0.592823\pi\)
\(240\) 0 0
\(241\) 20.5978 1.32682 0.663411 0.748255i \(-0.269108\pi\)
0.663411 + 0.748255i \(0.269108\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.40593 3.42109i −0.0898217 0.218565i
\(246\) 0 0
\(247\) −5.12054 5.12054i −0.325812 0.325812i
\(248\) 0 0
\(249\) −8.67714 −0.549891
\(250\) 0 0
\(251\) 16.8455 16.8455i 1.06328 1.06328i 0.0654195 0.997858i \(-0.479161\pi\)
0.997858 0.0654195i \(-0.0208386\pi\)
\(252\) 0 0
\(253\) 19.6749i 1.23695i
\(254\) 0 0
\(255\) 6.80334 + 2.84022i 0.426042 + 0.177861i
\(256\) 0 0
\(257\) −14.1500 14.1500i −0.882653 0.882653i 0.111151 0.993804i \(-0.464546\pi\)
−0.993804 + 0.111151i \(0.964546\pi\)
\(258\) 0 0
\(259\) 4.31236 4.31236i 0.267957 0.267957i
\(260\) 0 0
\(261\) 0.576185 + 0.576185i 0.0356650 + 0.0356650i
\(262\) 0 0
\(263\) −11.1204 + 11.1204i −0.685712 + 0.685712i −0.961281 0.275569i \(-0.911134\pi\)
0.275569 + 0.961281i \(0.411134\pi\)
\(264\) 0 0
\(265\) −3.27794 + 1.34710i −0.201362 + 0.0827519i
\(266\) 0 0
\(267\) −8.70590 −0.532792
\(268\) 0 0
\(269\) 10.2902 + 10.2902i 0.627403 + 0.627403i 0.947414 0.320011i \(-0.103687\pi\)
−0.320011 + 0.947414i \(0.603687\pi\)
\(270\) 0 0
\(271\) 21.3325i 1.29586i 0.761702 + 0.647928i \(0.224364\pi\)
−0.761702 + 0.647928i \(0.775636\pi\)
\(272\) 0 0
\(273\) 12.7667 12.7667i 0.772674 0.772674i
\(274\) 0 0
\(275\) 0.131048 23.5713i 0.00790249 1.42141i
\(276\) 0 0
\(277\) 19.0041i 1.14184i −0.821004 0.570922i \(-0.806586\pi\)
0.821004 0.570922i \(-0.193414\pi\)
\(278\) 0 0
\(279\) 2.62300i 0.157035i
\(280\) 0 0
\(281\) 3.86317i 0.230457i −0.993339 0.115229i \(-0.963240\pi\)
0.993339 0.115229i \(-0.0367600\pi\)
\(282\) 0 0
\(283\) 5.89151i 0.350214i 0.984549 + 0.175107i \(0.0560271\pi\)
−0.984549 + 0.175107i \(0.943973\pi\)
\(284\) 0 0
\(285\) −1.01643 + 2.43472i −0.0602081 + 0.144220i
\(286\) 0 0
\(287\) −22.6473 + 22.6473i −1.33683 + 1.33683i
\(288\) 0 0
\(289\) 6.12955i 0.360562i
\(290\) 0 0
\(291\) 11.9985 + 11.9985i 0.703364 + 0.703364i
\(292\) 0 0
\(293\) 4.49132 0.262386 0.131193 0.991357i \(-0.458119\pi\)
0.131193 + 0.991357i \(0.458119\pi\)
\(294\) 0 0
\(295\) −6.78780 2.83373i −0.395201 0.164986i
\(296\) 0 0
\(297\) 3.33354 3.33354i 0.193432 0.193432i
\(298\) 0 0
\(299\) 18.1116 + 18.1116i 1.04742 + 1.04742i
\(300\) 0 0
\(301\) 10.7355 10.7355i 0.618781 0.618781i
\(302\) 0 0
\(303\) 6.69380 + 6.69380i 0.384549 + 0.384549i
\(304\) 0 0
\(305\) −8.80197 + 21.0839i −0.503999 + 1.20726i
\(306\) 0 0
\(307\) 3.84487i 0.219438i 0.993963 + 0.109719i \(0.0349951\pi\)
−0.993963 + 0.109719i \(0.965005\pi\)
\(308\) 0 0
\(309\) 13.4242 13.4242i 0.763674 0.763674i
\(310\) 0 0
\(311\) 4.07103 0.230847 0.115423 0.993316i \(-0.463178\pi\)
0.115423 + 0.993316i \(0.463178\pi\)
\(312\) 0 0
\(313\) −1.37922 1.37922i −0.0779584 0.0779584i 0.667052 0.745011i \(-0.267556\pi\)
−0.745011 + 0.667052i \(0.767556\pi\)
\(314\) 0 0
\(315\) −6.07029 2.53419i −0.342022 0.142785i
\(316\) 0 0
\(317\) −9.80915 −0.550937 −0.275468 0.961310i \(-0.588833\pi\)
−0.275468 + 0.961310i \(0.588833\pi\)
\(318\) 0 0
\(319\) 3.84148 0.215081
\(320\) 0 0
\(321\) −10.9567 −0.611543
\(322\) 0 0
\(323\) −3.89021 −0.216457
\(324\) 0 0
\(325\) −21.5778 21.8191i −1.19692 1.21031i
\(326\) 0 0
\(327\) −0.643941 0.643941i −0.0356100 0.0356100i
\(328\) 0 0
\(329\) 36.0188 1.98578
\(330\) 0 0
\(331\) −7.17235 + 7.17235i −0.394228 + 0.394228i −0.876191 0.481963i \(-0.839924\pi\)
0.481963 + 0.876191i \(0.339924\pi\)
\(332\) 0 0
\(333\) 2.07309i 0.113605i
\(334\) 0 0
\(335\) 0.752681 + 1.83152i 0.0411234 + 0.100066i
\(336\) 0 0
\(337\) −25.3587 25.3587i −1.38138 1.38138i −0.842178 0.539200i \(-0.818727\pi\)
−0.539200 0.842178i \(-0.681273\pi\)
\(338\) 0 0
\(339\) 9.19571 9.19571i 0.499442 0.499442i
\(340\) 0 0
\(341\) −8.74390 8.74390i −0.473509 0.473509i
\(342\) 0 0
\(343\) 11.1203 11.1203i 0.600439 0.600439i
\(344\) 0 0
\(345\) 3.59517 8.61171i 0.193557 0.463639i
\(346\) 0 0
\(347\) −8.80549 −0.472704 −0.236352 0.971668i \(-0.575952\pi\)
−0.236352 + 0.971668i \(0.575952\pi\)
\(348\) 0 0
\(349\) 14.8110 + 14.8110i 0.792815 + 0.792815i 0.981951 0.189136i \(-0.0605687\pi\)
−0.189136 + 0.981951i \(0.560569\pi\)
\(350\) 0 0
\(351\) 6.13735i 0.327588i
\(352\) 0 0
\(353\) −21.3226 + 21.3226i −1.13489 + 1.13489i −0.145536 + 0.989353i \(0.546491\pi\)
−0.989353 + 0.145536i \(0.953509\pi\)
\(354\) 0 0
\(355\) 5.31280 2.18335i 0.281974 0.115880i
\(356\) 0 0
\(357\) 9.69918i 0.513335i
\(358\) 0 0
\(359\) 9.38977i 0.495573i −0.968815 0.247787i \(-0.920297\pi\)
0.968815 0.247787i \(-0.0797032\pi\)
\(360\) 0 0
\(361\) 17.6078i 0.926727i
\(362\) 0 0
\(363\) 11.2250i 0.589161i
\(364\) 0 0
\(365\) −21.4496 8.95467i −1.12273 0.468709i
\(366\) 0 0
\(367\) 0.129655 0.129655i 0.00676792 0.00676792i −0.703715 0.710483i \(-0.748477\pi\)
0.710483 + 0.703715i \(0.248477\pi\)
\(368\) 0 0
\(369\) 10.8873i 0.566770i
\(370\) 0 0
\(371\) 3.29684 + 3.29684i 0.171164 + 0.171164i
\(372\) 0 0
\(373\) 2.85797 0.147980 0.0739900 0.997259i \(-0.476427\pi\)
0.0739900 + 0.997259i \(0.476427\pi\)
\(374\) 0 0
\(375\) −4.36452 + 10.2932i −0.225383 + 0.531541i
\(376\) 0 0
\(377\) 3.53625 3.53625i 0.182126 0.182126i
\(378\) 0 0
\(379\) −14.8095 14.8095i −0.760713 0.760713i 0.215739 0.976451i \(-0.430784\pi\)
−0.976451 + 0.215739i \(0.930784\pi\)
\(380\) 0 0
\(381\) −4.80716 + 4.80716i −0.246278 + 0.246278i
\(382\) 0 0
\(383\) 22.2921 + 22.2921i 1.13907 + 1.13907i 0.988616 + 0.150458i \(0.0480749\pi\)
0.150458 + 0.988616i \(0.451925\pi\)
\(384\) 0 0
\(385\) −28.6834 + 11.7878i −1.46184 + 0.600759i
\(386\) 0 0
\(387\) 5.16088i 0.262342i
\(388\) 0 0
\(389\) −17.1132 + 17.1132i −0.867671 + 0.867671i −0.992214 0.124543i \(-0.960254\pi\)
0.124543 + 0.992214i \(0.460254\pi\)
\(390\) 0 0
\(391\) 13.7599 0.695867
\(392\) 0 0
\(393\) −3.53632 3.53632i −0.178384 0.178384i
\(394\) 0 0
\(395\) −15.9794 + 6.56689i −0.804009 + 0.330416i
\(396\) 0 0
\(397\) −16.2806 −0.817099 −0.408549 0.912736i \(-0.633965\pi\)
−0.408549 + 0.912736i \(0.633965\pi\)
\(398\) 0 0
\(399\) 3.47105 0.173770
\(400\) 0 0
\(401\) 5.13860 0.256609 0.128305 0.991735i \(-0.459046\pi\)
0.128305 + 0.991735i \(0.459046\pi\)
\(402\) 0 0
\(403\) −16.0983 −0.801914
\(404\) 0 0
\(405\) −2.06823 + 0.849960i −0.102771 + 0.0422349i
\(406\) 0 0
\(407\) −6.91074 6.91074i −0.342553 0.342553i
\(408\) 0 0
\(409\) −3.88999 −0.192348 −0.0961738 0.995365i \(-0.530660\pi\)
−0.0961738 + 0.995365i \(0.530660\pi\)
\(410\) 0 0
\(411\) 7.54548 7.54548i 0.372191 0.372191i
\(412\) 0 0
\(413\) 9.67703i 0.476176i
\(414\) 0 0
\(415\) 17.9463 7.37522i 0.880949 0.362035i
\(416\) 0 0
\(417\) −2.84263 2.84263i −0.139204 0.139204i
\(418\) 0 0
\(419\) −9.68913 + 9.68913i −0.473345 + 0.473345i −0.902995 0.429650i \(-0.858637\pi\)
0.429650 + 0.902995i \(0.358637\pi\)
\(420\) 0 0
\(421\) 19.2867 + 19.2867i 0.939978 + 0.939978i 0.998298 0.0583197i \(-0.0185743\pi\)
−0.0583197 + 0.998298i \(0.518574\pi\)
\(422\) 0 0
\(423\) 8.65772 8.65772i 0.420953 0.420953i
\(424\) 0 0
\(425\) −16.4849 0.0916501i −0.799636 0.00444568i
\(426\) 0 0
\(427\) 30.0582 1.45462
\(428\) 0 0
\(429\) −20.4591 20.4591i −0.987776 0.987776i
\(430\) 0 0
\(431\) 4.13031i 0.198950i 0.995040 + 0.0994751i \(0.0317164\pi\)
−0.995040 + 0.0994751i \(0.968284\pi\)
\(432\) 0 0
\(433\) 13.3312 13.3312i 0.640655 0.640655i −0.310062 0.950716i \(-0.600350\pi\)
0.950716 + 0.310062i \(0.100350\pi\)
\(434\) 0 0
\(435\) −1.68142 0.701948i −0.0806178 0.0336558i
\(436\) 0 0
\(437\) 4.92426i 0.235559i
\(438\) 0 0
\(439\) 22.0770i 1.05368i −0.849965 0.526839i \(-0.823377\pi\)
0.849965 0.526839i \(-0.176623\pi\)
\(440\) 0 0
\(441\) 1.65411i 0.0787673i
\(442\) 0 0
\(443\) 8.44869i 0.401409i −0.979652 0.200705i \(-0.935677\pi\)
0.979652 0.200705i \(-0.0643231\pi\)
\(444\) 0 0
\(445\) 18.0058 7.39967i 0.853556 0.350778i
\(446\) 0 0
\(447\) −3.20287 + 3.20287i −0.151491 + 0.151491i
\(448\) 0 0
\(449\) 12.3249i 0.581648i 0.956777 + 0.290824i \(0.0939293\pi\)
−0.956777 + 0.290824i \(0.906071\pi\)
\(450\) 0 0
\(451\) 36.2932 + 36.2932i 1.70898 + 1.70898i
\(452\) 0 0
\(453\) −8.82773 −0.414763
\(454\) 0 0
\(455\) −15.5532 + 37.2555i −0.729146 + 1.74657i
\(456\) 0 0
\(457\) 10.5838 10.5838i 0.495089 0.495089i −0.414816 0.909905i \(-0.636154\pi\)
0.909905 + 0.414816i \(0.136154\pi\)
\(458\) 0 0
\(459\) −2.33136 2.33136i −0.108818 0.108818i
\(460\) 0 0
\(461\) 6.77081 6.77081i 0.315348 0.315348i −0.531629 0.846977i \(-0.678420\pi\)
0.846977 + 0.531629i \(0.178420\pi\)
\(462\) 0 0
\(463\) 11.3573 + 11.3573i 0.527819 + 0.527819i 0.919921 0.392103i \(-0.128252\pi\)
−0.392103 + 0.919921i \(0.628252\pi\)
\(464\) 0 0
\(465\) 2.22945 + 5.42497i 0.103388 + 0.251577i
\(466\) 0 0
\(467\) 3.11578i 0.144181i 0.997398 + 0.0720906i \(0.0229671\pi\)
−0.997398 + 0.0720906i \(0.977033\pi\)
\(468\) 0 0
\(469\) 1.84208 1.84208i 0.0850594 0.0850594i
\(470\) 0 0
\(471\) −15.5186 −0.715058
\(472\) 0 0
\(473\) −17.2040 17.2040i −0.791042 0.791042i
\(474\) 0 0
\(475\) 0.0327989 5.89947i 0.00150492 0.270686i
\(476\) 0 0
\(477\) 1.58490 0.0725676
\(478\) 0 0
\(479\) 15.3508 0.701396 0.350698 0.936489i \(-0.385944\pi\)
0.350698 + 0.936489i \(0.385944\pi\)
\(480\) 0 0
\(481\) −12.7233 −0.580132
\(482\) 0 0
\(483\) −12.2773 −0.558636
\(484\) 0 0
\(485\) −35.0138 14.6174i −1.58990 0.663740i
\(486\) 0 0
\(487\) −8.51351 8.51351i −0.385784 0.385784i 0.487397 0.873181i \(-0.337947\pi\)
−0.873181 + 0.487397i \(0.837947\pi\)
\(488\) 0 0
\(489\) 8.65221 0.391267
\(490\) 0 0
\(491\) −6.16348 + 6.16348i −0.278154 + 0.278154i −0.832372 0.554218i \(-0.813017\pi\)
0.554218 + 0.832372i \(0.313017\pi\)
\(492\) 0 0
\(493\) 2.68659i 0.120998i
\(494\) 0 0
\(495\) −4.06115 + 9.72791i −0.182535 + 0.437237i
\(496\) 0 0
\(497\) −5.34345 5.34345i −0.239686 0.239686i
\(498\) 0 0
\(499\) −16.1961 + 16.1961i −0.725037 + 0.725037i −0.969627 0.244589i \(-0.921347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(500\) 0 0
\(501\) −2.86613 2.86613i −0.128049 0.128049i
\(502\) 0 0
\(503\) −8.39462 + 8.39462i −0.374298 + 0.374298i −0.869040 0.494742i \(-0.835263\pi\)
0.494742 + 0.869040i \(0.335263\pi\)
\(504\) 0 0
\(505\) −19.5338 8.15485i −0.869242 0.362886i
\(506\) 0 0
\(507\) −24.6671 −1.09550
\(508\) 0 0
\(509\) −5.50555 5.50555i −0.244029 0.244029i 0.574486 0.818515i \(-0.305202\pi\)
−0.818515 + 0.574486i \(0.805202\pi\)
\(510\) 0 0
\(511\) 30.5797i 1.35277i
\(512\) 0 0
\(513\) 0.834324 0.834324i 0.0368363 0.0368363i
\(514\) 0 0
\(515\) −16.3542 + 39.1742i −0.720653 + 1.72622i
\(516\) 0 0
\(517\) 57.7217i 2.53860i
\(518\) 0 0
\(519\) 15.1143i 0.663442i
\(520\) 0 0
\(521\) 39.2289i 1.71865i 0.511430 + 0.859325i \(0.329116\pi\)
−0.511430 + 0.859325i \(0.670884\pi\)
\(522\) 0 0
\(523\) 16.7434i 0.732137i −0.930588 0.366068i \(-0.880704\pi\)
0.930588 0.366068i \(-0.119296\pi\)
\(524\) 0 0
\(525\) 14.7087 + 0.0817750i 0.641941 + 0.00356895i
\(526\) 0 0
\(527\) −6.11516 + 6.11516i −0.266381 + 0.266381i
\(528\) 0 0
\(529\) 5.58265i 0.242724i
\(530\) 0 0
\(531\) 2.32603 + 2.32603i 0.100941 + 0.100941i
\(532\) 0 0
\(533\) 66.8191 2.89426
\(534\) 0 0
\(535\) 22.6610 9.31276i 0.979719 0.402626i
\(536\) 0 0
\(537\) −12.3666 + 12.3666i −0.533659 + 0.533659i
\(538\) 0 0
\(539\) 5.51406 + 5.51406i 0.237507 + 0.237507i
\(540\) 0 0
\(541\) −3.45427 + 3.45427i −0.148511 + 0.148511i −0.777452 0.628942i \(-0.783488\pi\)
0.628942 + 0.777452i \(0.283488\pi\)
\(542\) 0 0
\(543\) 9.58991 + 9.58991i 0.411543 + 0.411543i
\(544\) 0 0
\(545\) 1.87914 + 0.784493i 0.0804936 + 0.0336040i
\(546\) 0 0
\(547\) 18.1175i 0.774647i −0.921944 0.387324i \(-0.873400\pi\)
0.921944 0.387324i \(-0.126600\pi\)
\(548\) 0 0
\(549\) 7.22499 7.22499i 0.308355 0.308355i
\(550\) 0 0
\(551\) 0.961451 0.0409592
\(552\) 0 0
\(553\) 16.0715 + 16.0715i 0.683431 + 0.683431i
\(554\) 0 0
\(555\) 1.76205 + 4.28763i 0.0747947 + 0.182000i
\(556\) 0 0
\(557\) −21.1776 −0.897324 −0.448662 0.893701i \(-0.648099\pi\)
−0.448662 + 0.893701i \(0.648099\pi\)
\(558\) 0 0
\(559\) −31.6742 −1.33967
\(560\) 0 0
\(561\) −15.5434 −0.656241
\(562\) 0 0
\(563\) 44.5712 1.87845 0.939226 0.343298i \(-0.111544\pi\)
0.939226 + 0.343298i \(0.111544\pi\)
\(564\) 0 0
\(565\) −11.2028 + 26.8348i −0.471307 + 1.12895i
\(566\) 0 0
\(567\) 2.08016 + 2.08016i 0.0873584 + 0.0873584i
\(568\) 0 0
\(569\) −5.14194 −0.215562 −0.107781 0.994175i \(-0.534374\pi\)
−0.107781 + 0.994175i \(0.534374\pi\)
\(570\) 0 0
\(571\) −17.4873 + 17.4873i −0.731820 + 0.731820i −0.970980 0.239160i \(-0.923128\pi\)
0.239160 + 0.970980i \(0.423128\pi\)
\(572\) 0 0
\(573\) 14.5044i 0.605929i
\(574\) 0 0
\(575\) −0.116011 + 20.8667i −0.00483801 + 0.870203i
\(576\) 0 0
\(577\) −2.82131 2.82131i −0.117453 0.117453i 0.645938 0.763390i \(-0.276467\pi\)
−0.763390 + 0.645938i \(0.776467\pi\)
\(578\) 0 0
\(579\) −1.68153 + 1.68153i −0.0698822 + 0.0698822i
\(580\) 0 0
\(581\) −18.0498 18.0498i −0.748833 0.748833i
\(582\) 0 0
\(583\) 5.28334 5.28334i 0.218813 0.218813i
\(584\) 0 0
\(585\) 5.21651 + 12.6934i 0.215676 + 0.524809i
\(586\) 0 0
\(587\) −45.9941 −1.89838 −0.949191 0.314702i \(-0.898095\pi\)
−0.949191 + 0.314702i \(0.898095\pi\)
\(588\) 0 0
\(589\) −2.18844 2.18844i −0.0901729 0.0901729i
\(590\) 0 0
\(591\) 8.65121i 0.355863i
\(592\) 0 0
\(593\) −7.77054 + 7.77054i −0.319098 + 0.319098i −0.848421 0.529323i \(-0.822446\pi\)
0.529323 + 0.848421i \(0.322446\pi\)
\(594\) 0 0
\(595\) 8.24392 + 20.0601i 0.337968 + 0.822385i
\(596\) 0 0
\(597\) 22.3275i 0.913804i
\(598\) 0 0
\(599\) 16.1877i 0.661413i 0.943734 + 0.330707i \(0.107287\pi\)
−0.943734 + 0.330707i \(0.892713\pi\)
\(600\) 0 0
\(601\) 14.1986i 0.579174i 0.957152 + 0.289587i \(0.0935180\pi\)
−0.957152 + 0.289587i \(0.906482\pi\)
\(602\) 0 0
\(603\) 0.885549i 0.0360623i
\(604\) 0 0
\(605\) 9.54082 + 23.2159i 0.387889 + 0.943860i
\(606\) 0 0
\(607\) −22.9646 + 22.9646i −0.932105 + 0.932105i −0.997837 0.0657320i \(-0.979062\pi\)
0.0657320 + 0.997837i \(0.479062\pi\)
\(608\) 0 0
\(609\) 2.39711i 0.0971359i
\(610\) 0 0
\(611\) −53.1355 53.1355i −2.14963 2.14963i
\(612\) 0 0
\(613\) −37.1155 −1.49908 −0.749541 0.661958i \(-0.769726\pi\)
−0.749541 + 0.661958i \(0.769726\pi\)
\(614\) 0 0
\(615\) −9.25376 22.5174i −0.373148 0.907989i
\(616\) 0 0
\(617\) −1.45005 + 1.45005i −0.0583767 + 0.0583767i −0.735692 0.677316i \(-0.763143\pi\)
0.677316 + 0.735692i \(0.263143\pi\)
\(618\) 0 0
\(619\) 13.2111 + 13.2111i 0.530998 + 0.530998i 0.920869 0.389872i \(-0.127481\pi\)
−0.389872 + 0.920869i \(0.627481\pi\)
\(620\) 0 0
\(621\) −2.95105 + 2.95105i −0.118421 + 0.118421i
\(622\) 0 0
\(623\) −18.1096 18.1096i −0.725548 0.725548i
\(624\) 0 0
\(625\) 0.277973 24.9985i 0.0111189 0.999938i
\(626\) 0 0
\(627\) 5.56251i 0.222145i
\(628\) 0 0
\(629\) −4.83312 + 4.83312i −0.192709 + 0.192709i
\(630\) 0 0
\(631\) −11.6636 −0.464322 −0.232161 0.972677i \(-0.574580\pi\)
−0.232161 + 0.972677i \(0.574580\pi\)
\(632\) 0 0
\(633\) 5.27613 + 5.27613i 0.209707 + 0.209707i
\(634\) 0 0
\(635\) 5.85641 14.0282i 0.232405 0.556692i
\(636\) 0 0
\(637\) 10.1519 0.402232
\(638\) 0 0
\(639\) −2.56877 −0.101619
\(640\) 0 0
\(641\) −20.8880 −0.825025 −0.412512 0.910952i \(-0.635349\pi\)
−0.412512 + 0.910952i \(0.635349\pi\)
\(642\) 0 0
\(643\) −36.6130 −1.44388 −0.721939 0.691957i \(-0.756749\pi\)
−0.721939 + 0.691957i \(0.756749\pi\)
\(644\) 0 0
\(645\) 4.38655 + 10.6739i 0.172720 + 0.420284i
\(646\) 0 0
\(647\) −23.8735 23.8735i −0.938562 0.938562i 0.0596566 0.998219i \(-0.480999\pi\)
−0.998219 + 0.0596566i \(0.980999\pi\)
\(648\) 0 0
\(649\) 15.5079 0.608737
\(650\) 0 0
\(651\) 5.45626 5.45626i 0.213848 0.213848i
\(652\) 0 0
\(653\) 22.3501i 0.874627i −0.899309 0.437313i \(-0.855930\pi\)
0.899309 0.437313i \(-0.144070\pi\)
\(654\) 0 0
\(655\) 10.3197 + 4.30819i 0.403222 + 0.168335i
\(656\) 0 0
\(657\) 7.35033 + 7.35033i 0.286764 + 0.286764i
\(658\) 0 0
\(659\) 15.9700 15.9700i 0.622102 0.622102i −0.323967 0.946068i \(-0.605017\pi\)
0.946068 + 0.323967i \(0.105017\pi\)
\(660\) 0 0
\(661\) 15.1592 + 15.1592i 0.589624 + 0.589624i 0.937530 0.347906i \(-0.113107\pi\)
−0.347906 + 0.937530i \(0.613107\pi\)
\(662\) 0 0
\(663\) −14.3084 + 14.3084i −0.555691 + 0.555691i
\(664\) 0 0
\(665\) −7.17893 + 2.95026i −0.278387 + 0.114406i
\(666\) 0 0
\(667\) −3.40070 −0.131676
\(668\) 0 0
\(669\) −13.8202 13.8202i −0.534320 0.534320i
\(670\) 0 0
\(671\) 48.1696i 1.85957i
\(672\) 0 0
\(673\) 15.2524 15.2524i 0.587938 0.587938i −0.349134 0.937073i \(-0.613524\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(674\) 0 0
\(675\) 3.55514 3.51582i 0.136837 0.135324i
\(676\) 0 0
\(677\) 3.95511i 0.152007i 0.997108 + 0.0760036i \(0.0242161\pi\)
−0.997108 + 0.0760036i \(0.975784\pi\)
\(678\) 0 0
\(679\) 49.9175i 1.91566i
\(680\) 0 0
\(681\) 1.66286i 0.0637209i
\(682\) 0 0
\(683\) 50.9345i 1.94895i −0.224490 0.974476i \(-0.572072\pi\)
0.224490 0.974476i \(-0.427928\pi\)
\(684\) 0 0
\(685\) −9.19242 + 22.0191i −0.351224 + 0.841308i
\(686\) 0 0
\(687\) −11.3744 + 11.3744i −0.433962 + 0.433962i
\(688\) 0 0
\(689\) 9.72710i 0.370573i
\(690\) 0 0
\(691\) −13.5869 13.5869i −0.516870 0.516870i 0.399753 0.916623i \(-0.369096\pi\)
−0.916623 + 0.399753i \(0.869096\pi\)
\(692\) 0 0
\(693\) 13.8686 0.526824
\(694\) 0 0
\(695\) 8.29534 + 3.46309i 0.314660 + 0.131362i
\(696\) 0 0
\(697\) 25.3822 25.3822i 0.961418 0.961418i
\(698\) 0 0
\(699\) 9.38976 + 9.38976i 0.355153 + 0.355153i
\(700\) 0 0
\(701\) 0.627254 0.627254i 0.0236911 0.0236911i −0.695162 0.718853i \(-0.744667\pi\)
0.718853 + 0.695162i \(0.244667\pi\)
\(702\) 0 0
\(703\) −1.72963 1.72963i −0.0652343 0.0652343i
\(704\) 0 0
\(705\) −10.5474 + 25.2649i −0.397239 + 0.951529i
\(706\) 0 0
\(707\) 27.8483i 1.04734i
\(708\) 0 0
\(709\) −26.7170 + 26.7170i −1.00338 + 1.00338i −0.00338478 + 0.999994i \(0.501077\pi\)
−0.999994 + 0.00338478i \(0.998923\pi\)
\(710\) 0 0
\(711\) 7.72612 0.289752
\(712\) 0 0
\(713\) 7.74061 + 7.74061i 0.289888 + 0.289888i
\(714\) 0 0
\(715\) 59.7036 + 24.9247i 2.23279 + 0.932131i
\(716\) 0 0
\(717\) −8.88914 −0.331971
\(718\) 0 0
\(719\) 27.5794 1.02854 0.514269 0.857629i \(-0.328063\pi\)
0.514269 + 0.857629i \(0.328063\pi\)
\(720\) 0 0
\(721\) 55.8488 2.07992
\(722\) 0 0
\(723\) 20.5978 0.766041
\(724\) 0 0
\(725\) 4.07418 + 0.0226510i 0.151311 + 0.000841235i
\(726\) 0 0
\(727\) −8.11985 8.11985i −0.301148 0.301148i 0.540315 0.841463i \(-0.318305\pi\)
−0.841463 + 0.540315i \(0.818305\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0319 + 12.0319i −0.445014 + 0.445014i
\(732\) 0 0
\(733\) 12.3271i 0.455313i 0.973742 + 0.227656i \(0.0731063\pi\)
−0.973742 + 0.227656i \(0.926894\pi\)
\(734\) 0 0
\(735\) −1.40593 3.42109i −0.0518586 0.126189i
\(736\) 0 0
\(737\) −2.95201 2.95201i −0.108739 0.108739i
\(738\) 0 0
\(739\) 24.8212 24.8212i 0.913062 0.913062i −0.0834496 0.996512i \(-0.526594\pi\)
0.996512 + 0.0834496i \(0.0265938\pi\)
\(740\) 0 0
\(741\) −5.12054 5.12054i −0.188108 0.188108i
\(742\) 0 0
\(743\) 26.8731 26.8731i 0.985877 0.985877i −0.0140246 0.999902i \(-0.504464\pi\)
0.999902 + 0.0140246i \(0.00446431\pi\)
\(744\) 0 0
\(745\) 3.90195 9.34658i 0.142957 0.342432i
\(746\) 0 0
\(747\) −8.67714 −0.317480
\(748\) 0 0
\(749\) −22.7917 22.7917i −0.832789 0.832789i
\(750\) 0 0
\(751\) 24.7594i 0.903484i −0.892149 0.451742i \(-0.850803\pi\)
0.892149 0.451742i \(-0.149197\pi\)
\(752\) 0 0
\(753\) 16.8455 16.8455i 0.613883 0.613883i
\(754\) 0 0
\(755\) 18.2578 7.50322i 0.664468 0.273070i
\(756\) 0 0
\(757\) 35.5014i 1.29032i 0.764047 + 0.645160i \(0.223209\pi\)
−0.764047 + 0.645160i \(0.776791\pi\)
\(758\) 0 0
\(759\) 19.6749i 0.714153i
\(760\) 0 0
\(761\) 19.8569i 0.719812i 0.932989 + 0.359906i \(0.117191\pi\)
−0.932989 + 0.359906i \(0.882809\pi\)
\(762\) 0 0
\(763\) 2.67900i 0.0969862i
\(764\) 0 0
\(765\) 6.80334 + 2.84022i 0.245975 + 0.102688i
\(766\) 0 0
\(767\) 14.2757 14.2757i 0.515465 0.515465i
\(768\) 0 0
\(769\) 37.1951i 1.34129i 0.741779 + 0.670644i \(0.233982\pi\)
−0.741779 + 0.670644i \(0.766018\pi\)
\(770\) 0 0
\(771\) −14.1500 14.1500i −0.509600 0.509600i
\(772\) 0 0
\(773\) −13.2454 −0.476402 −0.238201 0.971216i \(-0.576558\pi\)
−0.238201 + 0.971216i \(0.576558\pi\)
\(774\) 0 0
\(775\) −9.22202 9.32514i −0.331265 0.334969i
\(776\) 0 0
\(777\) 4.31236 4.31236i 0.154705 0.154705i
\(778\) 0 0
\(779\) 9.08353 + 9.08353i 0.325451 + 0.325451i
\(780\) 0 0
\(781\) −8.56310 + 8.56310i −0.306412 + 0.306412i
\(782\) 0 0
\(783\) 0.576185 + 0.576185i 0.0205912 + 0.0205912i
\(784\) 0 0
\(785\) 32.0959 13.1902i 1.14555 0.470777i
\(786\) 0 0
\(787\) 12.0292i 0.428794i −0.976747 0.214397i \(-0.931221\pi\)
0.976747 0.214397i \(-0.0687786\pi\)
\(788\) 0 0
\(789\) −11.1204 + 11.1204i −0.395896 + 0.395896i
\(790\) 0 0
\(791\) 38.2571 1.36026
\(792\) 0 0
\(793\) −44.3423 44.3423i −1.57464 1.57464i
\(794\) 0 0
\(795\) −3.27794 + 1.34710i −0.116256 + 0.0477768i
\(796\) 0 0
\(797\) 45.2714 1.60359 0.801797 0.597597i \(-0.203878\pi\)
0.801797 + 0.597597i \(0.203878\pi\)
\(798\) 0 0
\(799\) −40.3685 −1.42813
\(800\) 0 0
\(801\) −8.70590 −0.307608
\(802\) 0 0
\(803\) 49.0053 1.72936
\(804\) 0 0
\(805\) 25.3922 10.4352i 0.894958 0.367793i
\(806\) 0 0
\(807\) 10.2902 + 10.2902i 0.362231 + 0.362231i
\(808\) 0 0
\(809\) 5.16391 0.181553 0.0907767 0.995871i \(-0.471065\pi\)
0.0907767 + 0.995871i \(0.471065\pi\)
\(810\) 0 0
\(811\) 15.7171 15.7171i 0.551903 0.551903i −0.375087 0.926990i \(-0.622387\pi\)
0.926990 + 0.375087i \(0.122387\pi\)
\(812\) 0 0
\(813\) 21.3325i 0.748163i
\(814\) 0 0
\(815\) −17.8947 + 7.35404i −0.626826 + 0.257601i
\(816\) 0 0
\(817\) −4.30585 4.30585i −0.150643 0.150643i
\(818\) 0 0
\(819\) 12.7667 12.7667i 0.446103 0.446103i
\(820\) 0 0
\(821\) 15.6816 + 15.6816i 0.547293 + 0.547293i 0.925657 0.378364i \(-0.123513\pi\)
−0.378364 + 0.925657i \(0.623513\pi\)
\(822\) 0 0
\(823\) 3.65203 3.65203i 0.127302 0.127302i −0.640585 0.767887i \(-0.721308\pi\)
0.767887 + 0.640585i \(0.221308\pi\)
\(824\) 0 0
\(825\) 0.131048 23.5713i 0.00456251 0.820649i
\(826\) 0 0
\(827\) 14.0926 0.490046 0.245023 0.969517i \(-0.421204\pi\)
0.245023 + 0.969517i \(0.421204\pi\)
\(828\) 0 0
\(829\) 12.1216 + 12.1216i 0.421000 + 0.421000i 0.885548 0.464548i \(-0.153783\pi\)
−0.464548 + 0.885548i \(0.653783\pi\)
\(830\) 0 0
\(831\) 19.0041i 0.659244i
\(832\) 0 0
\(833\) 3.85633 3.85633i 0.133614 0.133614i
\(834\) 0 0
\(835\) 8.36390 + 3.49171i 0.289445 + 0.120836i
\(836\) 0 0
\(837\) 2.62300i 0.0906643i
\(838\) 0 0
\(839\) 14.6206i 0.504759i −0.967628 0.252380i \(-0.918787\pi\)
0.967628 0.252380i \(-0.0812132\pi\)
\(840\) 0 0
\(841\) 28.3360i 0.977104i
\(842\) 0 0
\(843\) 3.86317i 0.133054i
\(844\) 0 0
\(845\) 51.0172 20.9661i 1.75504 0.721254i
\(846\) 0 0
\(847\) 23.3498 23.3498i 0.802309 0.802309i
\(848\) 0 0
\(849\) 5.89151i 0.202196i
\(850\) 0 0
\(851\) 6.11779 + 6.11779i 0.209715 + 0.209715i
\(852\) 0 0
\(853\) −13.7252 −0.469940 −0.234970 0.972003i \(-0.575499\pi\)
−0.234970 + 0.972003i \(0.575499\pi\)
\(854\) 0 0
\(855\) −1.01643 + 2.43472i −0.0347612 + 0.0832655i
\(856\) 0 0
\(857\) 18.7921 18.7921i 0.641927 0.641927i −0.309102 0.951029i \(-0.600028\pi\)
0.951029 + 0.309102i \(0.100028\pi\)
\(858\) 0 0
\(859\) 23.1774 + 23.1774i 0.790803 + 0.790803i 0.981625 0.190822i \(-0.0611152\pi\)
−0.190822 + 0.981625i \(0.561115\pi\)
\(860\) 0 0
\(861\) −22.6473 + 22.6473i −0.771817 + 0.771817i
\(862\) 0 0
\(863\) 8.96863 + 8.96863i 0.305296 + 0.305296i 0.843082 0.537786i \(-0.180739\pi\)
−0.537786 + 0.843082i \(0.680739\pi\)
\(864\) 0 0
\(865\) −12.8465 31.2597i −0.436795 1.06286i
\(866\) 0 0
\(867\) 6.12955i 0.208171i
\(868\) 0 0
\(869\) 25.7553 25.7553i 0.873690 0.873690i
\(870\) 0 0
\(871\) −5.43492 −0.184155
\(872\) 0 0
\(873\) 11.9985 + 11.9985i 0.406087 + 0.406087i
\(874\) 0 0
\(875\) −30.4905 + 12.3327i −1.03077 + 0.416921i
\(876\) 0 0
\(877\) 47.1944 1.59364 0.796822 0.604215i \(-0.206513\pi\)
0.796822 + 0.604215i \(0.206513\pi\)
\(878\) 0 0
\(879\) 4.49132 0.151489
\(880\) 0 0
\(881\) 51.5667 1.73733 0.868663 0.495403i \(-0.164980\pi\)
0.868663 + 0.495403i \(0.164980\pi\)
\(882\) 0 0
\(883\) −33.7083 −1.13438 −0.567188 0.823589i \(-0.691969\pi\)
−0.567188 + 0.823589i \(0.691969\pi\)
\(884\) 0 0
\(885\) −6.78780 2.83373i −0.228170 0.0952548i
\(886\) 0 0
\(887\) −4.91204 4.91204i −0.164930 0.164930i 0.619817 0.784747i \(-0.287207\pi\)
−0.784747 + 0.619817i \(0.787207\pi\)
\(888\) 0 0
\(889\) −19.9993 −0.670755
\(890\) 0 0
\(891\) 3.33354 3.33354i 0.111678 0.111678i
\(892\) 0 0
\(893\) 14.4467i 0.483440i
\(894\) 0 0
\(895\) 15.0659 36.0881i 0.503596 1.20629i
\(896\) 0 0
\(897\) 18.1116 + 18.1116i 0.604729 + 0.604729i
\(898\) 0 0
\(899\) 1.51134 1.51134i 0.0504059 0.0504059i
\(900\) 0 0
\(901\) −3.69497 3.69497i −0.123097 0.123097i
\(902\) 0 0
\(903\) 10.7355 10.7355i 0.357254 0.357254i
\(904\) 0 0
\(905\) −27.9852 11.6831i −0.930259 0.388359i
\(906\) 0 0
\(907\) −39.4081 −1.30852 −0.654262 0.756268i \(-0.727021\pi\)
−0.654262 + 0.756268i \(0.727021\pi\)
\(908\) 0 0
\(909\) 6.69380 + 6.69380i 0.222019 + 0.222019i
\(910\) 0 0
\(911\) 7.29607i 0.241729i −0.992669 0.120865i \(-0.961433\pi\)
0.992669 0.120865i \(-0.0385667\pi\)
\(912\) 0 0
\(913\) −28.9256 + 28.9256i −0.957298 + 0.957298i
\(914\) 0 0
\(915\) −8.80197 + 21.0839i −0.290984 + 0.697012i
\(916\) 0 0
\(917\) 14.7122i 0.485840i
\(918\) 0 0
\(919\) 52.5346i 1.73296i −0.499215 0.866478i \(-0.666378\pi\)
0.499215 0.866478i \(-0.333622\pi\)
\(920\) 0 0
\(921\) 3.84487i 0.126693i
\(922\) 0 0
\(923\) 15.7654i 0.518926i
\(924\) 0 0
\(925\) −7.28862 7.37012i −0.239648 0.242328i
\(926\) 0 0
\(927\) 13.4242 13.4242i 0.440907 0.440907i
\(928\) 0 0
\(929\) 48.7878i 1.60068i −0.599549 0.800338i \(-0.704654\pi\)
0.599549 0.800338i \(-0.295346\pi\)
\(930\) 0 0
\(931\) 1.38007 + 1.38007i 0.0452299 + 0.0452299i
\(932\) 0 0
\(933\) 4.07103 0.133279
\(934\) 0 0
\(935\) 32.1472 13.2112i 1.05133 0.432054i
\(936\) 0 0
\(937\) −29.3163 + 29.3163i −0.957722 + 0.957722i −0.999142 0.0414198i \(-0.986812\pi\)
0.0414198 + 0.999142i \(0.486812\pi\)
\(938\) 0 0
\(939\) −1.37922 1.37922i −0.0450093 0.0450093i
\(940\) 0 0
\(941\) 7.65378 7.65378i 0.249506 0.249506i −0.571262 0.820768i \(-0.693546\pi\)
0.820768 + 0.571262i \(0.193546\pi\)
\(942\) 0 0
\(943\) −32.1289 32.1289i −1.04626 1.04626i
\(944\) 0 0
\(945\) −6.07029 2.53419i −0.197467 0.0824372i
\(946\) 0 0
\(947\) 39.6694i 1.28908i 0.764569 + 0.644541i \(0.222952\pi\)
−0.764569 + 0.644541i \(0.777048\pi\)
\(948\) 0 0
\(949\) 45.1116 45.1116i 1.46438 1.46438i
\(950\) 0 0
\(951\) −9.80915 −0.318084
\(952\) 0 0
\(953\) 8.83095 + 8.83095i 0.286063 + 0.286063i 0.835521 0.549458i \(-0.185166\pi\)
−0.549458 + 0.835521i \(0.685166\pi\)
\(954\) 0 0
\(955\) 12.3281 + 29.9983i 0.398929 + 0.970724i
\(956\) 0 0
\(957\) 3.84148 0.124177
\(958\) 0 0
\(959\) 31.3916 1.01369
\(960\) 0 0
\(961\) 24.1198 0.778060
\(962\) 0 0
\(963\) −10.9567 −0.353075
\(964\) 0 0
\(965\) 2.04856 4.90703i 0.0659455 0.157963i
\(966\) 0 0
\(967\) 2.42314 + 2.42314i 0.0779231 + 0.0779231i 0.744994 0.667071i \(-0.232452\pi\)
−0.667071 + 0.744994i \(0.732452\pi\)
\(968\) 0 0
\(969\) −3.89021 −0.124972
\(970\) 0 0
\(971\) 21.9788 21.9788i 0.705334 0.705334i −0.260216 0.965550i \(-0.583794\pi\)
0.965550 + 0.260216i \(0.0837939\pi\)
\(972\) 0 0
\(973\) 11.8263i 0.379132i
\(974\) 0 0
\(975\) −21.5778 21.8191i −0.691044 0.698771i
\(976\) 0 0
\(977\) 32.7193 + 32.7193i 1.04678 + 1.04678i 0.998851 + 0.0479337i \(0.0152636\pi\)
0.0479337 + 0.998851i \(0.484736\pi\)
\(978\) 0 0
\(979\) −29.0215 + 29.0215i −0.927531 + 0.927531i
\(980\) 0 0
\(981\) −0.643941 0.643941i −0.0205595 0.0205595i
\(982\) 0 0
\(983\) −27.7480 + 27.7480i −0.885023 + 0.885023i −0.994040 0.109017i \(-0.965230\pi\)
0.109017 + 0.994040i \(0.465230\pi\)
\(984\) 0 0
\(985\) 7.35318 + 17.8927i 0.234292 + 0.570108i
\(986\) 0 0
\(987\) 36.0188 1.14649
\(988\) 0 0
\(989\) 15.2300 + 15.2300i 0.484286 + 0.484286i
\(990\) 0 0
\(991\) 24.6172i 0.781991i −0.920393 0.390996i \(-0.872131\pi\)
0.920393 0.390996i \(-0.127869\pi\)
\(992\) 0 0
\(993\) −7.17235 + 7.17235i −0.227608 + 0.227608i
\(994\) 0 0
\(995\) −18.9775 46.1784i −0.601627 1.46395i
\(996\) 0 0
\(997\) 36.9465i 1.17011i 0.810995 + 0.585053i \(0.198926\pi\)
−0.810995 + 0.585053i \(0.801074\pi\)
\(998\) 0 0
\(999\) 2.07309i 0.0655897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.j.1567.2 16
4.3 odd 2 1920.2.y.i.1567.2 16
5.3 odd 4 1920.2.bc.j.1183.6 16
8.3 odd 2 240.2.y.e.187.1 yes 16
8.5 even 2 960.2.y.e.847.7 16
16.3 odd 4 1920.2.bc.j.607.6 16
16.5 even 4 240.2.bc.e.67.4 yes 16
16.11 odd 4 960.2.bc.e.367.3 16
16.13 even 4 1920.2.bc.i.607.6 16
20.3 even 4 1920.2.bc.i.1183.6 16
24.11 even 2 720.2.z.f.667.8 16
40.3 even 4 240.2.bc.e.43.4 yes 16
40.13 odd 4 960.2.bc.e.463.3 16
48.5 odd 4 720.2.bd.f.307.5 16
80.3 even 4 inner 1920.2.y.j.223.2 16
80.13 odd 4 1920.2.y.i.223.2 16
80.43 even 4 960.2.y.e.943.7 16
80.53 odd 4 240.2.y.e.163.1 16
120.83 odd 4 720.2.bd.f.523.5 16
240.53 even 4 720.2.z.f.163.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.1 16 80.53 odd 4
240.2.y.e.187.1 yes 16 8.3 odd 2
240.2.bc.e.43.4 yes 16 40.3 even 4
240.2.bc.e.67.4 yes 16 16.5 even 4
720.2.z.f.163.8 16 240.53 even 4
720.2.z.f.667.8 16 24.11 even 2
720.2.bd.f.307.5 16 48.5 odd 4
720.2.bd.f.523.5 16 120.83 odd 4
960.2.y.e.847.7 16 8.5 even 2
960.2.y.e.943.7 16 80.43 even 4
960.2.bc.e.367.3 16 16.11 odd 4
960.2.bc.e.463.3 16 40.13 odd 4
1920.2.y.i.223.2 16 80.13 odd 4
1920.2.y.i.1567.2 16 4.3 odd 2
1920.2.y.j.223.2 16 80.3 even 4 inner
1920.2.y.j.1567.2 16 1.1 even 1 trivial
1920.2.bc.i.607.6 16 16.13 even 4
1920.2.bc.i.1183.6 16 20.3 even 4
1920.2.bc.j.607.6 16 16.3 odd 4
1920.2.bc.j.1183.6 16 5.3 odd 4