Properties

Label 960.2.bc.e.463.3
Level $960$
Weight $2$
Character 960.463
Analytic conductor $7.666$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(367,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.3
Root \(-1.40988 - 0.110627i\) of defining polynomial
Character \(\chi\) \(=\) 960.463
Dual form 960.2.bc.e.367.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-0.849960 + 2.06823i) q^{5} +(2.08016 - 2.08016i) q^{7} -1.00000 q^{9} +(-3.33354 + 3.33354i) q^{11} -6.13735 q^{13} +(2.06823 + 0.849960i) q^{15} +(-2.33136 + 2.33136i) q^{17} +(0.834324 - 0.834324i) q^{19} +(-2.08016 - 2.08016i) q^{21} +(-2.95105 - 2.95105i) q^{23} +(-3.55514 - 3.51582i) q^{25} +1.00000i q^{27} +(0.576185 + 0.576185i) q^{29} -2.62300i q^{31} +(3.33354 + 3.33354i) q^{33} +(2.53419 + 6.07029i) q^{35} +2.07309 q^{37} +6.13735i q^{39} +10.8873i q^{41} -5.16088 q^{43} +(0.849960 - 2.06823i) q^{45} +(-8.65772 - 8.65772i) q^{47} -1.65411i q^{49} +(2.33136 + 2.33136i) q^{51} -1.58490i q^{53} +(-4.06115 - 9.72791i) q^{55} +(-0.834324 - 0.834324i) q^{57} +(2.32603 + 2.32603i) q^{59} +(-7.22499 + 7.22499i) q^{61} +(-2.08016 + 2.08016i) q^{63} +(5.21651 - 12.6934i) q^{65} +0.885549 q^{67} +(-2.95105 + 2.95105i) q^{69} -2.56877 q^{71} +(-7.35033 + 7.35033i) q^{73} +(-3.51582 + 3.55514i) q^{75} +13.8686i q^{77} -7.72612 q^{79} +1.00000 q^{81} +8.67714i q^{83} +(-2.84022 - 6.80334i) q^{85} +(0.576185 - 0.576185i) q^{87} +8.70590 q^{89} +(-12.7667 + 12.7667i) q^{91} -2.62300 q^{93} +(1.01643 + 2.43472i) q^{95} +(11.9985 - 11.9985i) q^{97} +(3.33354 - 3.33354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{5} + 4 q^{7} - 16 q^{9} - 8 q^{13} - 4 q^{15} - 8 q^{17} + 8 q^{19} - 4 q^{21} - 32 q^{25} - 12 q^{29} - 12 q^{35} - 24 q^{37} - 24 q^{43} + 8 q^{45} - 32 q^{47} + 8 q^{51} + 4 q^{55} - 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.849960 + 2.06823i −0.380114 + 0.924940i
\(6\) 0 0
\(7\) 2.08016 2.08016i 0.786226 0.786226i −0.194647 0.980873i \(-0.562356\pi\)
0.980873 + 0.194647i \(0.0623563\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.33354 + 3.33354i −1.00510 + 1.00510i −0.00511408 + 0.999987i \(0.501628\pi\)
−0.999987 + 0.00511408i \(0.998372\pi\)
\(12\) 0 0
\(13\) −6.13735 −1.70220 −0.851098 0.525007i \(-0.824063\pi\)
−0.851098 + 0.525007i \(0.824063\pi\)
\(14\) 0 0
\(15\) 2.06823 + 0.849960i 0.534014 + 0.219459i
\(16\) 0 0
\(17\) −2.33136 + 2.33136i −0.565437 + 0.565437i −0.930847 0.365410i \(-0.880929\pi\)
0.365410 + 0.930847i \(0.380929\pi\)
\(18\) 0 0
\(19\) 0.834324 0.834324i 0.191407 0.191407i −0.604897 0.796304i \(-0.706786\pi\)
0.796304 + 0.604897i \(0.206786\pi\)
\(20\) 0 0
\(21\) −2.08016 2.08016i −0.453928 0.453928i
\(22\) 0 0
\(23\) −2.95105 2.95105i −0.615336 0.615336i 0.328996 0.944331i \(-0.393290\pi\)
−0.944331 + 0.328996i \(0.893290\pi\)
\(24\) 0 0
\(25\) −3.55514 3.51582i −0.711027 0.703165i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.576185 + 0.576185i 0.106995 + 0.106995i 0.758578 0.651583i \(-0.225895\pi\)
−0.651583 + 0.758578i \(0.725895\pi\)
\(30\) 0 0
\(31\) 2.62300i 0.471106i −0.971862 0.235553i \(-0.924310\pi\)
0.971862 0.235553i \(-0.0756900\pi\)
\(32\) 0 0
\(33\) 3.33354 + 3.33354i 0.580295 + 0.580295i
\(34\) 0 0
\(35\) 2.53419 + 6.07029i 0.428356 + 1.02607i
\(36\) 0 0
\(37\) 2.07309 0.340814 0.170407 0.985374i \(-0.445492\pi\)
0.170407 + 0.985374i \(0.445492\pi\)
\(38\) 0 0
\(39\) 6.13735i 0.982763i
\(40\) 0 0
\(41\) 10.8873i 1.70031i 0.526533 + 0.850154i \(0.323492\pi\)
−0.526533 + 0.850154i \(0.676508\pi\)
\(42\) 0 0
\(43\) −5.16088 −0.787027 −0.393514 0.919319i \(-0.628741\pi\)
−0.393514 + 0.919319i \(0.628741\pi\)
\(44\) 0 0
\(45\) 0.849960 2.06823i 0.126705 0.308313i
\(46\) 0 0
\(47\) −8.65772 8.65772i −1.26286 1.26286i −0.949702 0.313156i \(-0.898614\pi\)
−0.313156 0.949702i \(-0.601386\pi\)
\(48\) 0 0
\(49\) 1.65411i 0.236302i
\(50\) 0 0
\(51\) 2.33136 + 2.33136i 0.326455 + 0.326455i
\(52\) 0 0
\(53\) 1.58490i 0.217703i −0.994058 0.108851i \(-0.965283\pi\)
0.994058 0.108851i \(-0.0347173\pi\)
\(54\) 0 0
\(55\) −4.06115 9.72791i −0.547605 1.31171i
\(56\) 0 0
\(57\) −0.834324 0.834324i −0.110509 0.110509i
\(58\) 0 0
\(59\) 2.32603 + 2.32603i 0.302824 + 0.302824i 0.842118 0.539294i \(-0.181309\pi\)
−0.539294 + 0.842118i \(0.681309\pi\)
\(60\) 0 0
\(61\) −7.22499 + 7.22499i −0.925065 + 0.925065i −0.997382 0.0723167i \(-0.976961\pi\)
0.0723167 + 0.997382i \(0.476961\pi\)
\(62\) 0 0
\(63\) −2.08016 + 2.08016i −0.262075 + 0.262075i
\(64\) 0 0
\(65\) 5.21651 12.6934i 0.647028 1.57443i
\(66\) 0 0
\(67\) 0.885549 0.108187 0.0540935 0.998536i \(-0.482773\pi\)
0.0540935 + 0.998536i \(0.482773\pi\)
\(68\) 0 0
\(69\) −2.95105 + 2.95105i −0.355264 + 0.355264i
\(70\) 0 0
\(71\) −2.56877 −0.304857 −0.152428 0.988315i \(-0.548709\pi\)
−0.152428 + 0.988315i \(0.548709\pi\)
\(72\) 0 0
\(73\) −7.35033 + 7.35033i −0.860291 + 0.860291i −0.991372 0.131081i \(-0.958155\pi\)
0.131081 + 0.991372i \(0.458155\pi\)
\(74\) 0 0
\(75\) −3.51582 + 3.55514i −0.405972 + 0.410512i
\(76\) 0 0
\(77\) 13.8686i 1.58047i
\(78\) 0 0
\(79\) −7.72612 −0.869256 −0.434628 0.900610i \(-0.643120\pi\)
−0.434628 + 0.900610i \(0.643120\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.67714i 0.952440i 0.879326 + 0.476220i \(0.157993\pi\)
−0.879326 + 0.476220i \(0.842007\pi\)
\(84\) 0 0
\(85\) −2.84022 6.80334i −0.308065 0.737926i
\(86\) 0 0
\(87\) 0.576185 0.576185i 0.0617735 0.0617735i
\(88\) 0 0
\(89\) 8.70590 0.922823 0.461412 0.887186i \(-0.347343\pi\)
0.461412 + 0.887186i \(0.347343\pi\)
\(90\) 0 0
\(91\) −12.7667 + 12.7667i −1.33831 + 1.33831i
\(92\) 0 0
\(93\) −2.62300 −0.271993
\(94\) 0 0
\(95\) 1.01643 + 2.43472i 0.104284 + 0.249797i
\(96\) 0 0
\(97\) 11.9985 11.9985i 1.21826 1.21826i 0.250021 0.968240i \(-0.419562\pi\)
0.968240 0.250021i \(-0.0804375\pi\)
\(98\) 0 0
\(99\) 3.33354 3.33354i 0.335034 0.335034i
\(100\) 0 0
\(101\) −6.69380 6.69380i −0.666058 0.666058i 0.290743 0.956801i \(-0.406098\pi\)
−0.956801 + 0.290743i \(0.906098\pi\)
\(102\) 0 0
\(103\) 13.4242 + 13.4242i 1.32272 + 1.32272i 0.911564 + 0.411158i \(0.134876\pi\)
0.411158 + 0.911564i \(0.365124\pi\)
\(104\) 0 0
\(105\) 6.07029 2.53419i 0.592400 0.247312i
\(106\) 0 0
\(107\) 10.9567i 1.05922i −0.848240 0.529612i \(-0.822337\pi\)
0.848240 0.529612i \(-0.177663\pi\)
\(108\) 0 0
\(109\) −0.643941 0.643941i −0.0616784 0.0616784i 0.675595 0.737273i \(-0.263887\pi\)
−0.737273 + 0.675595i \(0.763887\pi\)
\(110\) 0 0
\(111\) 2.07309i 0.196769i
\(112\) 0 0
\(113\) 9.19571 + 9.19571i 0.865060 + 0.865060i 0.991921 0.126861i \(-0.0404901\pi\)
−0.126861 + 0.991921i \(0.540490\pi\)
\(114\) 0 0
\(115\) 8.61171 3.59517i 0.803046 0.335251i
\(116\) 0 0
\(117\) 6.13735 0.567398
\(118\) 0 0
\(119\) 9.69918i 0.889122i
\(120\) 0 0
\(121\) 11.2250i 1.02046i
\(122\) 0 0
\(123\) 10.8873 0.981674
\(124\) 0 0
\(125\) 10.2932 4.36452i 0.920656 0.390375i
\(126\) 0 0
\(127\) 4.80716 + 4.80716i 0.426567 + 0.426567i 0.887457 0.460890i \(-0.152470\pi\)
−0.460890 + 0.887457i \(0.652470\pi\)
\(128\) 0 0
\(129\) 5.16088i 0.454391i
\(130\) 0 0
\(131\) 3.53632 + 3.53632i 0.308970 + 0.308970i 0.844510 0.535540i \(-0.179892\pi\)
−0.535540 + 0.844510i \(0.679892\pi\)
\(132\) 0 0
\(133\) 3.47105i 0.300978i
\(134\) 0 0
\(135\) −2.06823 0.849960i −0.178005 0.0731529i
\(136\) 0 0
\(137\) −7.54548 7.54548i −0.644654 0.644654i 0.307042 0.951696i \(-0.400661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(138\) 0 0
\(139\) −2.84263 2.84263i −0.241109 0.241109i 0.576200 0.817309i \(-0.304535\pi\)
−0.817309 + 0.576200i \(0.804535\pi\)
\(140\) 0 0
\(141\) −8.65772 + 8.65772i −0.729111 + 0.729111i
\(142\) 0 0
\(143\) 20.4591 20.4591i 1.71088 1.71088i
\(144\) 0 0
\(145\) −1.68142 + 0.701948i −0.139634 + 0.0582936i
\(146\) 0 0
\(147\) −1.65411 −0.136429
\(148\) 0 0
\(149\) −3.20287 + 3.20287i −0.262389 + 0.262389i −0.826024 0.563635i \(-0.809403\pi\)
0.563635 + 0.826024i \(0.309403\pi\)
\(150\) 0 0
\(151\) −8.82773 −0.718390 −0.359195 0.933262i \(-0.616949\pi\)
−0.359195 + 0.933262i \(0.616949\pi\)
\(152\) 0 0
\(153\) 2.33136 2.33136i 0.188479 0.188479i
\(154\) 0 0
\(155\) 5.42497 + 2.22945i 0.435744 + 0.179074i
\(156\) 0 0
\(157\) 15.5186i 1.23852i −0.785187 0.619258i \(-0.787433\pi\)
0.785187 0.619258i \(-0.212567\pi\)
\(158\) 0 0
\(159\) −1.58490 −0.125691
\(160\) 0 0
\(161\) −12.2773 −0.967586
\(162\) 0 0
\(163\) 8.65221i 0.677694i −0.940842 0.338847i \(-0.889963\pi\)
0.940842 0.338847i \(-0.110037\pi\)
\(164\) 0 0
\(165\) −9.72791 + 4.06115i −0.757316 + 0.316160i
\(166\) 0 0
\(167\) −2.86613 + 2.86613i −0.221788 + 0.221788i −0.809251 0.587463i \(-0.800127\pi\)
0.587463 + 0.809251i \(0.300127\pi\)
\(168\) 0 0
\(169\) 24.6671 1.89747
\(170\) 0 0
\(171\) −0.834324 + 0.834324i −0.0638024 + 0.0638024i
\(172\) 0 0
\(173\) 15.1143 1.14912 0.574558 0.818464i \(-0.305174\pi\)
0.574558 + 0.818464i \(0.305174\pi\)
\(174\) 0 0
\(175\) −14.7087 + 0.0817750i −1.11187 + 0.00618161i
\(176\) 0 0
\(177\) 2.32603 2.32603i 0.174835 0.174835i
\(178\) 0 0
\(179\) −12.3666 + 12.3666i −0.924324 + 0.924324i −0.997331 0.0730070i \(-0.976740\pi\)
0.0730070 + 0.997331i \(0.476740\pi\)
\(180\) 0 0
\(181\) −9.58991 9.58991i −0.712813 0.712813i 0.254310 0.967123i \(-0.418152\pi\)
−0.967123 + 0.254310i \(0.918152\pi\)
\(182\) 0 0
\(183\) 7.22499 + 7.22499i 0.534087 + 0.534087i
\(184\) 0 0
\(185\) −1.76205 + 4.28763i −0.129548 + 0.315233i
\(186\) 0 0
\(187\) 15.5434i 1.13664i
\(188\) 0 0
\(189\) 2.08016 + 2.08016i 0.151309 + 0.151309i
\(190\) 0 0
\(191\) 14.5044i 1.04950i −0.851257 0.524750i \(-0.824159\pi\)
0.851257 0.524750i \(-0.175841\pi\)
\(192\) 0 0
\(193\) −1.68153 1.68153i −0.121039 0.121039i 0.643992 0.765032i \(-0.277277\pi\)
−0.765032 + 0.643992i \(0.777277\pi\)
\(194\) 0 0
\(195\) −12.6934 5.21651i −0.908996 0.373562i
\(196\) 0 0
\(197\) 8.65121 0.616373 0.308187 0.951326i \(-0.400278\pi\)
0.308187 + 0.951326i \(0.400278\pi\)
\(198\) 0 0
\(199\) 22.3275i 1.58275i −0.611328 0.791377i \(-0.709365\pi\)
0.611328 0.791377i \(-0.290635\pi\)
\(200\) 0 0
\(201\) 0.885549i 0.0624618i
\(202\) 0 0
\(203\) 2.39711 0.168244
\(204\) 0 0
\(205\) −22.5174 9.25376i −1.57268 0.646311i
\(206\) 0 0
\(207\) 2.95105 + 2.95105i 0.205112 + 0.205112i
\(208\) 0 0
\(209\) 5.56251i 0.384767i
\(210\) 0 0
\(211\) −5.27613 5.27613i −0.363224 0.363224i 0.501775 0.864998i \(-0.332681\pi\)
−0.864998 + 0.501775i \(0.832681\pi\)
\(212\) 0 0
\(213\) 2.56877i 0.176009i
\(214\) 0 0
\(215\) 4.38655 10.6739i 0.299160 0.727953i
\(216\) 0 0
\(217\) −5.45626 5.45626i −0.370395 0.370395i
\(218\) 0 0
\(219\) 7.35033 + 7.35033i 0.496689 + 0.496689i
\(220\) 0 0
\(221\) 14.3084 14.3084i 0.962484 0.962484i
\(222\) 0 0
\(223\) 13.8202 13.8202i 0.925469 0.925469i −0.0719400 0.997409i \(-0.522919\pi\)
0.997409 + 0.0719400i \(0.0229190\pi\)
\(224\) 0 0
\(225\) 3.55514 + 3.51582i 0.237009 + 0.234388i
\(226\) 0 0
\(227\) 1.66286 0.110368 0.0551839 0.998476i \(-0.482425\pi\)
0.0551839 + 0.998476i \(0.482425\pi\)
\(228\) 0 0
\(229\) −11.3744 + 11.3744i −0.751643 + 0.751643i −0.974786 0.223142i \(-0.928368\pi\)
0.223142 + 0.974786i \(0.428368\pi\)
\(230\) 0 0
\(231\) 13.8686 0.912486
\(232\) 0 0
\(233\) −9.38976 + 9.38976i −0.615143 + 0.615143i −0.944282 0.329138i \(-0.893242\pi\)
0.329138 + 0.944282i \(0.393242\pi\)
\(234\) 0 0
\(235\) 25.2649 10.5474i 1.64810 0.688038i
\(236\) 0 0
\(237\) 7.72612i 0.501865i
\(238\) 0 0
\(239\) 8.88914 0.574991 0.287495 0.957782i \(-0.407177\pi\)
0.287495 + 0.957782i \(0.407177\pi\)
\(240\) 0 0
\(241\) 20.5978 1.32682 0.663411 0.748255i \(-0.269108\pi\)
0.663411 + 0.748255i \(0.269108\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.42109 + 1.40593i 0.218565 + 0.0898217i
\(246\) 0 0
\(247\) −5.12054 + 5.12054i −0.325812 + 0.325812i
\(248\) 0 0
\(249\) 8.67714 0.549891
\(250\) 0 0
\(251\) −16.8455 + 16.8455i −1.06328 + 1.06328i −0.0654195 + 0.997858i \(0.520839\pi\)
−0.997858 + 0.0654195i \(0.979161\pi\)
\(252\) 0 0
\(253\) 19.6749 1.23695
\(254\) 0 0
\(255\) −6.80334 + 2.84022i −0.426042 + 0.177861i
\(256\) 0 0
\(257\) −14.1500 + 14.1500i −0.882653 + 0.882653i −0.993804 0.111151i \(-0.964546\pi\)
0.111151 + 0.993804i \(0.464546\pi\)
\(258\) 0 0
\(259\) 4.31236 4.31236i 0.267957 0.267957i
\(260\) 0 0
\(261\) −0.576185 0.576185i −0.0356650 0.0356650i
\(262\) 0 0
\(263\) −11.1204 11.1204i −0.685712 0.685712i 0.275569 0.961281i \(-0.411134\pi\)
−0.961281 + 0.275569i \(0.911134\pi\)
\(264\) 0 0
\(265\) 3.27794 + 1.34710i 0.201362 + 0.0827519i
\(266\) 0 0
\(267\) 8.70590i 0.532792i
\(268\) 0 0
\(269\) 10.2902 + 10.2902i 0.627403 + 0.627403i 0.947414 0.320011i \(-0.103687\pi\)
−0.320011 + 0.947414i \(0.603687\pi\)
\(270\) 0 0
\(271\) 21.3325i 1.29586i 0.761702 + 0.647928i \(0.224364\pi\)
−0.761702 + 0.647928i \(0.775636\pi\)
\(272\) 0 0
\(273\) 12.7667 + 12.7667i 0.772674 + 0.772674i
\(274\) 0 0
\(275\) 23.5713 0.131048i 1.42141 0.00790249i
\(276\) 0 0
\(277\) 19.0041 1.14184 0.570922 0.821004i \(-0.306586\pi\)
0.570922 + 0.821004i \(0.306586\pi\)
\(278\) 0 0
\(279\) 2.62300i 0.157035i
\(280\) 0 0
\(281\) 3.86317i 0.230457i −0.993339 0.115229i \(-0.963240\pi\)
0.993339 0.115229i \(-0.0367600\pi\)
\(282\) 0 0
\(283\) 5.89151 0.350214 0.175107 0.984549i \(-0.443973\pi\)
0.175107 + 0.984549i \(0.443973\pi\)
\(284\) 0 0
\(285\) 2.43472 1.01643i 0.144220 0.0602081i
\(286\) 0 0
\(287\) 22.6473 + 22.6473i 1.33683 + 1.33683i
\(288\) 0 0
\(289\) 6.12955i 0.360562i
\(290\) 0 0
\(291\) −11.9985 11.9985i −0.703364 0.703364i
\(292\) 0 0
\(293\) 4.49132i 0.262386i −0.991357 0.131193i \(-0.958119\pi\)
0.991357 0.131193i \(-0.0418807\pi\)
\(294\) 0 0
\(295\) −6.78780 + 2.83373i −0.395201 + 0.164986i
\(296\) 0 0
\(297\) −3.33354 3.33354i −0.193432 0.193432i
\(298\) 0 0
\(299\) 18.1116 + 18.1116i 1.04742 + 1.04742i
\(300\) 0 0
\(301\) −10.7355 + 10.7355i −0.618781 + 0.618781i
\(302\) 0 0
\(303\) −6.69380 + 6.69380i −0.384549 + 0.384549i
\(304\) 0 0
\(305\) −8.80197 21.0839i −0.503999 1.20726i
\(306\) 0 0
\(307\) −3.84487 −0.219438 −0.109719 0.993963i \(-0.534995\pi\)
−0.109719 + 0.993963i \(0.534995\pi\)
\(308\) 0 0
\(309\) 13.4242 13.4242i 0.763674 0.763674i
\(310\) 0 0
\(311\) 4.07103 0.230847 0.115423 0.993316i \(-0.463178\pi\)
0.115423 + 0.993316i \(0.463178\pi\)
\(312\) 0 0
\(313\) 1.37922 1.37922i 0.0779584 0.0779584i −0.667052 0.745011i \(-0.732444\pi\)
0.745011 + 0.667052i \(0.232444\pi\)
\(314\) 0 0
\(315\) −2.53419 6.07029i −0.142785 0.342022i
\(316\) 0 0
\(317\) 9.80915i 0.550937i −0.961310 0.275468i \(-0.911167\pi\)
0.961310 0.275468i \(-0.0888330\pi\)
\(318\) 0 0
\(319\) −3.84148 −0.215081
\(320\) 0 0
\(321\) −10.9567 −0.611543
\(322\) 0 0
\(323\) 3.89021i 0.216457i
\(324\) 0 0
\(325\) 21.8191 + 21.5778i 1.21031 + 1.19692i
\(326\) 0 0
\(327\) −0.643941 + 0.643941i −0.0356100 + 0.0356100i
\(328\) 0 0
\(329\) −36.0188 −1.98578
\(330\) 0 0
\(331\) 7.17235 7.17235i 0.394228 0.394228i −0.481963 0.876191i \(-0.660076\pi\)
0.876191 + 0.481963i \(0.160076\pi\)
\(332\) 0 0
\(333\) −2.07309 −0.113605
\(334\) 0 0
\(335\) −0.752681 + 1.83152i −0.0411234 + 0.100066i
\(336\) 0 0
\(337\) −25.3587 + 25.3587i −1.38138 + 1.38138i −0.539200 + 0.842178i \(0.681273\pi\)
−0.842178 + 0.539200i \(0.818727\pi\)
\(338\) 0 0
\(339\) 9.19571 9.19571i 0.499442 0.499442i
\(340\) 0 0
\(341\) 8.74390 + 8.74390i 0.473509 + 0.473509i
\(342\) 0 0
\(343\) 11.1203 + 11.1203i 0.600439 + 0.600439i
\(344\) 0 0
\(345\) −3.59517 8.61171i −0.193557 0.463639i
\(346\) 0 0
\(347\) 8.80549i 0.472704i −0.971668 0.236352i \(-0.924048\pi\)
0.971668 0.236352i \(-0.0759518\pi\)
\(348\) 0 0
\(349\) 14.8110 + 14.8110i 0.792815 + 0.792815i 0.981951 0.189136i \(-0.0605687\pi\)
−0.189136 + 0.981951i \(0.560569\pi\)
\(350\) 0 0
\(351\) 6.13735i 0.327588i
\(352\) 0 0
\(353\) −21.3226 21.3226i −1.13489 1.13489i −0.989353 0.145536i \(-0.953509\pi\)
−0.145536 0.989353i \(-0.546491\pi\)
\(354\) 0 0
\(355\) 2.18335 5.31280i 0.115880 0.281974i
\(356\) 0 0
\(357\) 9.69918 0.513335
\(358\) 0 0
\(359\) 9.38977i 0.495573i 0.968815 + 0.247787i \(0.0797032\pi\)
−0.968815 + 0.247787i \(0.920297\pi\)
\(360\) 0 0
\(361\) 17.6078i 0.926727i
\(362\) 0 0
\(363\) −11.2250 −0.589161
\(364\) 0 0
\(365\) −8.95467 21.4496i −0.468709 1.12273i
\(366\) 0 0
\(367\) −0.129655 0.129655i −0.00676792 0.00676792i 0.703715 0.710483i \(-0.251523\pi\)
−0.710483 + 0.703715i \(0.751523\pi\)
\(368\) 0 0
\(369\) 10.8873i 0.566770i
\(370\) 0 0
\(371\) −3.29684 3.29684i −0.171164 0.171164i
\(372\) 0 0
\(373\) 2.85797i 0.147980i −0.997259 0.0739900i \(-0.976427\pi\)
0.997259 0.0739900i \(-0.0235733\pi\)
\(374\) 0 0
\(375\) −4.36452 10.2932i −0.225383 0.531541i
\(376\) 0 0
\(377\) −3.53625 3.53625i −0.182126 0.182126i
\(378\) 0 0
\(379\) −14.8095 14.8095i −0.760713 0.760713i 0.215739 0.976451i \(-0.430784\pi\)
−0.976451 + 0.215739i \(0.930784\pi\)
\(380\) 0 0
\(381\) 4.80716 4.80716i 0.246278 0.246278i
\(382\) 0 0
\(383\) −22.2921 + 22.2921i −1.13907 + 1.13907i −0.150458 + 0.988616i \(0.548075\pi\)
−0.988616 + 0.150458i \(0.951925\pi\)
\(384\) 0 0
\(385\) −28.6834 11.7878i −1.46184 0.600759i
\(386\) 0 0
\(387\) 5.16088 0.262342
\(388\) 0 0
\(389\) −17.1132 + 17.1132i −0.867671 + 0.867671i −0.992214 0.124543i \(-0.960254\pi\)
0.124543 + 0.992214i \(0.460254\pi\)
\(390\) 0 0
\(391\) 13.7599 0.695867
\(392\) 0 0
\(393\) 3.53632 3.53632i 0.178384 0.178384i
\(394\) 0 0
\(395\) 6.56689 15.9794i 0.330416 0.804009i
\(396\) 0 0
\(397\) 16.2806i 0.817099i −0.912736 0.408549i \(-0.866035\pi\)
0.912736 0.408549i \(-0.133965\pi\)
\(398\) 0 0
\(399\) −3.47105 −0.173770
\(400\) 0 0
\(401\) 5.13860 0.256609 0.128305 0.991735i \(-0.459046\pi\)
0.128305 + 0.991735i \(0.459046\pi\)
\(402\) 0 0
\(403\) 16.0983i 0.801914i
\(404\) 0 0
\(405\) −0.849960 + 2.06823i −0.0422349 + 0.102771i
\(406\) 0 0
\(407\) −6.91074 + 6.91074i −0.342553 + 0.342553i
\(408\) 0 0
\(409\) 3.88999 0.192348 0.0961738 0.995365i \(-0.469340\pi\)
0.0961738 + 0.995365i \(0.469340\pi\)
\(410\) 0 0
\(411\) −7.54548 + 7.54548i −0.372191 + 0.372191i
\(412\) 0 0
\(413\) 9.67703 0.476176
\(414\) 0 0
\(415\) −17.9463 7.37522i −0.880949 0.362035i
\(416\) 0 0
\(417\) −2.84263 + 2.84263i −0.139204 + 0.139204i
\(418\) 0 0
\(419\) −9.68913 + 9.68913i −0.473345 + 0.473345i −0.902995 0.429650i \(-0.858637\pi\)
0.429650 + 0.902995i \(0.358637\pi\)
\(420\) 0 0
\(421\) −19.2867 19.2867i −0.939978 0.939978i 0.0583197 0.998298i \(-0.481426\pi\)
−0.998298 + 0.0583197i \(0.981426\pi\)
\(422\) 0 0
\(423\) 8.65772 + 8.65772i 0.420953 + 0.420953i
\(424\) 0 0
\(425\) 16.4849 0.0916501i 0.799636 0.00444568i
\(426\) 0 0
\(427\) 30.0582i 1.45462i
\(428\) 0 0
\(429\) −20.4591 20.4591i −0.987776 0.987776i
\(430\) 0 0
\(431\) 4.13031i 0.198950i 0.995040 + 0.0994751i \(0.0317164\pi\)
−0.995040 + 0.0994751i \(0.968284\pi\)
\(432\) 0 0
\(433\) 13.3312 + 13.3312i 0.640655 + 0.640655i 0.950716 0.310062i \(-0.100350\pi\)
−0.310062 + 0.950716i \(0.600350\pi\)
\(434\) 0 0
\(435\) 0.701948 + 1.68142i 0.0336558 + 0.0806178i
\(436\) 0 0
\(437\) −4.92426 −0.235559
\(438\) 0 0
\(439\) 22.0770i 1.05368i 0.849965 + 0.526839i \(0.176623\pi\)
−0.849965 + 0.526839i \(0.823377\pi\)
\(440\) 0 0
\(441\) 1.65411i 0.0787673i
\(442\) 0 0
\(443\) −8.44869 −0.401409 −0.200705 0.979652i \(-0.564323\pi\)
−0.200705 + 0.979652i \(0.564323\pi\)
\(444\) 0 0
\(445\) −7.39967 + 18.0058i −0.350778 + 0.853556i
\(446\) 0 0
\(447\) 3.20287 + 3.20287i 0.151491 + 0.151491i
\(448\) 0 0
\(449\) 12.3249i 0.581648i −0.956777 0.290824i \(-0.906071\pi\)
0.956777 0.290824i \(-0.0939293\pi\)
\(450\) 0 0
\(451\) −36.2932 36.2932i −1.70898 1.70898i
\(452\) 0 0
\(453\) 8.82773i 0.414763i
\(454\) 0 0
\(455\) −15.5532 37.2555i −0.729146 1.74657i
\(456\) 0 0
\(457\) −10.5838 10.5838i −0.495089 0.495089i 0.414816 0.909905i \(-0.363846\pi\)
−0.909905 + 0.414816i \(0.863846\pi\)
\(458\) 0 0
\(459\) −2.33136 2.33136i −0.108818 0.108818i
\(460\) 0 0
\(461\) −6.77081 + 6.77081i −0.315348 + 0.315348i −0.846977 0.531629i \(-0.821580\pi\)
0.531629 + 0.846977i \(0.321580\pi\)
\(462\) 0 0
\(463\) −11.3573 + 11.3573i −0.527819 + 0.527819i −0.919921 0.392103i \(-0.871748\pi\)
0.392103 + 0.919921i \(0.371748\pi\)
\(464\) 0 0
\(465\) 2.22945 5.42497i 0.103388 0.251577i
\(466\) 0 0
\(467\) −3.11578 −0.144181 −0.0720906 0.997398i \(-0.522967\pi\)
−0.0720906 + 0.997398i \(0.522967\pi\)
\(468\) 0 0
\(469\) 1.84208 1.84208i 0.0850594 0.0850594i
\(470\) 0 0
\(471\) −15.5186 −0.715058
\(472\) 0 0
\(473\) 17.2040 17.2040i 0.791042 0.791042i
\(474\) 0 0
\(475\) −5.89947 + 0.0327989i −0.270686 + 0.00150492i
\(476\) 0 0
\(477\) 1.58490i 0.0725676i
\(478\) 0 0
\(479\) −15.3508 −0.701396 −0.350698 0.936489i \(-0.614056\pi\)
−0.350698 + 0.936489i \(0.614056\pi\)
\(480\) 0 0
\(481\) −12.7233 −0.580132
\(482\) 0 0
\(483\) 12.2773i 0.558636i
\(484\) 0 0
\(485\) 14.6174 + 35.0138i 0.663740 + 1.58990i
\(486\) 0 0
\(487\) −8.51351 + 8.51351i −0.385784 + 0.385784i −0.873181 0.487397i \(-0.837947\pi\)
0.487397 + 0.873181i \(0.337947\pi\)
\(488\) 0 0
\(489\) −8.65221 −0.391267
\(490\) 0 0
\(491\) 6.16348 6.16348i 0.278154 0.278154i −0.554218 0.832372i \(-0.686983\pi\)
0.832372 + 0.554218i \(0.186983\pi\)
\(492\) 0 0
\(493\) −2.68659 −0.120998
\(494\) 0 0
\(495\) 4.06115 + 9.72791i 0.182535 + 0.437237i
\(496\) 0 0
\(497\) −5.34345 + 5.34345i −0.239686 + 0.239686i
\(498\) 0 0
\(499\) −16.1961 + 16.1961i −0.725037 + 0.725037i −0.969627 0.244589i \(-0.921347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(500\) 0 0
\(501\) 2.86613 + 2.86613i 0.128049 + 0.128049i
\(502\) 0 0
\(503\) −8.39462 8.39462i −0.374298 0.374298i 0.494742 0.869040i \(-0.335263\pi\)
−0.869040 + 0.494742i \(0.835263\pi\)
\(504\) 0 0
\(505\) 19.5338 8.15485i 0.869242 0.362886i
\(506\) 0 0
\(507\) 24.6671i 1.09550i
\(508\) 0 0
\(509\) −5.50555 5.50555i −0.244029 0.244029i 0.574486 0.818515i \(-0.305202\pi\)
−0.818515 + 0.574486i \(0.805202\pi\)
\(510\) 0 0
\(511\) 30.5797i 1.35277i
\(512\) 0 0
\(513\) 0.834324 + 0.834324i 0.0368363 + 0.0368363i
\(514\) 0 0
\(515\) −39.1742 + 16.3542i −1.72622 + 0.720653i
\(516\) 0 0
\(517\) 57.7217 2.53860
\(518\) 0 0
\(519\) 15.1143i 0.663442i
\(520\) 0 0
\(521\) 39.2289i 1.71865i 0.511430 + 0.859325i \(0.329116\pi\)
−0.511430 + 0.859325i \(0.670884\pi\)
\(522\) 0 0
\(523\) −16.7434 −0.732137 −0.366068 0.930588i \(-0.619296\pi\)
−0.366068 + 0.930588i \(0.619296\pi\)
\(524\) 0 0
\(525\) 0.0817750 + 14.7087i 0.00356895 + 0.641941i
\(526\) 0 0
\(527\) 6.11516 + 6.11516i 0.266381 + 0.266381i
\(528\) 0 0
\(529\) 5.58265i 0.242724i
\(530\) 0 0
\(531\) −2.32603 2.32603i −0.100941 0.100941i
\(532\) 0 0
\(533\) 66.8191i 2.89426i
\(534\) 0 0
\(535\) 22.6610 + 9.31276i 0.979719 + 0.402626i
\(536\) 0 0
\(537\) 12.3666 + 12.3666i 0.533659 + 0.533659i
\(538\) 0 0
\(539\) 5.51406 + 5.51406i 0.237507 + 0.237507i
\(540\) 0 0
\(541\) 3.45427 3.45427i 0.148511 0.148511i −0.628942 0.777452i \(-0.716512\pi\)
0.777452 + 0.628942i \(0.216512\pi\)
\(542\) 0 0
\(543\) −9.58991 + 9.58991i −0.411543 + 0.411543i
\(544\) 0 0
\(545\) 1.87914 0.784493i 0.0804936 0.0336040i
\(546\) 0 0
\(547\) 18.1175 0.774647 0.387324 0.921944i \(-0.373400\pi\)
0.387324 + 0.921944i \(0.373400\pi\)
\(548\) 0 0
\(549\) 7.22499 7.22499i 0.308355 0.308355i
\(550\) 0 0
\(551\) 0.961451 0.0409592
\(552\) 0 0
\(553\) −16.0715 + 16.0715i −0.683431 + 0.683431i
\(554\) 0 0
\(555\) 4.28763 + 1.76205i 0.182000 + 0.0747947i
\(556\) 0 0
\(557\) 21.1776i 0.897324i −0.893701 0.448662i \(-0.851901\pi\)
0.893701 0.448662i \(-0.148099\pi\)
\(558\) 0 0
\(559\) 31.6742 1.33967
\(560\) 0 0
\(561\) −15.5434 −0.656241
\(562\) 0 0
\(563\) 44.5712i 1.87845i −0.343298 0.939226i \(-0.611544\pi\)
0.343298 0.939226i \(-0.388456\pi\)
\(564\) 0 0
\(565\) −26.8348 + 11.2028i −1.12895 + 0.471307i
\(566\) 0 0
\(567\) 2.08016 2.08016i 0.0873584 0.0873584i
\(568\) 0 0
\(569\) 5.14194 0.215562 0.107781 0.994175i \(-0.465626\pi\)
0.107781 + 0.994175i \(0.465626\pi\)
\(570\) 0 0
\(571\) 17.4873 17.4873i 0.731820 0.731820i −0.239160 0.970980i \(-0.576872\pi\)
0.970980 + 0.239160i \(0.0768721\pi\)
\(572\) 0 0
\(573\) −14.5044 −0.605929
\(574\) 0 0
\(575\) 0.116011 + 20.8667i 0.00483801 + 0.870203i
\(576\) 0 0
\(577\) −2.82131 + 2.82131i −0.117453 + 0.117453i −0.763390 0.645938i \(-0.776467\pi\)
0.645938 + 0.763390i \(0.276467\pi\)
\(578\) 0 0
\(579\) −1.68153 + 1.68153i −0.0698822 + 0.0698822i
\(580\) 0 0
\(581\) 18.0498 + 18.0498i 0.748833 + 0.748833i
\(582\) 0 0
\(583\) 5.28334 + 5.28334i 0.218813 + 0.218813i
\(584\) 0 0
\(585\) −5.21651 + 12.6934i −0.215676 + 0.524809i
\(586\) 0 0
\(587\) 45.9941i 1.89838i −0.314702 0.949191i \(-0.601905\pi\)
0.314702 0.949191i \(-0.398095\pi\)
\(588\) 0 0
\(589\) −2.18844 2.18844i −0.0901729 0.0901729i
\(590\) 0 0
\(591\) 8.65121i 0.355863i
\(592\) 0 0
\(593\) −7.77054 7.77054i −0.319098 0.319098i 0.529323 0.848421i \(-0.322446\pi\)
−0.848421 + 0.529323i \(0.822446\pi\)
\(594\) 0 0
\(595\) −20.0601 8.24392i −0.822385 0.337968i
\(596\) 0 0
\(597\) −22.3275 −0.913804
\(598\) 0 0
\(599\) 16.1877i 0.661413i −0.943734 0.330707i \(-0.892713\pi\)
0.943734 0.330707i \(-0.107287\pi\)
\(600\) 0 0
\(601\) 14.1986i 0.579174i 0.957152 + 0.289587i \(0.0935180\pi\)
−0.957152 + 0.289587i \(0.906482\pi\)
\(602\) 0 0
\(603\) −0.885549 −0.0360623
\(604\) 0 0
\(605\) 23.2159 + 9.54082i 0.943860 + 0.387889i
\(606\) 0 0
\(607\) 22.9646 + 22.9646i 0.932105 + 0.932105i 0.997837 0.0657320i \(-0.0209383\pi\)
−0.0657320 + 0.997837i \(0.520938\pi\)
\(608\) 0 0
\(609\) 2.39711i 0.0971359i
\(610\) 0 0
\(611\) 53.1355 + 53.1355i 2.14963 + 2.14963i
\(612\) 0 0
\(613\) 37.1155i 1.49908i 0.661958 + 0.749541i \(0.269726\pi\)
−0.661958 + 0.749541i \(0.730274\pi\)
\(614\) 0 0
\(615\) −9.25376 + 22.5174i −0.373148 + 0.907989i
\(616\) 0 0
\(617\) 1.45005 + 1.45005i 0.0583767 + 0.0583767i 0.735692 0.677316i \(-0.236857\pi\)
−0.677316 + 0.735692i \(0.736857\pi\)
\(618\) 0 0
\(619\) 13.2111 + 13.2111i 0.530998 + 0.530998i 0.920869 0.389872i \(-0.127481\pi\)
−0.389872 + 0.920869i \(0.627481\pi\)
\(620\) 0 0
\(621\) 2.95105 2.95105i 0.118421 0.118421i
\(622\) 0 0
\(623\) 18.1096 18.1096i 0.725548 0.725548i
\(624\) 0 0
\(625\) 0.277973 + 24.9985i 0.0111189 + 0.999938i
\(626\) 0 0
\(627\) 5.56251 0.222145
\(628\) 0 0
\(629\) −4.83312 + 4.83312i −0.192709 + 0.192709i
\(630\) 0 0
\(631\) −11.6636 −0.464322 −0.232161 0.972677i \(-0.574580\pi\)
−0.232161 + 0.972677i \(0.574580\pi\)
\(632\) 0 0
\(633\) −5.27613 + 5.27613i −0.209707 + 0.209707i
\(634\) 0 0
\(635\) −14.0282 + 5.85641i −0.556692 + 0.232405i
\(636\) 0 0
\(637\) 10.1519i 0.402232i
\(638\) 0 0
\(639\) 2.56877 0.101619
\(640\) 0 0
\(641\) −20.8880 −0.825025 −0.412512 0.910952i \(-0.635349\pi\)
−0.412512 + 0.910952i \(0.635349\pi\)
\(642\) 0 0
\(643\) 36.6130i 1.44388i 0.691957 + 0.721939i \(0.256749\pi\)
−0.691957 + 0.721939i \(0.743251\pi\)
\(644\) 0 0
\(645\) −10.6739 4.38655i −0.420284 0.172720i
\(646\) 0 0
\(647\) −23.8735 + 23.8735i −0.938562 + 0.938562i −0.998219 0.0596566i \(-0.980999\pi\)
0.0596566 + 0.998219i \(0.480999\pi\)
\(648\) 0 0
\(649\) −15.5079 −0.608737
\(650\) 0 0
\(651\) −5.45626 + 5.45626i −0.213848 + 0.213848i
\(652\) 0 0
\(653\) −22.3501 −0.874627 −0.437313 0.899309i \(-0.644070\pi\)
−0.437313 + 0.899309i \(0.644070\pi\)
\(654\) 0 0
\(655\) −10.3197 + 4.30819i −0.403222 + 0.168335i
\(656\) 0 0
\(657\) 7.35033 7.35033i 0.286764 0.286764i
\(658\) 0 0
\(659\) 15.9700 15.9700i 0.622102 0.622102i −0.323967 0.946068i \(-0.605017\pi\)
0.946068 + 0.323967i \(0.105017\pi\)
\(660\) 0 0
\(661\) −15.1592 15.1592i −0.589624 0.589624i 0.347906 0.937530i \(-0.386893\pi\)
−0.937530 + 0.347906i \(0.886893\pi\)
\(662\) 0 0
\(663\) −14.3084 14.3084i −0.555691 0.555691i
\(664\) 0 0
\(665\) 7.17893 + 2.95026i 0.278387 + 0.114406i
\(666\) 0 0
\(667\) 3.40070i 0.131676i
\(668\) 0 0
\(669\) −13.8202 13.8202i −0.534320 0.534320i
\(670\) 0 0
\(671\) 48.1696i 1.85957i
\(672\) 0 0
\(673\) 15.2524 + 15.2524i 0.587938 + 0.587938i 0.937073 0.349134i \(-0.113524\pi\)
−0.349134 + 0.937073i \(0.613524\pi\)
\(674\) 0 0
\(675\) 3.51582 3.55514i 0.135324 0.136837i
\(676\) 0 0
\(677\) −3.95511 −0.152007 −0.0760036 0.997108i \(-0.524216\pi\)
−0.0760036 + 0.997108i \(0.524216\pi\)
\(678\) 0 0
\(679\) 49.9175i 1.91566i
\(680\) 0 0
\(681\) 1.66286i 0.0637209i
\(682\) 0 0
\(683\) −50.9345 −1.94895 −0.974476 0.224490i \(-0.927928\pi\)
−0.974476 + 0.224490i \(0.927928\pi\)
\(684\) 0 0
\(685\) 22.0191 9.19242i 0.841308 0.351224i
\(686\) 0 0
\(687\) 11.3744 + 11.3744i 0.433962 + 0.433962i
\(688\) 0 0
\(689\) 9.72710i 0.370573i
\(690\) 0 0
\(691\) 13.5869 + 13.5869i 0.516870 + 0.516870i 0.916623 0.399753i \(-0.130904\pi\)
−0.399753 + 0.916623i \(0.630904\pi\)
\(692\) 0 0
\(693\) 13.8686i 0.526824i
\(694\) 0 0
\(695\) 8.29534 3.46309i 0.314660 0.131362i
\(696\) 0 0
\(697\) −25.3822 25.3822i −0.961418 0.961418i
\(698\) 0 0
\(699\) 9.38976 + 9.38976i 0.355153 + 0.355153i
\(700\) 0 0
\(701\) −0.627254 + 0.627254i −0.0236911 + 0.0236911i −0.718853 0.695162i \(-0.755333\pi\)
0.695162 + 0.718853i \(0.255333\pi\)
\(702\) 0 0
\(703\) 1.72963 1.72963i 0.0652343 0.0652343i
\(704\) 0 0
\(705\) −10.5474 25.2649i −0.397239 0.951529i
\(706\) 0 0
\(707\) −27.8483 −1.04734
\(708\) 0 0
\(709\) −26.7170 + 26.7170i −1.00338 + 1.00338i −0.00338478 + 0.999994i \(0.501077\pi\)
−0.999994 + 0.00338478i \(0.998923\pi\)
\(710\) 0 0
\(711\) 7.72612 0.289752
\(712\) 0 0
\(713\) −7.74061 + 7.74061i −0.289888 + 0.289888i
\(714\) 0 0
\(715\) 24.9247 + 59.7036i 0.932131 + 2.23279i
\(716\) 0 0
\(717\) 8.88914i 0.331971i
\(718\) 0 0
\(719\) −27.5794 −1.02854 −0.514269 0.857629i \(-0.671937\pi\)
−0.514269 + 0.857629i \(0.671937\pi\)
\(720\) 0 0
\(721\) 55.8488 2.07992
\(722\) 0 0
\(723\) 20.5978i 0.766041i
\(724\) 0 0
\(725\) −0.0226510 4.07418i −0.000841235 0.151311i
\(726\) 0 0
\(727\) −8.11985 + 8.11985i −0.301148 + 0.301148i −0.841463 0.540315i \(-0.818305\pi\)
0.540315 + 0.841463i \(0.318305\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 12.0319 12.0319i 0.445014 0.445014i
\(732\) 0 0
\(733\) 12.3271 0.455313 0.227656 0.973742i \(-0.426894\pi\)
0.227656 + 0.973742i \(0.426894\pi\)
\(734\) 0 0
\(735\) 1.40593 3.42109i 0.0518586 0.126189i
\(736\) 0 0
\(737\) −2.95201 + 2.95201i −0.108739 + 0.108739i
\(738\) 0 0
\(739\) 24.8212 24.8212i 0.913062 0.913062i −0.0834496 0.996512i \(-0.526594\pi\)
0.996512 + 0.0834496i \(0.0265938\pi\)
\(740\) 0 0
\(741\) 5.12054 + 5.12054i 0.188108 + 0.188108i
\(742\) 0 0
\(743\) 26.8731 + 26.8731i 0.985877 + 0.985877i 0.999902 0.0140246i \(-0.00446431\pi\)
−0.0140246 + 0.999902i \(0.504464\pi\)
\(744\) 0 0
\(745\) −3.90195 9.34658i −0.142957 0.342432i
\(746\) 0 0
\(747\) 8.67714i 0.317480i
\(748\) 0 0
\(749\) −22.7917 22.7917i −0.832789 0.832789i
\(750\) 0 0
\(751\) 24.7594i 0.903484i −0.892149 0.451742i \(-0.850803\pi\)
0.892149 0.451742i \(-0.149197\pi\)
\(752\) 0 0
\(753\) 16.8455 + 16.8455i 0.613883 + 0.613883i
\(754\) 0 0
\(755\) 7.50322 18.2578i 0.273070 0.664468i
\(756\) 0 0
\(757\) −35.5014 −1.29032 −0.645160 0.764047i \(-0.723209\pi\)
−0.645160 + 0.764047i \(0.723209\pi\)
\(758\) 0 0
\(759\) 19.6749i 0.714153i
\(760\) 0 0
\(761\) 19.8569i 0.719812i 0.932989 + 0.359906i \(0.117191\pi\)
−0.932989 + 0.359906i \(0.882809\pi\)
\(762\) 0 0
\(763\) −2.67900 −0.0969862
\(764\) 0 0
\(765\) 2.84022 + 6.80334i 0.102688 + 0.245975i
\(766\) 0 0
\(767\) −14.2757 14.2757i −0.515465 0.515465i
\(768\) 0 0
\(769\) 37.1951i 1.34129i −0.741779 0.670644i \(-0.766018\pi\)
0.741779 0.670644i \(-0.233982\pi\)
\(770\) 0 0
\(771\) 14.1500 + 14.1500i 0.509600 + 0.509600i
\(772\) 0 0
\(773\) 13.2454i 0.476402i 0.971216 + 0.238201i \(0.0765578\pi\)
−0.971216 + 0.238201i \(0.923442\pi\)
\(774\) 0 0
\(775\) −9.22202 + 9.32514i −0.331265 + 0.334969i
\(776\) 0 0
\(777\) −4.31236 4.31236i −0.154705 0.154705i
\(778\) 0 0
\(779\) 9.08353 + 9.08353i 0.325451 + 0.325451i
\(780\) 0 0
\(781\) 8.56310 8.56310i 0.306412 0.306412i
\(782\) 0 0
\(783\) −0.576185 + 0.576185i −0.0205912 + 0.0205912i
\(784\) 0 0
\(785\) 32.0959 + 13.1902i 1.14555 + 0.470777i
\(786\) 0 0
\(787\) 12.0292 0.428794 0.214397 0.976747i \(-0.431221\pi\)
0.214397 + 0.976747i \(0.431221\pi\)
\(788\) 0 0
\(789\) −11.1204 + 11.1204i −0.395896 + 0.395896i
\(790\) 0 0
\(791\) 38.2571 1.36026
\(792\) 0 0
\(793\) 44.3423 44.3423i 1.57464 1.57464i
\(794\) 0 0
\(795\) 1.34710 3.27794i 0.0477768 0.116256i
\(796\) 0 0
\(797\) 45.2714i 1.60359i 0.597597 + 0.801797i \(0.296122\pi\)
−0.597597 + 0.801797i \(0.703878\pi\)
\(798\) 0 0
\(799\) 40.3685 1.42813
\(800\) 0 0
\(801\) −8.70590 −0.307608
\(802\) 0 0
\(803\) 49.0053i 1.72936i
\(804\) 0 0
\(805\) 10.4352 25.3922i 0.367793 0.894958i
\(806\) 0 0
\(807\) 10.2902 10.2902i 0.362231 0.362231i
\(808\) 0 0
\(809\) −5.16391 −0.181553 −0.0907767 0.995871i \(-0.528935\pi\)
−0.0907767 + 0.995871i \(0.528935\pi\)
\(810\) 0 0
\(811\) −15.7171 + 15.7171i −0.551903 + 0.551903i −0.926990 0.375087i \(-0.877613\pi\)
0.375087 + 0.926990i \(0.377613\pi\)
\(812\) 0 0
\(813\) 21.3325 0.748163
\(814\) 0 0
\(815\) 17.8947 + 7.35404i 0.626826 + 0.257601i
\(816\) 0 0
\(817\) −4.30585 + 4.30585i −0.150643 + 0.150643i
\(818\) 0 0
\(819\) 12.7667 12.7667i 0.446103 0.446103i
\(820\) 0 0
\(821\) −15.6816 15.6816i −0.547293 0.547293i 0.378364 0.925657i \(-0.376487\pi\)
−0.925657 + 0.378364i \(0.876487\pi\)
\(822\) 0 0
\(823\) 3.65203 + 3.65203i 0.127302 + 0.127302i 0.767887 0.640585i \(-0.221308\pi\)
−0.640585 + 0.767887i \(0.721308\pi\)
\(824\) 0 0
\(825\) −0.131048 23.5713i −0.00456251 0.820649i
\(826\) 0 0
\(827\) 14.0926i 0.490046i 0.969517 + 0.245023i \(0.0787956\pi\)
−0.969517 + 0.245023i \(0.921204\pi\)
\(828\) 0 0
\(829\) 12.1216 + 12.1216i 0.421000 + 0.421000i 0.885548 0.464548i \(-0.153783\pi\)
−0.464548 + 0.885548i \(0.653783\pi\)
\(830\) 0 0
\(831\) 19.0041i 0.659244i
\(832\) 0 0
\(833\) 3.85633 + 3.85633i 0.133614 + 0.133614i
\(834\) 0 0
\(835\) −3.49171 8.36390i −0.120836 0.289445i
\(836\) 0 0
\(837\) 2.62300 0.0906643
\(838\) 0 0
\(839\) 14.6206i 0.504759i 0.967628 + 0.252380i \(0.0812132\pi\)
−0.967628 + 0.252380i \(0.918787\pi\)
\(840\) 0 0
\(841\) 28.3360i 0.977104i
\(842\) 0 0
\(843\) −3.86317 −0.133054
\(844\) 0 0
\(845\) −20.9661 + 51.0172i −0.721254 + 1.75504i
\(846\) 0 0
\(847\) −23.3498 23.3498i −0.802309 0.802309i
\(848\) 0 0
\(849\) 5.89151i 0.202196i
\(850\) 0 0
\(851\) −6.11779 6.11779i −0.209715 0.209715i
\(852\) 0 0
\(853\) 13.7252i 0.469940i 0.972003 + 0.234970i \(0.0754992\pi\)
−0.972003 + 0.234970i \(0.924501\pi\)
\(854\) 0 0
\(855\) −1.01643 2.43472i −0.0347612 0.0832655i
\(856\) 0 0
\(857\) −18.7921 18.7921i −0.641927 0.641927i 0.309102 0.951029i \(-0.399972\pi\)
−0.951029 + 0.309102i \(0.899972\pi\)
\(858\) 0 0
\(859\) 23.1774 + 23.1774i 0.790803 + 0.790803i 0.981625 0.190822i \(-0.0611152\pi\)
−0.190822 + 0.981625i \(0.561115\pi\)
\(860\) 0 0
\(861\) 22.6473 22.6473i 0.771817 0.771817i
\(862\) 0 0
\(863\) −8.96863 + 8.96863i −0.305296 + 0.305296i −0.843082 0.537786i \(-0.819261\pi\)
0.537786 + 0.843082i \(0.319261\pi\)
\(864\) 0 0
\(865\) −12.8465 + 31.2597i −0.436795 + 1.06286i
\(866\) 0 0
\(867\) 6.12955 0.208171
\(868\) 0 0
\(869\) 25.7553 25.7553i 0.873690 0.873690i
\(870\) 0 0
\(871\) −5.43492 −0.184155
\(872\) 0 0
\(873\) −11.9985 + 11.9985i −0.406087 + 0.406087i
\(874\) 0 0
\(875\) 12.3327 30.4905i 0.416921 1.03077i
\(876\) 0 0
\(877\) 47.1944i 1.59364i 0.604215 + 0.796822i \(0.293487\pi\)
−0.604215 + 0.796822i \(0.706513\pi\)
\(878\) 0 0
\(879\) −4.49132 −0.151489
\(880\) 0 0
\(881\) 51.5667 1.73733 0.868663 0.495403i \(-0.164980\pi\)
0.868663 + 0.495403i \(0.164980\pi\)
\(882\) 0 0
\(883\) 33.7083i 1.13438i 0.823589 + 0.567188i \(0.191969\pi\)
−0.823589 + 0.567188i \(0.808031\pi\)
\(884\) 0 0
\(885\) 2.83373 + 6.78780i 0.0952548 + 0.228170i
\(886\) 0 0
\(887\) −4.91204 + 4.91204i −0.164930 + 0.164930i −0.784747 0.619817i \(-0.787207\pi\)
0.619817 + 0.784747i \(0.287207\pi\)
\(888\) 0 0
\(889\) 19.9993 0.670755
\(890\) 0 0
\(891\) −3.33354 + 3.33354i −0.111678 + 0.111678i
\(892\) 0 0
\(893\) −14.4467 −0.483440
\(894\) 0 0
\(895\) −15.0659 36.0881i −0.503596 1.20629i
\(896\) 0 0
\(897\) 18.1116 18.1116i 0.604729 0.604729i
\(898\) 0 0
\(899\) 1.51134 1.51134i 0.0504059 0.0504059i
\(900\) 0 0
\(901\) 3.69497 + 3.69497i 0.123097 + 0.123097i
\(902\) 0 0
\(903\) 10.7355 + 10.7355i 0.357254 + 0.357254i
\(904\) 0 0
\(905\) 27.9852 11.6831i 0.930259 0.388359i
\(906\) 0 0
\(907\) 39.4081i 1.30852i −0.756268 0.654262i \(-0.772979\pi\)
0.756268 0.654262i \(-0.227021\pi\)
\(908\) 0 0
\(909\) 6.69380 + 6.69380i 0.222019 + 0.222019i
\(910\) 0 0
\(911\) 7.29607i 0.241729i −0.992669 0.120865i \(-0.961433\pi\)
0.992669 0.120865i \(-0.0385667\pi\)
\(912\) 0 0
\(913\) −28.9256 28.9256i −0.957298 0.957298i
\(914\) 0 0
\(915\) −21.0839 + 8.80197i −0.697012 + 0.290984i
\(916\) 0 0
\(917\) 14.7122 0.485840
\(918\) 0 0
\(919\) 52.5346i 1.73296i 0.499215 + 0.866478i \(0.333622\pi\)
−0.499215 + 0.866478i \(0.666378\pi\)
\(920\) 0 0
\(921\) 3.84487i 0.126693i
\(922\) 0 0
\(923\) 15.7654 0.518926
\(924\) 0 0
\(925\) −7.37012 7.28862i −0.242328 0.239648i
\(926\) 0 0
\(927\) −13.4242 13.4242i −0.440907 0.440907i
\(928\) 0 0
\(929\) 48.7878i 1.60068i 0.599549 + 0.800338i \(0.295346\pi\)
−0.599549 + 0.800338i \(0.704654\pi\)
\(930\) 0 0
\(931\) −1.38007 1.38007i −0.0452299 0.0452299i
\(932\) 0 0
\(933\) 4.07103i 0.133279i
\(934\) 0 0
\(935\) 32.1472 + 13.2112i 1.05133 + 0.432054i
\(936\) 0 0
\(937\) 29.3163 + 29.3163i 0.957722 + 0.957722i 0.999142 0.0414198i \(-0.0131881\pi\)
−0.0414198 + 0.999142i \(0.513188\pi\)
\(938\) 0 0
\(939\) −1.37922 1.37922i −0.0450093 0.0450093i
\(940\) 0 0
\(941\) −7.65378 + 7.65378i −0.249506 + 0.249506i −0.820768 0.571262i \(-0.806454\pi\)
0.571262 + 0.820768i \(0.306454\pi\)
\(942\) 0 0
\(943\) 32.1289 32.1289i 1.04626 1.04626i
\(944\) 0 0
\(945\) −6.07029 + 2.53419i −0.197467 + 0.0824372i
\(946\) 0 0
\(947\) −39.6694 −1.28908 −0.644541 0.764569i \(-0.722952\pi\)
−0.644541 + 0.764569i \(0.722952\pi\)
\(948\) 0 0
\(949\) 45.1116 45.1116i 1.46438 1.46438i
\(950\) 0 0
\(951\) −9.80915 −0.318084
\(952\) 0 0
\(953\) −8.83095 + 8.83095i −0.286063 + 0.286063i −0.835521 0.549458i \(-0.814834\pi\)
0.549458 + 0.835521i \(0.314834\pi\)
\(954\) 0 0
\(955\) 29.9983 + 12.3281i 0.970724 + 0.398929i
\(956\) 0 0
\(957\) 3.84148i 0.124177i
\(958\) 0 0
\(959\) −31.3916 −1.01369
\(960\) 0 0
\(961\) 24.1198 0.778060
\(962\) 0 0
\(963\) 10.9567i 0.353075i
\(964\) 0 0
\(965\) 4.90703 2.04856i 0.157963 0.0659455i
\(966\) 0 0
\(967\) 2.42314 2.42314i 0.0779231 0.0779231i −0.667071 0.744994i \(-0.732452\pi\)
0.744994 + 0.667071i \(0.232452\pi\)
\(968\) 0 0
\(969\) 3.89021 0.124972
\(970\) 0 0
\(971\) −21.9788 + 21.9788i −0.705334 + 0.705334i −0.965550 0.260216i \(-0.916206\pi\)
0.260216 + 0.965550i \(0.416206\pi\)
\(972\) 0 0
\(973\) −11.8263 −0.379132
\(974\) 0 0
\(975\) 21.5778 21.8191i 0.691044 0.698771i
\(976\) 0 0
\(977\) 32.7193 32.7193i 1.04678 1.04678i 0.0479337 0.998851i \(-0.484736\pi\)
0.998851 0.0479337i \(-0.0152636\pi\)
\(978\) 0 0
\(979\) −29.0215 + 29.0215i −0.927531 + 0.927531i
\(980\) 0 0
\(981\) 0.643941 + 0.643941i 0.0205595 + 0.0205595i
\(982\) 0 0
\(983\) −27.7480 27.7480i −0.885023 0.885023i 0.109017 0.994040i \(-0.465230\pi\)
−0.994040 + 0.109017i \(0.965230\pi\)
\(984\) 0 0
\(985\) −7.35318 + 17.8927i −0.234292 + 0.570108i
\(986\) 0 0
\(987\) 36.0188i 1.14649i
\(988\) 0 0
\(989\) 15.2300 + 15.2300i 0.484286 + 0.484286i
\(990\) 0 0
\(991\) 24.6172i 0.781991i −0.920393 0.390996i \(-0.872131\pi\)
0.920393 0.390996i \(-0.127869\pi\)
\(992\) 0 0
\(993\) −7.17235 7.17235i −0.227608 0.227608i
\(994\) 0 0
\(995\) 46.1784 + 18.9775i 1.46395 + 0.601627i
\(996\) 0 0
\(997\) −36.9465 −1.17011 −0.585053 0.810995i \(-0.698926\pi\)
−0.585053 + 0.810995i \(0.698926\pi\)
\(998\) 0 0
\(999\) 2.07309i 0.0655897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.e.463.3 16
4.3 odd 2 240.2.bc.e.43.4 yes 16
5.2 odd 4 960.2.y.e.847.7 16
8.3 odd 2 1920.2.bc.i.1183.6 16
8.5 even 2 1920.2.bc.j.1183.6 16
12.11 even 2 720.2.bd.f.523.5 16
16.3 odd 4 960.2.y.e.943.7 16
16.5 even 4 1920.2.y.i.223.2 16
16.11 odd 4 1920.2.y.j.223.2 16
16.13 even 4 240.2.y.e.163.1 16
20.7 even 4 240.2.y.e.187.1 yes 16
40.27 even 4 1920.2.y.i.1567.2 16
40.37 odd 4 1920.2.y.j.1567.2 16
48.29 odd 4 720.2.z.f.163.8 16
60.47 odd 4 720.2.z.f.667.8 16
80.27 even 4 1920.2.bc.j.607.6 16
80.37 odd 4 1920.2.bc.i.607.6 16
80.67 even 4 inner 960.2.bc.e.367.3 16
80.77 odd 4 240.2.bc.e.67.4 yes 16
240.77 even 4 720.2.bd.f.307.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.1 16 16.13 even 4
240.2.y.e.187.1 yes 16 20.7 even 4
240.2.bc.e.43.4 yes 16 4.3 odd 2
240.2.bc.e.67.4 yes 16 80.77 odd 4
720.2.z.f.163.8 16 48.29 odd 4
720.2.z.f.667.8 16 60.47 odd 4
720.2.bd.f.307.5 16 240.77 even 4
720.2.bd.f.523.5 16 12.11 even 2
960.2.y.e.847.7 16 5.2 odd 4
960.2.y.e.943.7 16 16.3 odd 4
960.2.bc.e.367.3 16 80.67 even 4 inner
960.2.bc.e.463.3 16 1.1 even 1 trivial
1920.2.y.i.223.2 16 16.5 even 4
1920.2.y.i.1567.2 16 40.27 even 4
1920.2.y.j.223.2 16 16.11 odd 4
1920.2.y.j.1567.2 16 40.37 odd 4
1920.2.bc.i.607.6 16 80.37 odd 4
1920.2.bc.i.1183.6 16 8.3 odd 2
1920.2.bc.j.607.6 16 80.27 even 4
1920.2.bc.j.1183.6 16 8.5 even 2