Properties

Label 1920.2.y.j.223.1
Level $1920$
Weight $2$
Character 1920.223
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(223,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.223");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 223.1
Root \(0.237728 + 1.39409i\) of defining polynomial
Character \(\chi\) \(=\) 1920.223
Dual form 1920.2.y.j.1567.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.23531 - 0.0583995i) q^{5} +(-0.747384 + 0.747384i) q^{7} +1.00000 q^{9} +(-0.920311 - 0.920311i) q^{11} -0.996441i q^{13} +(-2.23531 - 0.0583995i) q^{15} +(-0.982332 + 0.982332i) q^{17} +(-1.03458 - 1.03458i) q^{19} +(-0.747384 + 0.747384i) q^{21} +(4.77394 + 4.77394i) q^{23} +(4.99318 + 0.261081i) q^{25} +1.00000 q^{27} +(2.95516 - 2.95516i) q^{29} -10.4545i q^{31} +(-0.920311 - 0.920311i) q^{33} +(1.71428 - 1.62698i) q^{35} -8.22694i q^{37} -0.996441i q^{39} -5.70040i q^{41} -5.22869i q^{43} +(-2.23531 - 0.0583995i) q^{45} +(-0.0548243 - 0.0548243i) q^{47} +5.88283i q^{49} +(-0.982332 + 0.982332i) q^{51} -5.13957 q^{53} +(2.00343 + 2.11092i) q^{55} +(-1.03458 - 1.03458i) q^{57} +(-2.30403 + 2.30403i) q^{59} +(-10.8244 - 10.8244i) q^{61} +(-0.747384 + 0.747384i) q^{63} +(-0.0581916 + 2.22735i) q^{65} -8.99029i q^{67} +(4.77394 + 4.77394i) q^{69} +14.1421 q^{71} +(6.35840 - 6.35840i) q^{73} +(4.99318 + 0.261081i) q^{75} +1.37565 q^{77} +8.76588 q^{79} +1.00000 q^{81} +12.3589 q^{83} +(2.25318 - 2.13845i) q^{85} +(2.95516 - 2.95516i) q^{87} -18.0456 q^{89} +(0.744724 + 0.744724i) q^{91} -10.4545i q^{93} +(2.25218 + 2.37302i) q^{95} +(1.29787 - 1.29787i) q^{97} +(-0.920311 - 0.920311i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 4 q^{5} + 4 q^{7} + 16 q^{9} + 4 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{21} + 32 q^{25} + 16 q^{27} - 12 q^{29} - 20 q^{35} + 4 q^{45} + 32 q^{47} - 8 q^{51} - 16 q^{53} + 4 q^{55} + 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.23531 0.0583995i −0.999659 0.0261170i
\(6\) 0 0
\(7\) −0.747384 + 0.747384i −0.282485 + 0.282485i −0.834099 0.551615i \(-0.814012\pi\)
0.551615 + 0.834099i \(0.314012\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.920311 0.920311i −0.277484 0.277484i 0.554620 0.832104i \(-0.312864\pi\)
−0.832104 + 0.554620i \(0.812864\pi\)
\(12\) 0 0
\(13\) 0.996441i 0.276363i −0.990407 0.138182i \(-0.955874\pi\)
0.990407 0.138182i \(-0.0441257\pi\)
\(14\) 0 0
\(15\) −2.23531 0.0583995i −0.577153 0.0150787i
\(16\) 0 0
\(17\) −0.982332 + 0.982332i −0.238251 + 0.238251i −0.816125 0.577875i \(-0.803882\pi\)
0.577875 + 0.816125i \(0.303882\pi\)
\(18\) 0 0
\(19\) −1.03458 1.03458i −0.237349 0.237349i 0.578403 0.815751i \(-0.303676\pi\)
−0.815751 + 0.578403i \(0.803676\pi\)
\(20\) 0 0
\(21\) −0.747384 + 0.747384i −0.163093 + 0.163093i
\(22\) 0 0
\(23\) 4.77394 + 4.77394i 0.995436 + 0.995436i 0.999990 0.00455400i \(-0.00144959\pi\)
−0.00455400 + 0.999990i \(0.501450\pi\)
\(24\) 0 0
\(25\) 4.99318 + 0.261081i 0.998636 + 0.0522163i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.95516 2.95516i 0.548760 0.548760i −0.377322 0.926082i \(-0.623155\pi\)
0.926082 + 0.377322i \(0.123155\pi\)
\(30\) 0 0
\(31\) 10.4545i 1.87768i −0.344351 0.938841i \(-0.611901\pi\)
0.344351 0.938841i \(-0.388099\pi\)
\(32\) 0 0
\(33\) −0.920311 0.920311i −0.160206 0.160206i
\(34\) 0 0
\(35\) 1.71428 1.62698i 0.289766 0.275011i
\(36\) 0 0
\(37\) 8.22694i 1.35250i −0.736672 0.676251i \(-0.763604\pi\)
0.736672 0.676251i \(-0.236396\pi\)
\(38\) 0 0
\(39\) 0.996441i 0.159558i
\(40\) 0 0
\(41\) 5.70040i 0.890253i −0.895468 0.445127i \(-0.853159\pi\)
0.895468 0.445127i \(-0.146841\pi\)
\(42\) 0 0
\(43\) 5.22869i 0.797368i −0.917088 0.398684i \(-0.869467\pi\)
0.917088 0.398684i \(-0.130533\pi\)
\(44\) 0 0
\(45\) −2.23531 0.0583995i −0.333220 0.00870568i
\(46\) 0 0
\(47\) −0.0548243 0.0548243i −0.00799695 0.00799695i 0.703097 0.711094i \(-0.251800\pi\)
−0.711094 + 0.703097i \(0.751800\pi\)
\(48\) 0 0
\(49\) 5.88283i 0.840405i
\(50\) 0 0
\(51\) −0.982332 + 0.982332i −0.137554 + 0.137554i
\(52\) 0 0
\(53\) −5.13957 −0.705974 −0.352987 0.935628i \(-0.614834\pi\)
−0.352987 + 0.935628i \(0.614834\pi\)
\(54\) 0 0
\(55\) 2.00343 + 2.11092i 0.270142 + 0.284637i
\(56\) 0 0
\(57\) −1.03458 1.03458i −0.137033 0.137033i
\(58\) 0 0
\(59\) −2.30403 + 2.30403i −0.299959 + 0.299959i −0.840998 0.541039i \(-0.818031\pi\)
0.541039 + 0.840998i \(0.318031\pi\)
\(60\) 0 0
\(61\) −10.8244 10.8244i −1.38592 1.38592i −0.833689 0.552234i \(-0.813776\pi\)
−0.552234 0.833689i \(-0.686224\pi\)
\(62\) 0 0
\(63\) −0.747384 + 0.747384i −0.0941615 + 0.0941615i
\(64\) 0 0
\(65\) −0.0581916 + 2.22735i −0.00721778 + 0.276269i
\(66\) 0 0
\(67\) 8.99029i 1.09834i −0.835711 0.549169i \(-0.814944\pi\)
0.835711 0.549169i \(-0.185056\pi\)
\(68\) 0 0
\(69\) 4.77394 + 4.77394i 0.574715 + 0.574715i
\(70\) 0 0
\(71\) 14.1421 1.67836 0.839180 0.543853i \(-0.183035\pi\)
0.839180 + 0.543853i \(0.183035\pi\)
\(72\) 0 0
\(73\) 6.35840 6.35840i 0.744195 0.744195i −0.229188 0.973382i \(-0.573607\pi\)
0.973382 + 0.229188i \(0.0736070\pi\)
\(74\) 0 0
\(75\) 4.99318 + 0.261081i 0.576563 + 0.0301471i
\(76\) 0 0
\(77\) 1.37565 0.156770
\(78\) 0 0
\(79\) 8.76588 0.986238 0.493119 0.869962i \(-0.335857\pi\)
0.493119 + 0.869962i \(0.335857\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.3589 1.35657 0.678284 0.734800i \(-0.262724\pi\)
0.678284 + 0.734800i \(0.262724\pi\)
\(84\) 0 0
\(85\) 2.25318 2.13845i 0.244392 0.231947i
\(86\) 0 0
\(87\) 2.95516 2.95516i 0.316827 0.316827i
\(88\) 0 0
\(89\) −18.0456 −1.91283 −0.956414 0.292014i \(-0.905675\pi\)
−0.956414 + 0.292014i \(0.905675\pi\)
\(90\) 0 0
\(91\) 0.744724 + 0.744724i 0.0780683 + 0.0780683i
\(92\) 0 0
\(93\) 10.4545i 1.08408i
\(94\) 0 0
\(95\) 2.25218 + 2.37302i 0.231069 + 0.243467i
\(96\) 0 0
\(97\) 1.29787 1.29787i 0.131779 0.131779i −0.638141 0.769920i \(-0.720296\pi\)
0.769920 + 0.638141i \(0.220296\pi\)
\(98\) 0 0
\(99\) −0.920311 0.920311i −0.0924947 0.0924947i
\(100\) 0 0
\(101\) −4.25125 + 4.25125i −0.423015 + 0.423015i −0.886241 0.463225i \(-0.846692\pi\)
0.463225 + 0.886241i \(0.346692\pi\)
\(102\) 0 0
\(103\) 5.92346 + 5.92346i 0.583656 + 0.583656i 0.935906 0.352250i \(-0.114583\pi\)
−0.352250 + 0.935906i \(0.614583\pi\)
\(104\) 0 0
\(105\) 1.71428 1.62698i 0.167296 0.158777i
\(106\) 0 0
\(107\) −0.0554707 −0.00536256 −0.00268128 0.999996i \(-0.500853\pi\)
−0.00268128 + 0.999996i \(0.500853\pi\)
\(108\) 0 0
\(109\) 0.947769 0.947769i 0.0907798 0.0907798i −0.660259 0.751038i \(-0.729553\pi\)
0.751038 + 0.660259i \(0.229553\pi\)
\(110\) 0 0
\(111\) 8.22694i 0.780867i
\(112\) 0 0
\(113\) −10.8801 10.8801i −1.02351 1.02351i −0.999717 0.0237977i \(-0.992424\pi\)
−0.0237977 0.999717i \(-0.507576\pi\)
\(114\) 0 0
\(115\) −10.3924 10.9500i −0.969098 1.02109i
\(116\) 0 0
\(117\) 0.996441i 0.0921210i
\(118\) 0 0
\(119\) 1.46836i 0.134604i
\(120\) 0 0
\(121\) 9.30606i 0.846005i
\(122\) 0 0
\(123\) 5.70040i 0.513988i
\(124\) 0 0
\(125\) −11.1460 0.875196i −0.996931 0.0782799i
\(126\) 0 0
\(127\) 9.61338 + 9.61338i 0.853050 + 0.853050i 0.990508 0.137458i \(-0.0438931\pi\)
−0.137458 + 0.990508i \(0.543893\pi\)
\(128\) 0 0
\(129\) 5.22869i 0.460360i
\(130\) 0 0
\(131\) 5.60184 5.60184i 0.489435 0.489435i −0.418693 0.908128i \(-0.637512\pi\)
0.908128 + 0.418693i \(0.137512\pi\)
\(132\) 0 0
\(133\) 1.54646 0.134095
\(134\) 0 0
\(135\) −2.23531 0.0583995i −0.192384 0.00502623i
\(136\) 0 0
\(137\) −4.68373 4.68373i −0.400158 0.400158i 0.478130 0.878289i \(-0.341315\pi\)
−0.878289 + 0.478130i \(0.841315\pi\)
\(138\) 0 0
\(139\) −1.64971 + 1.64971i −0.139926 + 0.139926i −0.773600 0.633674i \(-0.781546\pi\)
0.633674 + 0.773600i \(0.281546\pi\)
\(140\) 0 0
\(141\) −0.0548243 0.0548243i −0.00461704 0.00461704i
\(142\) 0 0
\(143\) −0.917036 + 0.917036i −0.0766864 + 0.0766864i
\(144\) 0 0
\(145\) −6.77827 + 6.43311i −0.562905 + 0.534241i
\(146\) 0 0
\(147\) 5.88283i 0.485208i
\(148\) 0 0
\(149\) 12.0813 + 12.0813i 0.989742 + 0.989742i 0.999948 0.0102058i \(-0.00324866\pi\)
−0.0102058 + 0.999948i \(0.503249\pi\)
\(150\) 0 0
\(151\) −12.6503 −1.02947 −0.514735 0.857350i \(-0.672110\pi\)
−0.514735 + 0.857350i \(0.672110\pi\)
\(152\) 0 0
\(153\) −0.982332 + 0.982332i −0.0794169 + 0.0794169i
\(154\) 0 0
\(155\) −0.610537 + 23.3690i −0.0490395 + 1.87704i
\(156\) 0 0
\(157\) 6.31279 0.503816 0.251908 0.967751i \(-0.418942\pi\)
0.251908 + 0.967751i \(0.418942\pi\)
\(158\) 0 0
\(159\) −5.13957 −0.407595
\(160\) 0 0
\(161\) −7.13593 −0.562390
\(162\) 0 0
\(163\) 14.6329 1.14613 0.573067 0.819508i \(-0.305753\pi\)
0.573067 + 0.819508i \(0.305753\pi\)
\(164\) 0 0
\(165\) 2.00343 + 2.11092i 0.155967 + 0.164335i
\(166\) 0 0
\(167\) −5.31380 + 5.31380i −0.411194 + 0.411194i −0.882155 0.470960i \(-0.843908\pi\)
0.470960 + 0.882155i \(0.343908\pi\)
\(168\) 0 0
\(169\) 12.0071 0.923623
\(170\) 0 0
\(171\) −1.03458 1.03458i −0.0791163 0.0791163i
\(172\) 0 0
\(173\) 13.1537i 1.00006i 0.866008 + 0.500029i \(0.166678\pi\)
−0.866008 + 0.500029i \(0.833322\pi\)
\(174\) 0 0
\(175\) −3.92695 + 3.53669i −0.296849 + 0.267349i
\(176\) 0 0
\(177\) −2.30403 + 2.30403i −0.173181 + 0.173181i
\(178\) 0 0
\(179\) 12.2215 + 12.2215i 0.913479 + 0.913479i 0.996544 0.0830647i \(-0.0264708\pi\)
−0.0830647 + 0.996544i \(0.526471\pi\)
\(180\) 0 0
\(181\) −7.77734 + 7.77734i −0.578085 + 0.578085i −0.934375 0.356290i \(-0.884041\pi\)
0.356290 + 0.934375i \(0.384041\pi\)
\(182\) 0 0
\(183\) −10.8244 10.8244i −0.800163 0.800163i
\(184\) 0 0
\(185\) −0.480449 + 18.3897i −0.0353233 + 1.35204i
\(186\) 0 0
\(187\) 1.80810 0.132222
\(188\) 0 0
\(189\) −0.747384 + 0.747384i −0.0543642 + 0.0543642i
\(190\) 0 0
\(191\) 18.2743i 1.32228i −0.750262 0.661141i \(-0.770073\pi\)
0.750262 0.661141i \(-0.229927\pi\)
\(192\) 0 0
\(193\) −11.3061 11.3061i −0.813832 0.813832i 0.171374 0.985206i \(-0.445179\pi\)
−0.985206 + 0.171374i \(0.945179\pi\)
\(194\) 0 0
\(195\) −0.0581916 + 2.22735i −0.00416719 + 0.159504i
\(196\) 0 0
\(197\) 11.1767i 0.796305i −0.917319 0.398153i \(-0.869651\pi\)
0.917319 0.398153i \(-0.130349\pi\)
\(198\) 0 0
\(199\) 18.8869i 1.33886i −0.742877 0.669428i \(-0.766539\pi\)
0.742877 0.669428i \(-0.233461\pi\)
\(200\) 0 0
\(201\) 8.99029i 0.634126i
\(202\) 0 0
\(203\) 4.41728i 0.310032i
\(204\) 0 0
\(205\) −0.332900 + 12.7421i −0.0232508 + 0.889949i
\(206\) 0 0
\(207\) 4.77394 + 4.77394i 0.331812 + 0.331812i
\(208\) 0 0
\(209\) 1.90427i 0.131721i
\(210\) 0 0
\(211\) −7.95311 + 7.95311i −0.547514 + 0.547514i −0.925721 0.378207i \(-0.876541\pi\)
0.378207 + 0.925721i \(0.376541\pi\)
\(212\) 0 0
\(213\) 14.1421 0.969002
\(214\) 0 0
\(215\) −0.305353 + 11.6877i −0.0208249 + 0.797096i
\(216\) 0 0
\(217\) 7.81352 + 7.81352i 0.530416 + 0.530416i
\(218\) 0 0
\(219\) 6.35840 6.35840i 0.429661 0.429661i
\(220\) 0 0
\(221\) 0.978836 + 0.978836i 0.0658437 + 0.0658437i
\(222\) 0 0
\(223\) −4.22843 + 4.22843i −0.283157 + 0.283157i −0.834367 0.551210i \(-0.814166\pi\)
0.551210 + 0.834367i \(0.314166\pi\)
\(224\) 0 0
\(225\) 4.99318 + 0.261081i 0.332879 + 0.0174054i
\(226\) 0 0
\(227\) 15.7654i 1.04639i 0.852214 + 0.523193i \(0.175259\pi\)
−0.852214 + 0.523193i \(0.824741\pi\)
\(228\) 0 0
\(229\) 0.746140 + 0.746140i 0.0493063 + 0.0493063i 0.731330 0.682024i \(-0.238900\pi\)
−0.682024 + 0.731330i \(0.738900\pi\)
\(230\) 0 0
\(231\) 1.37565 0.0905112
\(232\) 0 0
\(233\) −5.74517 + 5.74517i −0.376379 + 0.376379i −0.869794 0.493415i \(-0.835748\pi\)
0.493415 + 0.869794i \(0.335748\pi\)
\(234\) 0 0
\(235\) 0.119347 + 0.125751i 0.00778536 + 0.00820308i
\(236\) 0 0
\(237\) 8.76588 0.569405
\(238\) 0 0
\(239\) −27.9736 −1.80946 −0.904729 0.425987i \(-0.859927\pi\)
−0.904729 + 0.425987i \(0.859927\pi\)
\(240\) 0 0
\(241\) −7.01072 −0.451600 −0.225800 0.974174i \(-0.572500\pi\)
−0.225800 + 0.974174i \(0.572500\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0.343555 13.1499i 0.0219489 0.840118i
\(246\) 0 0
\(247\) −1.03090 + 1.03090i −0.0655945 + 0.0655945i
\(248\) 0 0
\(249\) 12.3589 0.783215
\(250\) 0 0
\(251\) −5.41619 5.41619i −0.341867 0.341867i 0.515202 0.857069i \(-0.327717\pi\)
−0.857069 + 0.515202i \(0.827717\pi\)
\(252\) 0 0
\(253\) 8.78702i 0.552435i
\(254\) 0 0
\(255\) 2.25318 2.13845i 0.141100 0.133915i
\(256\) 0 0
\(257\) 17.0268 17.0268i 1.06210 1.06210i 0.0641616 0.997940i \(-0.479563\pi\)
0.997940 0.0641616i \(-0.0204373\pi\)
\(258\) 0 0
\(259\) 6.14869 + 6.14869i 0.382061 + 0.382061i
\(260\) 0 0
\(261\) 2.95516 2.95516i 0.182920 0.182920i
\(262\) 0 0
\(263\) −7.04662 7.04662i −0.434513 0.434513i 0.455647 0.890160i \(-0.349408\pi\)
−0.890160 + 0.455647i \(0.849408\pi\)
\(264\) 0 0
\(265\) 11.4885 + 0.300148i 0.705734 + 0.0184380i
\(266\) 0 0
\(267\) −18.0456 −1.10437
\(268\) 0 0
\(269\) −13.1762 + 13.1762i −0.803366 + 0.803366i −0.983620 0.180254i \(-0.942308\pi\)
0.180254 + 0.983620i \(0.442308\pi\)
\(270\) 0 0
\(271\) 2.01115i 0.122169i −0.998133 0.0610845i \(-0.980544\pi\)
0.998133 0.0610845i \(-0.0194559\pi\)
\(272\) 0 0
\(273\) 0.744724 + 0.744724i 0.0450727 + 0.0450727i
\(274\) 0 0
\(275\) −4.35500 4.83555i −0.262616 0.291595i
\(276\) 0 0
\(277\) 5.15280i 0.309602i −0.987946 0.154801i \(-0.950526\pi\)
0.987946 0.154801i \(-0.0494736\pi\)
\(278\) 0 0
\(279\) 10.4545i 0.625894i
\(280\) 0 0
\(281\) 14.7480i 0.879791i 0.898049 + 0.439895i \(0.144984\pi\)
−0.898049 + 0.439895i \(0.855016\pi\)
\(282\) 0 0
\(283\) 7.82068i 0.464891i −0.972609 0.232446i \(-0.925327\pi\)
0.972609 0.232446i \(-0.0746728\pi\)
\(284\) 0 0
\(285\) 2.25218 + 2.37302i 0.133408 + 0.140566i
\(286\) 0 0
\(287\) 4.26039 + 4.26039i 0.251483 + 0.251483i
\(288\) 0 0
\(289\) 15.0700i 0.886473i
\(290\) 0 0
\(291\) 1.29787 1.29787i 0.0760826 0.0760826i
\(292\) 0 0
\(293\) −19.1115 −1.11651 −0.558254 0.829670i \(-0.688529\pi\)
−0.558254 + 0.829670i \(0.688529\pi\)
\(294\) 0 0
\(295\) 5.28476 5.01565i 0.307690 0.292022i
\(296\) 0 0
\(297\) −0.920311 0.920311i −0.0534019 0.0534019i
\(298\) 0 0
\(299\) 4.75695 4.75695i 0.275102 0.275102i
\(300\) 0 0
\(301\) 3.90784 + 3.90784i 0.225244 + 0.225244i
\(302\) 0 0
\(303\) −4.25125 + 4.25125i −0.244228 + 0.244228i
\(304\) 0 0
\(305\) 23.5637 + 24.8280i 1.34925 + 1.42165i
\(306\) 0 0
\(307\) 3.29048i 0.187798i −0.995582 0.0938988i \(-0.970067\pi\)
0.995582 0.0938988i \(-0.0299330\pi\)
\(308\) 0 0
\(309\) 5.92346 + 5.92346i 0.336974 + 0.336974i
\(310\) 0 0
\(311\) 10.6744 0.605292 0.302646 0.953103i \(-0.402130\pi\)
0.302646 + 0.953103i \(0.402130\pi\)
\(312\) 0 0
\(313\) −21.5451 + 21.5451i −1.21780 + 1.21780i −0.249401 + 0.968400i \(0.580234\pi\)
−0.968400 + 0.249401i \(0.919766\pi\)
\(314\) 0 0
\(315\) 1.71428 1.62698i 0.0965886 0.0916702i
\(316\) 0 0
\(317\) 16.1238 0.905603 0.452801 0.891611i \(-0.350425\pi\)
0.452801 + 0.891611i \(0.350425\pi\)
\(318\) 0 0
\(319\) −5.43934 −0.304544
\(320\) 0 0
\(321\) −0.0554707 −0.00309607
\(322\) 0 0
\(323\) 2.03260 0.113097
\(324\) 0 0
\(325\) 0.260152 4.97541i 0.0144306 0.275986i
\(326\) 0 0
\(327\) 0.947769 0.947769i 0.0524117 0.0524117i
\(328\) 0 0
\(329\) 0.0819496 0.00451803
\(330\) 0 0
\(331\) 1.97876 + 1.97876i 0.108762 + 0.108762i 0.759394 0.650631i \(-0.225496\pi\)
−0.650631 + 0.759394i \(0.725496\pi\)
\(332\) 0 0
\(333\) 8.22694i 0.450834i
\(334\) 0 0
\(335\) −0.525028 + 20.0960i −0.0286854 + 1.09796i
\(336\) 0 0
\(337\) 25.2423 25.2423i 1.37503 1.37503i 0.522229 0.852806i \(-0.325101\pi\)
0.852806 0.522229i \(-0.174899\pi\)
\(338\) 0 0
\(339\) −10.8801 10.8801i −0.590926 0.590926i
\(340\) 0 0
\(341\) −9.62138 + 9.62138i −0.521027 + 0.521027i
\(342\) 0 0
\(343\) −9.62842 9.62842i −0.519886 0.519886i
\(344\) 0 0
\(345\) −10.3924 10.9500i −0.559509 0.589529i
\(346\) 0 0
\(347\) 24.1967 1.29895 0.649475 0.760383i \(-0.274989\pi\)
0.649475 + 0.760383i \(0.274989\pi\)
\(348\) 0 0
\(349\) −2.28867 + 2.28867i −0.122510 + 0.122510i −0.765704 0.643194i \(-0.777609\pi\)
0.643194 + 0.765704i \(0.277609\pi\)
\(350\) 0 0
\(351\) 0.996441i 0.0531861i
\(352\) 0 0
\(353\) −9.70578 9.70578i −0.516587 0.516587i 0.399950 0.916537i \(-0.369027\pi\)
−0.916537 + 0.399950i \(0.869027\pi\)
\(354\) 0 0
\(355\) −31.6120 0.825893i −1.67779 0.0438338i
\(356\) 0 0
\(357\) 1.46836i 0.0777138i
\(358\) 0 0
\(359\) 27.1463i 1.43273i 0.697726 + 0.716365i \(0.254195\pi\)
−0.697726 + 0.716365i \(0.745805\pi\)
\(360\) 0 0
\(361\) 16.8593i 0.887331i
\(362\) 0 0
\(363\) 9.30606i 0.488441i
\(364\) 0 0
\(365\) −14.5843 + 13.8416i −0.763377 + 0.724505i
\(366\) 0 0
\(367\) 16.3750 + 16.3750i 0.854769 + 0.854769i 0.990716 0.135947i \(-0.0434078\pi\)
−0.135947 + 0.990716i \(0.543408\pi\)
\(368\) 0 0
\(369\) 5.70040i 0.296751i
\(370\) 0 0
\(371\) 3.84123 3.84123i 0.199427 0.199427i
\(372\) 0 0
\(373\) 29.7473 1.54026 0.770129 0.637888i \(-0.220192\pi\)
0.770129 + 0.637888i \(0.220192\pi\)
\(374\) 0 0
\(375\) −11.1460 0.875196i −0.575579 0.0451949i
\(376\) 0 0
\(377\) −2.94464 2.94464i −0.151657 0.151657i
\(378\) 0 0
\(379\) −11.0584 + 11.0584i −0.568031 + 0.568031i −0.931576 0.363546i \(-0.881566\pi\)
0.363546 + 0.931576i \(0.381566\pi\)
\(380\) 0 0
\(381\) 9.61338 + 9.61338i 0.492509 + 0.492509i
\(382\) 0 0
\(383\) 16.2297 16.2297i 0.829298 0.829298i −0.158122 0.987420i \(-0.550544\pi\)
0.987420 + 0.158122i \(0.0505439\pi\)
\(384\) 0 0
\(385\) −3.07500 0.0803373i −0.156717 0.00409437i
\(386\) 0 0
\(387\) 5.22869i 0.265789i
\(388\) 0 0
\(389\) −12.6341 12.6341i −0.640575 0.640575i 0.310122 0.950697i \(-0.399630\pi\)
−0.950697 + 0.310122i \(0.899630\pi\)
\(390\) 0 0
\(391\) −9.37920 −0.474326
\(392\) 0 0
\(393\) 5.60184 5.60184i 0.282576 0.282576i
\(394\) 0 0
\(395\) −19.5944 0.511923i −0.985902 0.0257576i
\(396\) 0 0
\(397\) 5.42044 0.272044 0.136022 0.990706i \(-0.456568\pi\)
0.136022 + 0.990706i \(0.456568\pi\)
\(398\) 0 0
\(399\) 1.54646 0.0774197
\(400\) 0 0
\(401\) 15.7550 0.786765 0.393382 0.919375i \(-0.371305\pi\)
0.393382 + 0.919375i \(0.371305\pi\)
\(402\) 0 0
\(403\) −10.4173 −0.518922
\(404\) 0 0
\(405\) −2.23531 0.0583995i −0.111073 0.00290189i
\(406\) 0 0
\(407\) −7.57135 + 7.57135i −0.375298 + 0.375298i
\(408\) 0 0
\(409\) −30.9442 −1.53009 −0.765046 0.643976i \(-0.777284\pi\)
−0.765046 + 0.643976i \(0.777284\pi\)
\(410\) 0 0
\(411\) −4.68373 4.68373i −0.231032 0.231032i
\(412\) 0 0
\(413\) 3.44398i 0.169467i
\(414\) 0 0
\(415\) −27.6260 0.721754i −1.35610 0.0354295i
\(416\) 0 0
\(417\) −1.64971 + 1.64971i −0.0807864 + 0.0807864i
\(418\) 0 0
\(419\) −15.2385 15.2385i −0.744451 0.744451i 0.228980 0.973431i \(-0.426461\pi\)
−0.973431 + 0.228980i \(0.926461\pi\)
\(420\) 0 0
\(421\) −14.4008 + 14.4008i −0.701852 + 0.701852i −0.964808 0.262956i \(-0.915303\pi\)
0.262956 + 0.964808i \(0.415303\pi\)
\(422\) 0 0
\(423\) −0.0548243 0.0548243i −0.00266565 0.00266565i
\(424\) 0 0
\(425\) −5.16143 + 4.64849i −0.250366 + 0.225485i
\(426\) 0 0
\(427\) 16.1800 0.783004
\(428\) 0 0
\(429\) −0.917036 + 0.917036i −0.0442749 + 0.0442749i
\(430\) 0 0
\(431\) 4.47310i 0.215461i 0.994180 + 0.107731i \(0.0343584\pi\)
−0.994180 + 0.107731i \(0.965642\pi\)
\(432\) 0 0
\(433\) 20.8589 + 20.8589i 1.00242 + 1.00242i 0.999997 + 0.00241793i \(0.000769652\pi\)
0.00241793 + 0.999997i \(0.499230\pi\)
\(434\) 0 0
\(435\) −6.77827 + 6.43311i −0.324993 + 0.308444i
\(436\) 0 0
\(437\) 9.87805i 0.472531i
\(438\) 0 0
\(439\) 0.257771i 0.0123027i 0.999981 + 0.00615136i \(0.00195805\pi\)
−0.999981 + 0.00615136i \(0.998042\pi\)
\(440\) 0 0
\(441\) 5.88283i 0.280135i
\(442\) 0 0
\(443\) 27.8275i 1.32212i 0.750331 + 0.661062i \(0.229894\pi\)
−0.750331 + 0.661062i \(0.770106\pi\)
\(444\) 0 0
\(445\) 40.3374 + 1.05385i 1.91218 + 0.0499574i
\(446\) 0 0
\(447\) 12.0813 + 12.0813i 0.571428 + 0.571428i
\(448\) 0 0
\(449\) 7.32170i 0.345533i −0.984963 0.172766i \(-0.944729\pi\)
0.984963 0.172766i \(-0.0552705\pi\)
\(450\) 0 0
\(451\) −5.24614 + 5.24614i −0.247031 + 0.247031i
\(452\) 0 0
\(453\) −12.6503 −0.594364
\(454\) 0 0
\(455\) −1.62119 1.70818i −0.0760027 0.0800806i
\(456\) 0 0
\(457\) 13.1962 + 13.1962i 0.617293 + 0.617293i 0.944836 0.327543i \(-0.106221\pi\)
−0.327543 + 0.944836i \(0.606221\pi\)
\(458\) 0 0
\(459\) −0.982332 + 0.982332i −0.0458514 + 0.0458514i
\(460\) 0 0
\(461\) 19.6030 + 19.6030i 0.913002 + 0.913002i 0.996507 0.0835057i \(-0.0266117\pi\)
−0.0835057 + 0.996507i \(0.526612\pi\)
\(462\) 0 0
\(463\) 17.2918 17.2918i 0.803619 0.803619i −0.180040 0.983659i \(-0.557623\pi\)
0.983659 + 0.180040i \(0.0576227\pi\)
\(464\) 0 0
\(465\) −0.610537 + 23.3690i −0.0283130 + 1.08371i
\(466\) 0 0
\(467\) 31.3895i 1.45253i 0.687413 + 0.726267i \(0.258746\pi\)
−0.687413 + 0.726267i \(0.741254\pi\)
\(468\) 0 0
\(469\) 6.71920 + 6.71920i 0.310264 + 0.310264i
\(470\) 0 0
\(471\) 6.31279 0.290878
\(472\) 0 0
\(473\) −4.81202 + 4.81202i −0.221257 + 0.221257i
\(474\) 0 0
\(475\) −4.89573 5.43595i −0.224632 0.249419i
\(476\) 0 0
\(477\) −5.13957 −0.235325
\(478\) 0 0
\(479\) −10.4863 −0.479133 −0.239566 0.970880i \(-0.577005\pi\)
−0.239566 + 0.970880i \(0.577005\pi\)
\(480\) 0 0
\(481\) −8.19767 −0.373781
\(482\) 0 0
\(483\) −7.13593 −0.324696
\(484\) 0 0
\(485\) −2.97694 + 2.82535i −0.135176 + 0.128292i
\(486\) 0 0
\(487\) −4.72750 + 4.72750i −0.214224 + 0.214224i −0.806059 0.591835i \(-0.798404\pi\)
0.591835 + 0.806059i \(0.298404\pi\)
\(488\) 0 0
\(489\) 14.6329 0.661721
\(490\) 0 0
\(491\) −3.00877 3.00877i −0.135784 0.135784i 0.635948 0.771732i \(-0.280609\pi\)
−0.771732 + 0.635948i \(0.780609\pi\)
\(492\) 0 0
\(493\) 5.80590i 0.261485i
\(494\) 0 0
\(495\) 2.00343 + 2.11092i 0.0900475 + 0.0948789i
\(496\) 0 0
\(497\) −10.5696 + 10.5696i −0.474111 + 0.474111i
\(498\) 0 0
\(499\) −8.75769 8.75769i −0.392048 0.392048i 0.483369 0.875417i \(-0.339413\pi\)
−0.875417 + 0.483369i \(0.839413\pi\)
\(500\) 0 0
\(501\) −5.31380 + 5.31380i −0.237403 + 0.237403i
\(502\) 0 0
\(503\) 3.79393 + 3.79393i 0.169163 + 0.169163i 0.786611 0.617448i \(-0.211834\pi\)
−0.617448 + 0.786611i \(0.711834\pi\)
\(504\) 0 0
\(505\) 9.75112 9.25457i 0.433919 0.411823i
\(506\) 0 0
\(507\) 12.0071 0.533254
\(508\) 0 0
\(509\) 9.92183 9.92183i 0.439777 0.439777i −0.452160 0.891937i \(-0.649346\pi\)
0.891937 + 0.452160i \(0.149346\pi\)
\(510\) 0 0
\(511\) 9.50433i 0.420447i
\(512\) 0 0
\(513\) −1.03458 1.03458i −0.0456778 0.0456778i
\(514\) 0 0
\(515\) −12.8948 13.5867i −0.568214 0.598701i
\(516\) 0 0
\(517\) 0.100911i 0.00443805i
\(518\) 0 0
\(519\) 13.1537i 0.577384i
\(520\) 0 0
\(521\) 31.9555i 1.39999i 0.714146 + 0.699997i \(0.246815\pi\)
−0.714146 + 0.699997i \(0.753185\pi\)
\(522\) 0 0
\(523\) 24.3222i 1.06354i −0.846890 0.531768i \(-0.821528\pi\)
0.846890 0.531768i \(-0.178472\pi\)
\(524\) 0 0
\(525\) −3.92695 + 3.53669i −0.171386 + 0.154354i
\(526\) 0 0
\(527\) 10.2698 + 10.2698i 0.447359 + 0.447359i
\(528\) 0 0
\(529\) 22.5810i 0.981784i
\(530\) 0 0
\(531\) −2.30403 + 2.30403i −0.0999862 + 0.0999862i
\(532\) 0 0
\(533\) −5.68011 −0.246033
\(534\) 0 0
\(535\) 0.123994 + 0.00323946i 0.00536073 + 0.000140054i
\(536\) 0 0
\(537\) 12.2215 + 12.2215i 0.527398 + 0.527398i
\(538\) 0 0
\(539\) 5.41404 5.41404i 0.233199 0.233199i
\(540\) 0 0
\(541\) −24.3708 24.3708i −1.04778 1.04778i −0.998800 0.0489835i \(-0.984402\pi\)
−0.0489835 0.998800i \(-0.515598\pi\)
\(542\) 0 0
\(543\) −7.77734 + 7.77734i −0.333758 + 0.333758i
\(544\) 0 0
\(545\) −2.17390 + 2.06320i −0.0931197 + 0.0883779i
\(546\) 0 0
\(547\) 46.2500i 1.97751i 0.149550 + 0.988754i \(0.452218\pi\)
−0.149550 + 0.988754i \(0.547782\pi\)
\(548\) 0 0
\(549\) −10.8244 10.8244i −0.461974 0.461974i
\(550\) 0 0
\(551\) −6.11470 −0.260495
\(552\) 0 0
\(553\) −6.55147 + 6.55147i −0.278597 + 0.278597i
\(554\) 0 0
\(555\) −0.480449 + 18.3897i −0.0203939 + 0.780601i
\(556\) 0 0
\(557\) 3.18081 0.134775 0.0673876 0.997727i \(-0.478534\pi\)
0.0673876 + 0.997727i \(0.478534\pi\)
\(558\) 0 0
\(559\) −5.21008 −0.220363
\(560\) 0 0
\(561\) 1.80810 0.0763382
\(562\) 0 0
\(563\) −26.5795 −1.12019 −0.560096 0.828427i \(-0.689236\pi\)
−0.560096 + 0.828427i \(0.689236\pi\)
\(564\) 0 0
\(565\) 23.6850 + 24.9558i 0.996434 + 1.04990i
\(566\) 0 0
\(567\) −0.747384 + 0.747384i −0.0313872 + 0.0313872i
\(568\) 0 0
\(569\) −6.17442 −0.258845 −0.129423 0.991590i \(-0.541312\pi\)
−0.129423 + 0.991590i \(0.541312\pi\)
\(570\) 0 0
\(571\) −22.1640 22.1640i −0.927533 0.927533i 0.0700130 0.997546i \(-0.477696\pi\)
−0.997546 + 0.0700130i \(0.977696\pi\)
\(572\) 0 0
\(573\) 18.2743i 0.763419i
\(574\) 0 0
\(575\) 22.5908 + 25.0835i 0.942100 + 1.04606i
\(576\) 0 0
\(577\) 16.5888 16.5888i 0.690601 0.690601i −0.271764 0.962364i \(-0.587607\pi\)
0.962364 + 0.271764i \(0.0876068\pi\)
\(578\) 0 0
\(579\) −11.3061 11.3061i −0.469866 0.469866i
\(580\) 0 0
\(581\) −9.23686 + 9.23686i −0.383209 + 0.383209i
\(582\) 0 0
\(583\) 4.73000 + 4.73000i 0.195897 + 0.195897i
\(584\) 0 0
\(585\) −0.0581916 + 2.22735i −0.00240593 + 0.0920896i
\(586\) 0 0
\(587\) 4.69495 0.193781 0.0968907 0.995295i \(-0.469110\pi\)
0.0968907 + 0.995295i \(0.469110\pi\)
\(588\) 0 0
\(589\) −10.8160 + 10.8160i −0.445666 + 0.445666i
\(590\) 0 0
\(591\) 11.1767i 0.459747i
\(592\) 0 0
\(593\) 16.7482 + 16.7482i 0.687765 + 0.687765i 0.961738 0.273972i \(-0.0883376\pi\)
−0.273972 + 0.961738i \(0.588338\pi\)
\(594\) 0 0
\(595\) −0.0857514 + 3.28223i −0.00351546 + 0.134558i
\(596\) 0 0
\(597\) 18.8869i 0.772989i
\(598\) 0 0
\(599\) 3.09289i 0.126372i 0.998002 + 0.0631860i \(0.0201261\pi\)
−0.998002 + 0.0631860i \(0.979874\pi\)
\(600\) 0 0
\(601\) 23.3900i 0.954099i −0.878876 0.477050i \(-0.841706\pi\)
0.878876 0.477050i \(-0.158294\pi\)
\(602\) 0 0
\(603\) 8.99029i 0.366113i
\(604\) 0 0
\(605\) −0.543469 + 20.8019i −0.0220952 + 0.845716i
\(606\) 0 0
\(607\) −25.7183 25.7183i −1.04387 1.04387i −0.998992 0.0448798i \(-0.985710\pi\)
−0.0448798 0.998992i \(-0.514290\pi\)
\(608\) 0 0
\(609\) 4.41728i 0.178997i
\(610\) 0 0
\(611\) −0.0546292 + 0.0546292i −0.00221006 + 0.00221006i
\(612\) 0 0
\(613\) −35.2830 −1.42507 −0.712533 0.701639i \(-0.752452\pi\)
−0.712533 + 0.701639i \(0.752452\pi\)
\(614\) 0 0
\(615\) −0.332900 + 12.7421i −0.0134238 + 0.513813i
\(616\) 0 0
\(617\) 4.50814 + 4.50814i 0.181491 + 0.181491i 0.792005 0.610514i \(-0.209037\pi\)
−0.610514 + 0.792005i \(0.709037\pi\)
\(618\) 0 0
\(619\) 1.70323 1.70323i 0.0684586 0.0684586i −0.672048 0.740507i \(-0.734585\pi\)
0.740507 + 0.672048i \(0.234585\pi\)
\(620\) 0 0
\(621\) 4.77394 + 4.77394i 0.191572 + 0.191572i
\(622\) 0 0
\(623\) 13.4870 13.4870i 0.540344 0.540344i
\(624\) 0 0
\(625\) 24.8637 + 2.60725i 0.994547 + 0.104290i
\(626\) 0 0
\(627\) 1.90427i 0.0760492i
\(628\) 0 0
\(629\) 8.08159 + 8.08159i 0.322234 + 0.322234i
\(630\) 0 0
\(631\) −16.8799 −0.671980 −0.335990 0.941866i \(-0.609071\pi\)
−0.335990 + 0.941866i \(0.609071\pi\)
\(632\) 0 0
\(633\) −7.95311 + 7.95311i −0.316108 + 0.316108i
\(634\) 0 0
\(635\) −20.9274 22.0503i −0.830480 0.875038i
\(636\) 0 0
\(637\) 5.86190 0.232257
\(638\) 0 0
\(639\) 14.1421 0.559454
\(640\) 0 0
\(641\) −36.2647 −1.43237 −0.716185 0.697911i \(-0.754113\pi\)
−0.716185 + 0.697911i \(0.754113\pi\)
\(642\) 0 0
\(643\) 43.9474 1.73312 0.866559 0.499074i \(-0.166327\pi\)
0.866559 + 0.499074i \(0.166327\pi\)
\(644\) 0 0
\(645\) −0.305353 + 11.6877i −0.0120233 + 0.460203i
\(646\) 0 0
\(647\) 2.77825 2.77825i 0.109224 0.109224i −0.650382 0.759607i \(-0.725391\pi\)
0.759607 + 0.650382i \(0.225391\pi\)
\(648\) 0 0
\(649\) 4.24084 0.166468
\(650\) 0 0
\(651\) 7.81352 + 7.81352i 0.306236 + 0.306236i
\(652\) 0 0
\(653\) 15.8532i 0.620384i −0.950674 0.310192i \(-0.899607\pi\)
0.950674 0.310192i \(-0.100393\pi\)
\(654\) 0 0
\(655\) −12.8490 + 12.1947i −0.502051 + 0.476486i
\(656\) 0 0
\(657\) 6.35840 6.35840i 0.248065 0.248065i
\(658\) 0 0
\(659\) 3.02357 + 3.02357i 0.117781 + 0.117781i 0.763541 0.645759i \(-0.223459\pi\)
−0.645759 + 0.763541i \(0.723459\pi\)
\(660\) 0 0
\(661\) 14.5980 14.5980i 0.567797 0.567797i −0.363714 0.931511i \(-0.618491\pi\)
0.931511 + 0.363714i \(0.118491\pi\)
\(662\) 0 0
\(663\) 0.978836 + 0.978836i 0.0380149 + 0.0380149i
\(664\) 0 0
\(665\) −3.45680 0.0903123i −0.134049 0.00350216i
\(666\) 0 0
\(667\) 28.2155 1.09251
\(668\) 0 0
\(669\) −4.22843 + 4.22843i −0.163480 + 0.163480i
\(670\) 0 0
\(671\) 19.9236i 0.769143i
\(672\) 0 0
\(673\) −11.2973 11.2973i −0.435481 0.435481i 0.455007 0.890488i \(-0.349637\pi\)
−0.890488 + 0.455007i \(0.849637\pi\)
\(674\) 0 0
\(675\) 4.99318 + 0.261081i 0.192188 + 0.0100490i
\(676\) 0 0
\(677\) 9.23434i 0.354905i 0.984129 + 0.177452i \(0.0567855\pi\)
−0.984129 + 0.177452i \(0.943214\pi\)
\(678\) 0 0
\(679\) 1.94002i 0.0744510i
\(680\) 0 0
\(681\) 15.7654i 0.604131i
\(682\) 0 0
\(683\) 10.8971i 0.416967i 0.978026 + 0.208483i \(0.0668527\pi\)
−0.978026 + 0.208483i \(0.933147\pi\)
\(684\) 0 0
\(685\) 10.1960 + 10.7431i 0.389571 + 0.410473i
\(686\) 0 0
\(687\) 0.746140 + 0.746140i 0.0284670 + 0.0284670i
\(688\) 0 0
\(689\) 5.12128i 0.195105i
\(690\) 0 0
\(691\) −12.7458 + 12.7458i −0.484873 + 0.484873i −0.906684 0.421811i \(-0.861395\pi\)
0.421811 + 0.906684i \(0.361395\pi\)
\(692\) 0 0
\(693\) 1.37565 0.0522567
\(694\) 0 0
\(695\) 3.78394 3.59125i 0.143533 0.136224i
\(696\) 0 0
\(697\) 5.59969 + 5.59969i 0.212103 + 0.212103i
\(698\) 0 0
\(699\) −5.74517 + 5.74517i −0.217302 + 0.217302i
\(700\) 0 0
\(701\) −28.0269 28.0269i −1.05856 1.05856i −0.998175 0.0603853i \(-0.980767\pi\)
−0.0603853 0.998175i \(-0.519233\pi\)
\(702\) 0 0
\(703\) −8.51143 + 8.51143i −0.321015 + 0.321015i
\(704\) 0 0
\(705\) 0.119347 + 0.125751i 0.00449488 + 0.00473605i
\(706\) 0 0
\(707\) 6.35463i 0.238991i
\(708\) 0 0
\(709\) −6.39995 6.39995i −0.240355 0.240355i 0.576642 0.816997i \(-0.304363\pi\)
−0.816997 + 0.576642i \(0.804363\pi\)
\(710\) 0 0
\(711\) 8.76588 0.328746
\(712\) 0 0
\(713\) 49.9091 49.9091i 1.86911 1.86911i
\(714\) 0 0
\(715\) 2.10341 1.99630i 0.0786630 0.0746574i
\(716\) 0 0
\(717\) −27.9736 −1.04469
\(718\) 0 0
\(719\) −11.7136 −0.436843 −0.218422 0.975854i \(-0.570091\pi\)
−0.218422 + 0.975854i \(0.570091\pi\)
\(720\) 0 0
\(721\) −8.85420 −0.329748
\(722\) 0 0
\(723\) −7.01072 −0.260732
\(724\) 0 0
\(725\) 15.5272 13.9841i 0.576665 0.519357i
\(726\) 0 0
\(727\) 7.19783 7.19783i 0.266953 0.266953i −0.560918 0.827871i \(-0.689552\pi\)
0.827871 + 0.560918i \(0.189552\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.13631 + 5.13631i 0.189973 + 0.189973i
\(732\) 0 0
\(733\) 10.6158i 0.392103i 0.980594 + 0.196052i \(0.0628120\pi\)
−0.980594 + 0.196052i \(0.937188\pi\)
\(734\) 0 0
\(735\) 0.343555 13.1499i 0.0126722 0.485043i
\(736\) 0 0
\(737\) −8.27386 + 8.27386i −0.304772 + 0.304772i
\(738\) 0 0
\(739\) 30.4725 + 30.4725i 1.12095 + 1.12095i 0.991599 + 0.129349i \(0.0412888\pi\)
0.129349 + 0.991599i \(0.458711\pi\)
\(740\) 0 0
\(741\) −1.03090 + 1.03090i −0.0378710 + 0.0378710i
\(742\) 0 0
\(743\) −6.20995 6.20995i −0.227821 0.227821i 0.583961 0.811782i \(-0.301502\pi\)
−0.811782 + 0.583961i \(0.801502\pi\)
\(744\) 0 0
\(745\) −26.2999 27.7110i −0.963555 1.01525i
\(746\) 0 0
\(747\) 12.3589 0.452189
\(748\) 0 0
\(749\) 0.0414579 0.0414579i 0.00151484 0.00151484i
\(750\) 0 0
\(751\) 11.3219i 0.413143i −0.978432 0.206571i \(-0.933769\pi\)
0.978432 0.206571i \(-0.0662305\pi\)
\(752\) 0 0
\(753\) −5.41619 5.41619i −0.197377 0.197377i
\(754\) 0 0
\(755\) 28.2774 + 0.738773i 1.02912 + 0.0268867i
\(756\) 0 0
\(757\) 11.1139i 0.403942i 0.979391 + 0.201971i \(0.0647348\pi\)
−0.979391 + 0.201971i \(0.935265\pi\)
\(758\) 0 0
\(759\) 8.78702i 0.318949i
\(760\) 0 0
\(761\) 4.08171i 0.147962i −0.997260 0.0739810i \(-0.976430\pi\)
0.997260 0.0739810i \(-0.0235704\pi\)
\(762\) 0 0
\(763\) 1.41669i 0.0512878i
\(764\) 0 0
\(765\) 2.25318 2.13845i 0.0814639 0.0773156i
\(766\) 0 0
\(767\) 2.29583 + 2.29583i 0.0828975 + 0.0828975i
\(768\) 0 0
\(769\) 31.6143i 1.14004i −0.821631 0.570020i \(-0.806935\pi\)
0.821631 0.570020i \(-0.193065\pi\)
\(770\) 0 0
\(771\) 17.0268 17.0268i 0.613204 0.613204i
\(772\) 0 0
\(773\) −22.3964 −0.805542 −0.402771 0.915301i \(-0.631953\pi\)
−0.402771 + 0.915301i \(0.631953\pi\)
\(774\) 0 0
\(775\) 2.72947 52.2011i 0.0980455 1.87512i
\(776\) 0 0
\(777\) 6.14869 + 6.14869i 0.220583 + 0.220583i
\(778\) 0 0
\(779\) −5.89752 + 5.89752i −0.211301 + 0.211301i
\(780\) 0 0
\(781\) −13.0151 13.0151i −0.465719 0.465719i
\(782\) 0 0
\(783\) 2.95516 2.95516i 0.105609 0.105609i
\(784\) 0 0
\(785\) −14.1110 0.368664i −0.503644 0.0131582i
\(786\) 0 0
\(787\) 45.2339i 1.61242i −0.591633 0.806208i \(-0.701516\pi\)
0.591633 0.806208i \(-0.298484\pi\)
\(788\) 0 0
\(789\) −7.04662 7.04662i −0.250866 0.250866i
\(790\) 0 0
\(791\) 16.2632 0.578254
\(792\) 0 0
\(793\) −10.7859 + 10.7859i −0.383018 + 0.383018i
\(794\) 0 0
\(795\) 11.4885 + 0.300148i 0.407456 + 0.0106452i
\(796\) 0 0
\(797\) 33.6337 1.19137 0.595684 0.803219i \(-0.296881\pi\)
0.595684 + 0.803219i \(0.296881\pi\)
\(798\) 0 0
\(799\) 0.107711 0.00381056
\(800\) 0 0
\(801\) −18.0456 −0.637609
\(802\) 0 0
\(803\) −11.7034 −0.413004
\(804\) 0 0
\(805\) 15.9510 + 0.416735i 0.562199 + 0.0146880i
\(806\) 0 0
\(807\) −13.1762 + 13.1762i −0.463823 + 0.463823i
\(808\) 0 0
\(809\) 7.75023 0.272483 0.136242 0.990676i \(-0.456498\pi\)
0.136242 + 0.990676i \(0.456498\pi\)
\(810\) 0 0
\(811\) 15.5679 + 15.5679i 0.546661 + 0.546661i 0.925474 0.378812i \(-0.123667\pi\)
−0.378812 + 0.925474i \(0.623667\pi\)
\(812\) 0 0
\(813\) 2.01115i 0.0705343i
\(814\) 0 0
\(815\) −32.7089 0.854552i −1.14574 0.0299336i
\(816\) 0 0
\(817\) −5.40950 + 5.40950i −0.189254 + 0.189254i
\(818\) 0 0
\(819\) 0.744724 + 0.744724i 0.0260228 + 0.0260228i
\(820\) 0 0
\(821\) 25.2360 25.2360i 0.880741 0.880741i −0.112869 0.993610i \(-0.536004\pi\)
0.993610 + 0.112869i \(0.0360041\pi\)
\(822\) 0 0
\(823\) 24.2751 + 24.2751i 0.846178 + 0.846178i 0.989654 0.143476i \(-0.0458278\pi\)
−0.143476 + 0.989654i \(0.545828\pi\)
\(824\) 0 0
\(825\) −4.35500 4.83555i −0.151622 0.168352i
\(826\) 0 0
\(827\) −8.03445 −0.279385 −0.139693 0.990195i \(-0.544611\pi\)
−0.139693 + 0.990195i \(0.544611\pi\)
\(828\) 0 0
\(829\) −17.2385 + 17.2385i −0.598718 + 0.598718i −0.939971 0.341254i \(-0.889148\pi\)
0.341254 + 0.939971i \(0.389148\pi\)
\(830\) 0 0
\(831\) 5.15280i 0.178749i
\(832\) 0 0
\(833\) −5.77890 5.77890i −0.200227 0.200227i
\(834\) 0 0
\(835\) 12.1883 11.5676i 0.421793 0.400315i
\(836\) 0 0
\(837\) 10.4545i 0.361360i
\(838\) 0 0
\(839\) 23.0026i 0.794136i −0.917789 0.397068i \(-0.870028\pi\)
0.917789 0.397068i \(-0.129972\pi\)
\(840\) 0 0
\(841\) 11.5340i 0.397726i
\(842\) 0 0
\(843\) 14.7480i 0.507947i
\(844\) 0 0
\(845\) −26.8395 0.701209i −0.923308 0.0241223i
\(846\) 0 0
\(847\) 6.95520 + 6.95520i 0.238983 + 0.238983i
\(848\) 0 0
\(849\) 7.82068i 0.268405i
\(850\) 0 0
\(851\) 39.2750 39.2750i 1.34633 1.34633i
\(852\) 0 0
\(853\) 17.9417 0.614312 0.307156 0.951659i \(-0.400623\pi\)
0.307156 + 0.951659i \(0.400623\pi\)
\(854\) 0 0
\(855\) 2.25218 + 2.37302i 0.0770230 + 0.0811556i
\(856\) 0 0
\(857\) −27.5741 27.5741i −0.941914 0.941914i 0.0564890 0.998403i \(-0.482009\pi\)
−0.998403 + 0.0564890i \(0.982009\pi\)
\(858\) 0 0
\(859\) −22.0003 + 22.0003i −0.750640 + 0.750640i −0.974599 0.223959i \(-0.928102\pi\)
0.223959 + 0.974599i \(0.428102\pi\)
\(860\) 0 0
\(861\) 4.26039 + 4.26039i 0.145194 + 0.145194i
\(862\) 0 0
\(863\) 16.4456 16.4456i 0.559814 0.559814i −0.369440 0.929254i \(-0.620451\pi\)
0.929254 + 0.369440i \(0.120451\pi\)
\(864\) 0 0
\(865\) 0.768171 29.4026i 0.0261186 0.999718i
\(866\) 0 0
\(867\) 15.0700i 0.511806i
\(868\) 0 0
\(869\) −8.06733 8.06733i −0.273665 0.273665i
\(870\) 0 0
\(871\) −8.95830 −0.303540
\(872\) 0 0
\(873\) 1.29787 1.29787i 0.0439263 0.0439263i
\(874\) 0 0
\(875\) 8.98447 7.67626i 0.303731 0.259505i
\(876\) 0 0
\(877\) −6.59281 −0.222623 −0.111312 0.993786i \(-0.535505\pi\)
−0.111312 + 0.993786i \(0.535505\pi\)
\(878\) 0 0
\(879\) −19.1115 −0.644617
\(880\) 0 0
\(881\) 22.1698 0.746920 0.373460 0.927646i \(-0.378171\pi\)
0.373460 + 0.927646i \(0.378171\pi\)
\(882\) 0 0
\(883\) 38.7205 1.30305 0.651524 0.758628i \(-0.274130\pi\)
0.651524 + 0.758628i \(0.274130\pi\)
\(884\) 0 0
\(885\) 5.28476 5.01565i 0.177645 0.168599i
\(886\) 0 0
\(887\) 25.2413 25.2413i 0.847518 0.847518i −0.142305 0.989823i \(-0.545451\pi\)
0.989823 + 0.142305i \(0.0454512\pi\)
\(888\) 0 0
\(889\) −14.3698 −0.481947
\(890\) 0 0
\(891\) −0.920311 0.920311i −0.0308316 0.0308316i
\(892\) 0 0
\(893\) 0.113440i 0.00379613i
\(894\) 0 0
\(895\) −26.6051 28.0326i −0.889310 0.937025i
\(896\) 0 0
\(897\) 4.75695 4.75695i 0.158830 0.158830i
\(898\) 0 0
\(899\) −30.8947 30.8947i −1.03040 1.03040i
\(900\) 0 0
\(901\) 5.04877 5.04877i 0.168199 0.168199i
\(902\) 0 0
\(903\) 3.90784 + 3.90784i 0.130045 + 0.130045i
\(904\) 0 0
\(905\) 17.8389 16.9305i 0.592986 0.562790i
\(906\) 0 0
\(907\) 9.44895 0.313747 0.156874 0.987619i \(-0.449858\pi\)
0.156874 + 0.987619i \(0.449858\pi\)
\(908\) 0 0
\(909\) −4.25125 + 4.25125i −0.141005 + 0.141005i
\(910\) 0 0
\(911\) 36.1798i 1.19869i −0.800490 0.599346i \(-0.795427\pi\)
0.800490 0.599346i \(-0.204573\pi\)
\(912\) 0 0
\(913\) −11.3740 11.3740i −0.376426 0.376426i
\(914\) 0 0
\(915\) 23.5637 + 24.8280i 0.778992 + 0.820788i
\(916\) 0 0
\(917\) 8.37345i 0.276516i
\(918\) 0 0
\(919\) 45.3587i 1.49624i 0.663561 + 0.748122i \(0.269044\pi\)
−0.663561 + 0.748122i \(0.730956\pi\)
\(920\) 0 0
\(921\) 3.29048i 0.108425i
\(922\) 0 0
\(923\) 14.0918i 0.463837i
\(924\) 0 0
\(925\) 2.14790 41.0786i 0.0706226 1.35066i
\(926\) 0 0
\(927\) 5.92346 + 5.92346i 0.194552 + 0.194552i
\(928\) 0 0
\(929\) 0.551101i 0.0180810i 0.999959 + 0.00904052i \(0.00287773\pi\)
−0.999959 + 0.00904052i \(0.997122\pi\)
\(930\) 0 0
\(931\) 6.08626 6.08626i 0.199469 0.199469i
\(932\) 0 0
\(933\) 10.6744 0.349466
\(934\) 0 0
\(935\) −4.04166 0.105592i −0.132176 0.00345324i
\(936\) 0 0
\(937\) −10.4271 10.4271i −0.340639 0.340639i 0.515969 0.856607i \(-0.327432\pi\)
−0.856607 + 0.515969i \(0.827432\pi\)
\(938\) 0 0
\(939\) −21.5451 + 21.5451i −0.703098 + 0.703098i
\(940\) 0 0
\(941\) −7.44442 7.44442i −0.242681 0.242681i 0.575277 0.817958i \(-0.304894\pi\)
−0.817958 + 0.575277i \(0.804894\pi\)
\(942\) 0 0
\(943\) 27.2134 27.2134i 0.886190 0.886190i
\(944\) 0 0
\(945\) 1.71428 1.62698i 0.0557655 0.0529258i
\(946\) 0 0
\(947\) 15.8341i 0.514539i −0.966340 0.257270i \(-0.917177\pi\)
0.966340 0.257270i \(-0.0828229\pi\)
\(948\) 0 0
\(949\) −6.33577 6.33577i −0.205668 0.205668i
\(950\) 0 0
\(951\) 16.1238 0.522850
\(952\) 0 0
\(953\) 14.8928 14.8928i 0.482424 0.482424i −0.423481 0.905905i \(-0.639192\pi\)
0.905905 + 0.423481i \(0.139192\pi\)
\(954\) 0 0
\(955\) −1.06721 + 40.8486i −0.0345341 + 1.32183i
\(956\) 0 0
\(957\) −5.43934 −0.175829
\(958\) 0 0
\(959\) 7.00109 0.226077
\(960\) 0 0
\(961\) −78.2963 −2.52569
\(962\) 0 0
\(963\) −0.0554707 −0.00178752
\(964\) 0 0
\(965\) 24.6123 + 25.9329i 0.792300 + 0.834809i
\(966\) 0 0
\(967\) 27.8728 27.8728i 0.896330 0.896330i −0.0987795 0.995109i \(-0.531494\pi\)
0.995109 + 0.0987795i \(0.0314939\pi\)
\(968\) 0 0
\(969\) 2.03260 0.0652966
\(970\) 0 0
\(971\) −30.0958 30.0958i −0.965819 0.965819i 0.0336155 0.999435i \(-0.489298\pi\)
−0.999435 + 0.0336155i \(0.989298\pi\)
\(972\) 0 0
\(973\) 2.46593i 0.0790540i
\(974\) 0 0
\(975\) 0.260152 4.97541i 0.00833154 0.159341i
\(976\) 0 0
\(977\) −9.03427 + 9.03427i −0.289032 + 0.289032i −0.836697 0.547666i \(-0.815517\pi\)
0.547666 + 0.836697i \(0.315517\pi\)
\(978\) 0 0
\(979\) 16.6075 + 16.6075i 0.530780 + 0.530780i
\(980\) 0 0
\(981\) 0.947769 0.947769i 0.0302599 0.0302599i
\(982\) 0 0
\(983\) −24.5191 24.5191i −0.782039 0.782039i 0.198135 0.980175i \(-0.436511\pi\)
−0.980175 + 0.198135i \(0.936511\pi\)
\(984\) 0 0
\(985\) −0.652712 + 24.9833i −0.0207971 + 0.796034i
\(986\) 0 0
\(987\) 0.0819496 0.00260848
\(988\) 0 0
\(989\) 24.9615 24.9615i 0.793728 0.793728i
\(990\) 0 0
\(991\) 25.8872i 0.822334i 0.911560 + 0.411167i \(0.134879\pi\)
−0.911560 + 0.411167i \(0.865121\pi\)
\(992\) 0 0
\(993\) 1.97876 + 1.97876i 0.0627940 + 0.0627940i
\(994\) 0 0
\(995\) −1.10298 + 42.2180i −0.0349670 + 1.33840i
\(996\) 0 0
\(997\) 16.7546i 0.530624i 0.964163 + 0.265312i \(0.0854750\pi\)
−0.964163 + 0.265312i \(0.914525\pi\)
\(998\) 0 0
\(999\) 8.22694i 0.260289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.j.223.1 16
4.3 odd 2 1920.2.y.i.223.1 16
5.2 odd 4 1920.2.bc.j.607.3 16
8.3 odd 2 240.2.y.e.163.5 16
8.5 even 2 960.2.y.e.943.8 16
16.3 odd 4 960.2.bc.e.463.6 16
16.5 even 4 1920.2.bc.i.1183.3 16
16.11 odd 4 1920.2.bc.j.1183.3 16
16.13 even 4 240.2.bc.e.43.8 yes 16
20.7 even 4 1920.2.bc.i.607.3 16
24.11 even 2 720.2.z.f.163.4 16
40.27 even 4 240.2.bc.e.67.8 yes 16
40.37 odd 4 960.2.bc.e.367.6 16
48.29 odd 4 720.2.bd.f.523.1 16
80.27 even 4 inner 1920.2.y.j.1567.1 16
80.37 odd 4 1920.2.y.i.1567.1 16
80.67 even 4 960.2.y.e.847.8 16
80.77 odd 4 240.2.y.e.187.5 yes 16
120.107 odd 4 720.2.bd.f.307.1 16
240.77 even 4 720.2.z.f.667.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.5 16 8.3 odd 2
240.2.y.e.187.5 yes 16 80.77 odd 4
240.2.bc.e.43.8 yes 16 16.13 even 4
240.2.bc.e.67.8 yes 16 40.27 even 4
720.2.z.f.163.4 16 24.11 even 2
720.2.z.f.667.4 16 240.77 even 4
720.2.bd.f.307.1 16 120.107 odd 4
720.2.bd.f.523.1 16 48.29 odd 4
960.2.y.e.847.8 16 80.67 even 4
960.2.y.e.943.8 16 8.5 even 2
960.2.bc.e.367.6 16 40.37 odd 4
960.2.bc.e.463.6 16 16.3 odd 4
1920.2.y.i.223.1 16 4.3 odd 2
1920.2.y.i.1567.1 16 80.37 odd 4
1920.2.y.j.223.1 16 1.1 even 1 trivial
1920.2.y.j.1567.1 16 80.27 even 4 inner
1920.2.bc.i.607.3 16 20.7 even 4
1920.2.bc.i.1183.3 16 16.5 even 4
1920.2.bc.j.607.3 16 5.2 odd 4
1920.2.bc.j.1183.3 16 16.11 odd 4