Properties

Label 720.2.z.f.667.4
Level $720$
Weight $2$
Character 720.667
Analytic conductor $5.749$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(163,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.z (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 667.4
Root \(0.237728 + 1.39409i\) of defining polynomial
Character \(\chi\) \(=\) 720.667
Dual form 720.2.z.f.163.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.429059 - 1.34756i) q^{2} +(-1.63182 + 1.15636i) q^{4} +(-2.23531 + 0.0583995i) q^{5} +(0.747384 + 0.747384i) q^{7} +(2.25841 + 1.70282i) q^{8} +(1.03777 + 2.98714i) q^{10} +(0.920311 - 0.920311i) q^{11} -0.996441i q^{13} +(0.686471 - 1.32781i) q^{14} +(1.32566 - 3.77394i) q^{16} +(0.982332 + 0.982332i) q^{17} +(-1.03458 + 1.03458i) q^{19} +(3.58008 - 2.68012i) q^{20} +(-1.63504 - 0.845304i) q^{22} +(4.77394 - 4.77394i) q^{23} +(4.99318 - 0.261081i) q^{25} +(-1.34276 + 0.427532i) q^{26} +(-2.08384 - 0.355348i) q^{28} +(2.95516 + 2.95516i) q^{29} -10.4545i q^{31} +(-5.65438 - 0.167155i) q^{32} +(0.902270 - 1.74523i) q^{34} +(-1.71428 - 1.62698i) q^{35} -8.22694i q^{37} +(1.83805 + 0.950259i) q^{38} +(-5.14767 - 3.67443i) q^{40} -5.70040i q^{41} +5.22869i q^{43} +(-0.437567 + 2.56599i) q^{44} +(-8.48146 - 4.38486i) q^{46} +(-0.0548243 + 0.0548243i) q^{47} -5.88283i q^{49} +(-2.49419 - 6.61657i) q^{50} +(1.15225 + 1.62601i) q^{52} -5.13957 q^{53} +(-2.00343 + 2.11092i) q^{55} +(0.415238 + 2.96056i) q^{56} +(2.71431 - 5.25018i) q^{58} +(2.30403 + 2.30403i) q^{59} +(10.8244 - 10.8244i) q^{61} +(-14.0880 + 4.48559i) q^{62} +(2.20081 + 7.69132i) q^{64} +(0.0581916 + 2.22735i) q^{65} +8.99029i q^{67} +(-2.73892 - 0.467056i) q^{68} +(-1.45693 + 3.00816i) q^{70} +14.1421 q^{71} +(6.35840 + 6.35840i) q^{73} +(-11.0863 + 3.52984i) q^{74} +(0.491897 - 2.88459i) q^{76} +1.37565 q^{77} -8.76588 q^{79} +(-2.74285 + 8.51333i) q^{80} +(-7.68161 + 2.44581i) q^{82} -12.3589 q^{83} +(-2.25318 - 2.13845i) q^{85} +(7.04595 - 2.24341i) q^{86} +(3.64556 - 0.511314i) q^{88} +18.0456 q^{89} +(0.744724 - 0.744724i) q^{91} +(-2.26980 + 13.3106i) q^{92} +(0.0974017 + 0.0503560i) q^{94} +(2.25218 - 2.37302i) q^{95} +(1.29787 + 1.29787i) q^{97} +(-7.92745 + 2.52408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 4 q^{8} - 14 q^{10} + 4 q^{14} - 8 q^{16} + 8 q^{17} + 8 q^{19} + 12 q^{20} - 8 q^{22} + 32 q^{25} - 20 q^{26} + 12 q^{28} - 12 q^{29} + 28 q^{32} + 20 q^{35}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.429059 1.34756i −0.303390 0.952866i
\(3\) 0 0
\(4\) −1.63182 + 1.15636i −0.815909 + 0.578181i
\(5\) −2.23531 + 0.0583995i −0.999659 + 0.0261170i
\(6\) 0 0
\(7\) 0.747384 + 0.747384i 0.282485 + 0.282485i 0.834099 0.551615i \(-0.185988\pi\)
−0.551615 + 0.834099i \(0.685988\pi\)
\(8\) 2.25841 + 1.70282i 0.798468 + 0.602038i
\(9\) 0 0
\(10\) 1.03777 + 2.98714i 0.328173 + 0.944618i
\(11\) 0.920311 0.920311i 0.277484 0.277484i −0.554620 0.832104i \(-0.687136\pi\)
0.832104 + 0.554620i \(0.187136\pi\)
\(12\) 0 0
\(13\) 0.996441i 0.276363i −0.990407 0.138182i \(-0.955874\pi\)
0.990407 0.138182i \(-0.0441257\pi\)
\(14\) 0.686471 1.32781i 0.183467 0.354873i
\(15\) 0 0
\(16\) 1.32566 3.77394i 0.331414 0.943485i
\(17\) 0.982332 + 0.982332i 0.238251 + 0.238251i 0.816125 0.577875i \(-0.196118\pi\)
−0.577875 + 0.816125i \(0.696118\pi\)
\(18\) 0 0
\(19\) −1.03458 + 1.03458i −0.237349 + 0.237349i −0.815751 0.578403i \(-0.803676\pi\)
0.578403 + 0.815751i \(0.303676\pi\)
\(20\) 3.58008 2.68012i 0.800530 0.599293i
\(21\) 0 0
\(22\) −1.63504 0.845304i −0.348591 0.180219i
\(23\) 4.77394 4.77394i 0.995436 0.995436i −0.00455400 0.999990i \(-0.501450\pi\)
0.999990 + 0.00455400i \(0.00144959\pi\)
\(24\) 0 0
\(25\) 4.99318 0.261081i 0.998636 0.0522163i
\(26\) −1.34276 + 0.427532i −0.263337 + 0.0838458i
\(27\) 0 0
\(28\) −2.08384 0.355348i −0.393809 0.0671545i
\(29\) 2.95516 + 2.95516i 0.548760 + 0.548760i 0.926082 0.377322i \(-0.123155\pi\)
−0.377322 + 0.926082i \(0.623155\pi\)
\(30\) 0 0
\(31\) 10.4545i 1.87768i −0.344351 0.938841i \(-0.611901\pi\)
0.344351 0.938841i \(-0.388099\pi\)
\(32\) −5.65438 0.167155i −0.999563 0.0295491i
\(33\) 0 0
\(34\) 0.902270 1.74523i 0.154738 0.299304i
\(35\) −1.71428 1.62698i −0.289766 0.275011i
\(36\) 0 0
\(37\) 8.22694i 1.35250i −0.736672 0.676251i \(-0.763604\pi\)
0.736672 0.676251i \(-0.236396\pi\)
\(38\) 1.83805 + 0.950259i 0.298171 + 0.154152i
\(39\) 0 0
\(40\) −5.14767 3.67443i −0.813919 0.580979i
\(41\) 5.70040i 0.890253i −0.895468 0.445127i \(-0.853159\pi\)
0.895468 0.445127i \(-0.146841\pi\)
\(42\) 0 0
\(43\) 5.22869i 0.797368i 0.917088 + 0.398684i \(0.130533\pi\)
−0.917088 + 0.398684i \(0.869467\pi\)
\(44\) −0.437567 + 2.56599i −0.0659658 + 0.386838i
\(45\) 0 0
\(46\) −8.48146 4.38486i −1.25052 0.646512i
\(47\) −0.0548243 + 0.0548243i −0.00799695 + 0.00799695i −0.711094 0.703097i \(-0.751800\pi\)
0.703097 + 0.711094i \(0.251800\pi\)
\(48\) 0 0
\(49\) 5.88283i 0.840405i
\(50\) −2.49419 6.61657i −0.352731 0.935725i
\(51\) 0 0
\(52\) 1.15225 + 1.62601i 0.159788 + 0.225487i
\(53\) −5.13957 −0.705974 −0.352987 0.935628i \(-0.614834\pi\)
−0.352987 + 0.935628i \(0.614834\pi\)
\(54\) 0 0
\(55\) −2.00343 + 2.11092i −0.270142 + 0.284637i
\(56\) 0.415238 + 2.96056i 0.0554885 + 0.395621i
\(57\) 0 0
\(58\) 2.71431 5.25018i 0.356406 0.689383i
\(59\) 2.30403 + 2.30403i 0.299959 + 0.299959i 0.840998 0.541039i \(-0.181969\pi\)
−0.541039 + 0.840998i \(0.681969\pi\)
\(60\) 0 0
\(61\) 10.8244 10.8244i 1.38592 1.38592i 0.552234 0.833689i \(-0.313776\pi\)
0.833689 0.552234i \(-0.186224\pi\)
\(62\) −14.0880 + 4.48559i −1.78918 + 0.569670i
\(63\) 0 0
\(64\) 2.20081 + 7.69132i 0.275101 + 0.961415i
\(65\) 0.0581916 + 2.22735i 0.00721778 + 0.276269i
\(66\) 0 0
\(67\) 8.99029i 1.09834i 0.835711 + 0.549169i \(0.185056\pi\)
−0.835711 + 0.549169i \(0.814944\pi\)
\(68\) −2.73892 0.467056i −0.332143 0.0566388i
\(69\) 0 0
\(70\) −1.45693 + 3.00816i −0.174136 + 0.359544i
\(71\) 14.1421 1.67836 0.839180 0.543853i \(-0.183035\pi\)
0.839180 + 0.543853i \(0.183035\pi\)
\(72\) 0 0
\(73\) 6.35840 + 6.35840i 0.744195 + 0.744195i 0.973382 0.229188i \(-0.0736070\pi\)
−0.229188 + 0.973382i \(0.573607\pi\)
\(74\) −11.0863 + 3.52984i −1.28875 + 0.410336i
\(75\) 0 0
\(76\) 0.491897 2.88459i 0.0564245 0.330886i
\(77\) 1.37565 0.156770
\(78\) 0 0
\(79\) −8.76588 −0.986238 −0.493119 0.869962i \(-0.664143\pi\)
−0.493119 + 0.869962i \(0.664143\pi\)
\(80\) −2.74285 + 8.51333i −0.306660 + 0.951819i
\(81\) 0 0
\(82\) −7.68161 + 2.44581i −0.848292 + 0.270094i
\(83\) −12.3589 −1.35657 −0.678284 0.734800i \(-0.737276\pi\)
−0.678284 + 0.734800i \(0.737276\pi\)
\(84\) 0 0
\(85\) −2.25318 2.13845i −0.244392 0.231947i
\(86\) 7.04595 2.24341i 0.759785 0.241914i
\(87\) 0 0
\(88\) 3.64556 0.511314i 0.388618 0.0545062i
\(89\) 18.0456 1.91283 0.956414 0.292014i \(-0.0943254\pi\)
0.956414 + 0.292014i \(0.0943254\pi\)
\(90\) 0 0
\(91\) 0.744724 0.744724i 0.0780683 0.0780683i
\(92\) −2.26980 + 13.3106i −0.236643 + 1.38773i
\(93\) 0 0
\(94\) 0.0974017 + 0.0503560i 0.0100462 + 0.00519383i
\(95\) 2.25218 2.37302i 0.231069 0.243467i
\(96\) 0 0
\(97\) 1.29787 + 1.29787i 0.131779 + 0.131779i 0.769920 0.638141i \(-0.220296\pi\)
−0.638141 + 0.769920i \(0.720296\pi\)
\(98\) −7.92745 + 2.52408i −0.800794 + 0.254971i
\(99\) 0 0
\(100\) −7.84605 + 6.19996i −0.784605 + 0.619996i
\(101\) −4.25125 4.25125i −0.423015 0.423015i 0.463225 0.886241i \(-0.346692\pi\)
−0.886241 + 0.463225i \(0.846692\pi\)
\(102\) 0 0
\(103\) −5.92346 + 5.92346i −0.583656 + 0.583656i −0.935906 0.352250i \(-0.885417\pi\)
0.352250 + 0.935906i \(0.385417\pi\)
\(104\) 1.69676 2.25037i 0.166381 0.220667i
\(105\) 0 0
\(106\) 2.20518 + 6.92586i 0.214186 + 0.672699i
\(107\) 0.0554707 0.00536256 0.00268128 0.999996i \(-0.499147\pi\)
0.00268128 + 0.999996i \(0.499147\pi\)
\(108\) 0 0
\(109\) −0.947769 0.947769i −0.0907798 0.0907798i 0.660259 0.751038i \(-0.270447\pi\)
−0.751038 + 0.660259i \(0.770447\pi\)
\(110\) 3.70418 + 1.79403i 0.353179 + 0.171054i
\(111\) 0 0
\(112\) 3.81136 1.82981i 0.360139 0.172901i
\(113\) 10.8801 10.8801i 1.02351 1.02351i 0.0237977 0.999717i \(-0.492424\pi\)
0.999717 0.0237977i \(-0.00757577\pi\)
\(114\) 0 0
\(115\) −10.3924 + 10.9500i −0.969098 + 1.02109i
\(116\) −8.23952 1.40505i −0.765020 0.130456i
\(117\) 0 0
\(118\) 2.11624 4.09337i 0.194816 0.376825i
\(119\) 1.46836i 0.134604i
\(120\) 0 0
\(121\) 9.30606i 0.846005i
\(122\) −19.2308 9.94219i −1.74107 0.900124i
\(123\) 0 0
\(124\) 12.0892 + 17.0598i 1.08564 + 1.53202i
\(125\) −11.1460 + 0.875196i −0.996931 + 0.0782799i
\(126\) 0 0
\(127\) −9.61338 + 9.61338i −0.853050 + 0.853050i −0.990508 0.137458i \(-0.956107\pi\)
0.137458 + 0.990508i \(0.456107\pi\)
\(128\) 9.42021 6.26575i 0.832637 0.553819i
\(129\) 0 0
\(130\) 2.97651 1.03408i 0.261057 0.0906948i
\(131\) −5.60184 5.60184i −0.489435 0.489435i 0.418693 0.908128i \(-0.362488\pi\)
−0.908128 + 0.418693i \(0.862488\pi\)
\(132\) 0 0
\(133\) −1.54646 −0.134095
\(134\) 12.1149 3.85736i 1.04657 0.333225i
\(135\) 0 0
\(136\) 0.545772 + 3.89124i 0.0467996 + 0.333671i
\(137\) 4.68373 4.68373i 0.400158 0.400158i −0.478130 0.878289i \(-0.658685\pi\)
0.878289 + 0.478130i \(0.158685\pi\)
\(138\) 0 0
\(139\) −1.64971 1.64971i −0.139926 0.139926i 0.633674 0.773600i \(-0.281546\pi\)
−0.773600 + 0.633674i \(0.781546\pi\)
\(140\) 4.67877 + 0.672616i 0.395428 + 0.0568465i
\(141\) 0 0
\(142\) −6.06780 19.0573i −0.509198 1.59925i
\(143\) −0.917036 0.917036i −0.0766864 0.0766864i
\(144\) 0 0
\(145\) −6.77827 6.43311i −0.562905 0.534241i
\(146\) 5.84018 11.2964i 0.483337 0.934899i
\(147\) 0 0
\(148\) 9.51332 + 13.4249i 0.781990 + 1.10352i
\(149\) 12.0813 12.0813i 0.989742 0.989742i −0.0102058 0.999948i \(-0.503249\pi\)
0.999948 + 0.0102058i \(0.00324866\pi\)
\(150\) 0 0
\(151\) 12.6503 1.02947 0.514735 0.857350i \(-0.327890\pi\)
0.514735 + 0.857350i \(0.327890\pi\)
\(152\) −4.09821 + 0.574800i −0.332408 + 0.0466225i
\(153\) 0 0
\(154\) −0.590235 1.85377i −0.0475625 0.149381i
\(155\) 0.610537 + 23.3690i 0.0490395 + 1.87704i
\(156\) 0 0
\(157\) −6.31279 −0.503816 −0.251908 0.967751i \(-0.581058\pi\)
−0.251908 + 0.967751i \(0.581058\pi\)
\(158\) 3.76107 + 11.8125i 0.299215 + 0.939753i
\(159\) 0 0
\(160\) 12.6490 + 0.0434293i 0.999994 + 0.00343339i
\(161\) 7.13593 0.562390
\(162\) 0 0
\(163\) 14.6329 1.14613 0.573067 0.819508i \(-0.305753\pi\)
0.573067 + 0.819508i \(0.305753\pi\)
\(164\) 6.59172 + 9.30201i 0.514727 + 0.726365i
\(165\) 0 0
\(166\) 5.30270 + 16.6543i 0.411569 + 1.29263i
\(167\) −5.31380 5.31380i −0.411194 0.411194i 0.470960 0.882155i \(-0.343908\pi\)
−0.882155 + 0.470960i \(0.843908\pi\)
\(168\) 0 0
\(169\) 12.0071 0.923623
\(170\) −1.91493 + 3.95381i −0.146868 + 0.303243i
\(171\) 0 0
\(172\) −6.04625 8.53227i −0.461023 0.650579i
\(173\) 13.1537i 1.00006i −0.866008 0.500029i \(-0.833322\pi\)
0.866008 0.500029i \(-0.166678\pi\)
\(174\) 0 0
\(175\) 3.92695 + 3.53669i 0.296849 + 0.267349i
\(176\) −2.25318 4.69322i −0.169840 0.353764i
\(177\) 0 0
\(178\) −7.74261 24.3174i −0.580333 1.82267i
\(179\) −12.2215 + 12.2215i −0.913479 + 0.913479i −0.996544 0.0830647i \(-0.973529\pi\)
0.0830647 + 0.996544i \(0.473529\pi\)
\(180\) 0 0
\(181\) 7.77734 + 7.77734i 0.578085 + 0.578085i 0.934375 0.356290i \(-0.115959\pi\)
−0.356290 + 0.934375i \(0.615959\pi\)
\(182\) −1.32309 0.684027i −0.0980738 0.0507035i
\(183\) 0 0
\(184\) 18.9107 2.65235i 1.39411 0.195534i
\(185\) 0.480449 + 18.3897i 0.0353233 + 1.35204i
\(186\) 0 0
\(187\) 1.80810 0.132222
\(188\) 0.0260665 0.152860i 0.00190110 0.0111485i
\(189\) 0 0
\(190\) −4.16410 2.01678i −0.302095 0.146313i
\(191\) 18.2743i 1.32228i 0.750262 + 0.661141i \(0.229927\pi\)
−0.750262 + 0.661141i \(0.770073\pi\)
\(192\) 0 0
\(193\) −11.3061 + 11.3061i −0.813832 + 0.813832i −0.985206 0.171374i \(-0.945179\pi\)
0.171374 + 0.985206i \(0.445179\pi\)
\(194\) 1.19209 2.30582i 0.0855873 0.165548i
\(195\) 0 0
\(196\) 6.80268 + 9.59971i 0.485906 + 0.685694i
\(197\) 11.1767i 0.796305i 0.917319 + 0.398153i \(0.130349\pi\)
−0.917319 + 0.398153i \(0.869651\pi\)
\(198\) 0 0
\(199\) 18.8869i 1.33886i −0.742877 0.669428i \(-0.766539\pi\)
0.742877 0.669428i \(-0.233461\pi\)
\(200\) 11.7212 + 7.91285i 0.828815 + 0.559523i
\(201\) 0 0
\(202\) −3.90477 + 7.55284i −0.274738 + 0.531416i
\(203\) 4.41728i 0.310032i
\(204\) 0 0
\(205\) 0.332900 + 12.7421i 0.0232508 + 0.889949i
\(206\) 10.5237 + 5.44069i 0.733222 + 0.379071i
\(207\) 0 0
\(208\) −3.76051 1.32094i −0.260744 0.0915906i
\(209\) 1.90427i 0.131721i
\(210\) 0 0
\(211\) −7.95311 7.95311i −0.547514 0.547514i 0.378207 0.925721i \(-0.376541\pi\)
−0.925721 + 0.378207i \(0.876541\pi\)
\(212\) 8.38684 5.94320i 0.576011 0.408181i
\(213\) 0 0
\(214\) −0.0238002 0.0747499i −0.00162695 0.00510980i
\(215\) −0.305353 11.6877i −0.0208249 0.797096i
\(216\) 0 0
\(217\) 7.81352 7.81352i 0.530416 0.530416i
\(218\) −0.870524 + 1.68382i −0.0589593 + 0.114043i
\(219\) 0 0
\(220\) 0.828244 5.76133i 0.0558402 0.388429i
\(221\) 0.978836 0.978836i 0.0658437 0.0658437i
\(222\) 0 0
\(223\) 4.22843 + 4.22843i 0.283157 + 0.283157i 0.834367 0.551210i \(-0.185834\pi\)
−0.551210 + 0.834367i \(0.685834\pi\)
\(224\) −4.10107 4.35092i −0.274014 0.290708i
\(225\) 0 0
\(226\) −19.3298 9.99336i −1.28580 0.664748i
\(227\) 15.7654i 1.04639i 0.852214 + 0.523193i \(0.175259\pi\)
−0.852214 + 0.523193i \(0.824741\pi\)
\(228\) 0 0
\(229\) −0.746140 + 0.746140i −0.0493063 + 0.0493063i −0.731330 0.682024i \(-0.761100\pi\)
0.682024 + 0.731330i \(0.261100\pi\)
\(230\) 19.2147 + 9.30618i 1.26698 + 0.613631i
\(231\) 0 0
\(232\) 1.64185 + 11.7061i 0.107793 + 0.768541i
\(233\) 5.74517 + 5.74517i 0.376379 + 0.376379i 0.869794 0.493415i \(-0.164252\pi\)
−0.493415 + 0.869794i \(0.664252\pi\)
\(234\) 0 0
\(235\) 0.119347 0.125751i 0.00778536 0.00820308i
\(236\) −6.42404 1.09546i −0.418169 0.0713086i
\(237\) 0 0
\(238\) 1.97870 0.630012i 0.128260 0.0408376i
\(239\) −27.9736 −1.80946 −0.904729 0.425987i \(-0.859927\pi\)
−0.904729 + 0.425987i \(0.859927\pi\)
\(240\) 0 0
\(241\) −7.01072 −0.451600 −0.225800 0.974174i \(-0.572500\pi\)
−0.225800 + 0.974174i \(0.572500\pi\)
\(242\) 12.5404 3.99284i 0.806130 0.256670i
\(243\) 0 0
\(244\) −5.14653 + 30.1804i −0.329473 + 1.93210i
\(245\) 0.343555 + 13.1499i 0.0219489 + 0.840118i
\(246\) 0 0
\(247\) 1.03090 + 1.03090i 0.0655945 + 0.0655945i
\(248\) 17.8021 23.6105i 1.13044 1.49927i
\(249\) 0 0
\(250\) 5.96168 + 14.6444i 0.377050 + 0.926193i
\(251\) 5.41619 5.41619i 0.341867 0.341867i −0.515202 0.857069i \(-0.672283\pi\)
0.857069 + 0.515202i \(0.172283\pi\)
\(252\) 0 0
\(253\) 8.78702i 0.552435i
\(254\) 17.0793 + 8.82987i 1.07165 + 0.554036i
\(255\) 0 0
\(256\) −12.4853 10.0059i −0.780329 0.625369i
\(257\) −17.0268 17.0268i −1.06210 1.06210i −0.997940 0.0641616i \(-0.979563\pi\)
−0.0641616 0.997940i \(-0.520437\pi\)
\(258\) 0 0
\(259\) 6.14869 6.14869i 0.382061 0.382061i
\(260\) −2.67058 3.56734i −0.165622 0.221237i
\(261\) 0 0
\(262\) −5.14528 + 9.95232i −0.317877 + 0.614856i
\(263\) −7.04662 + 7.04662i −0.434513 + 0.434513i −0.890160 0.455647i \(-0.849408\pi\)
0.455647 + 0.890160i \(0.349408\pi\)
\(264\) 0 0
\(265\) 11.4885 0.300148i 0.705734 0.0184380i
\(266\) 0.663520 + 2.08394i 0.0406830 + 0.127774i
\(267\) 0 0
\(268\) −10.3960 14.6705i −0.635038 0.896144i
\(269\) −13.1762 13.1762i −0.803366 0.803366i 0.180254 0.983620i \(-0.442308\pi\)
−0.983620 + 0.180254i \(0.942308\pi\)
\(270\) 0 0
\(271\) 2.01115i 0.122169i −0.998133 0.0610845i \(-0.980544\pi\)
0.998133 0.0610845i \(-0.0194559\pi\)
\(272\) 5.00950 2.40503i 0.303746 0.145826i
\(273\) 0 0
\(274\) −8.32119 4.30200i −0.502702 0.259893i
\(275\) 4.35500 4.83555i 0.262616 0.291595i
\(276\) 0 0
\(277\) 5.15280i 0.309602i −0.987946 0.154801i \(-0.950526\pi\)
0.987946 0.154801i \(-0.0494736\pi\)
\(278\) −1.51525 + 2.93089i −0.0908787 + 0.175783i
\(279\) 0 0
\(280\) −1.10108 6.59350i −0.0658020 0.394037i
\(281\) 14.7480i 0.879791i 0.898049 + 0.439895i \(0.144984\pi\)
−0.898049 + 0.439895i \(0.855016\pi\)
\(282\) 0 0
\(283\) 7.82068i 0.464891i 0.972609 + 0.232446i \(0.0746728\pi\)
−0.972609 + 0.232446i \(0.925327\pi\)
\(284\) −23.0774 + 16.3534i −1.36939 + 0.970396i
\(285\) 0 0
\(286\) −0.842295 + 1.62922i −0.0498060 + 0.0963378i
\(287\) 4.26039 4.26039i 0.251483 0.251483i
\(288\) 0 0
\(289\) 15.0700i 0.886473i
\(290\) −5.76070 + 11.8943i −0.338280 + 0.698456i
\(291\) 0 0
\(292\) −17.7284 3.02314i −1.03747 0.176916i
\(293\) −19.1115 −1.11651 −0.558254 0.829670i \(-0.688529\pi\)
−0.558254 + 0.829670i \(0.688529\pi\)
\(294\) 0 0
\(295\) −5.28476 5.01565i −0.307690 0.292022i
\(296\) 14.0090 18.5798i 0.814257 1.07993i
\(297\) 0 0
\(298\) −21.4639 11.0967i −1.24337 0.642814i
\(299\) −4.75695 4.75695i −0.275102 0.275102i
\(300\) 0 0
\(301\) −3.90784 + 3.90784i −0.225244 + 0.225244i
\(302\) −5.42773 17.0470i −0.312331 0.980947i
\(303\) 0 0
\(304\) 2.53295 + 5.27594i 0.145274 + 0.302596i
\(305\) −23.5637 + 24.8280i −1.34925 + 1.42165i
\(306\) 0 0
\(307\) 3.29048i 0.187798i 0.995582 + 0.0938988i \(0.0299330\pi\)
−0.995582 + 0.0938988i \(0.970067\pi\)
\(308\) −2.24481 + 1.59075i −0.127910 + 0.0906414i
\(309\) 0 0
\(310\) 31.2291 10.8494i 1.77369 0.616204i
\(311\) 10.6744 0.605292 0.302646 0.953103i \(-0.402130\pi\)
0.302646 + 0.953103i \(0.402130\pi\)
\(312\) 0 0
\(313\) −21.5451 21.5451i −1.21780 1.21780i −0.968400 0.249401i \(-0.919766\pi\)
−0.249401 0.968400i \(-0.580234\pi\)
\(314\) 2.70856 + 8.50684i 0.152853 + 0.480069i
\(315\) 0 0
\(316\) 14.3043 10.1365i 0.804680 0.570224i
\(317\) 16.1238 0.905603 0.452801 0.891611i \(-0.350425\pi\)
0.452801 + 0.891611i \(0.350425\pi\)
\(318\) 0 0
\(319\) 5.43934 0.304544
\(320\) −5.36865 17.0639i −0.300117 0.953902i
\(321\) 0 0
\(322\) −3.06173 9.61607i −0.170624 0.535883i
\(323\) −2.03260 −0.113097
\(324\) 0 0
\(325\) −0.260152 4.97541i −0.0144306 0.275986i
\(326\) −6.27835 19.7186i −0.347726 1.09211i
\(327\) 0 0
\(328\) 9.70675 12.8738i 0.535966 0.710838i
\(329\) −0.0819496 −0.00451803
\(330\) 0 0
\(331\) 1.97876 1.97876i 0.108762 0.108762i −0.650631 0.759394i \(-0.725496\pi\)
0.759394 + 0.650631i \(0.225496\pi\)
\(332\) 20.1675 14.2914i 1.10684 0.784341i
\(333\) 0 0
\(334\) −4.88072 + 9.44058i −0.267061 + 0.516566i
\(335\) −0.525028 20.0960i −0.0286854 1.09796i
\(336\) 0 0
\(337\) 25.2423 + 25.2423i 1.37503 + 1.37503i 0.852806 + 0.522229i \(0.174899\pi\)
0.522229 + 0.852806i \(0.325101\pi\)
\(338\) −5.15175 16.1803i −0.280218 0.880090i
\(339\) 0 0
\(340\) 6.14960 + 0.884061i 0.333509 + 0.0479449i
\(341\) −9.62138 9.62138i −0.521027 0.521027i
\(342\) 0 0
\(343\) 9.62842 9.62842i 0.519886 0.519886i
\(344\) −8.90351 + 11.8085i −0.480045 + 0.636672i
\(345\) 0 0
\(346\) −17.7254 + 5.64372i −0.952923 + 0.303408i
\(347\) −24.1967 −1.29895 −0.649475 0.760383i \(-0.725011\pi\)
−0.649475 + 0.760383i \(0.725011\pi\)
\(348\) 0 0
\(349\) 2.28867 + 2.28867i 0.122510 + 0.122510i 0.765704 0.643194i \(-0.222391\pi\)
−0.643194 + 0.765704i \(0.722391\pi\)
\(350\) 3.08100 6.80924i 0.164687 0.363969i
\(351\) 0 0
\(352\) −5.35763 + 5.04996i −0.285562 + 0.269164i
\(353\) 9.70578 9.70578i 0.516587 0.516587i −0.399950 0.916537i \(-0.630973\pi\)
0.916537 + 0.399950i \(0.130973\pi\)
\(354\) 0 0
\(355\) −31.6120 + 0.825893i −1.67779 + 0.0438338i
\(356\) −29.4471 + 20.8672i −1.56069 + 1.10596i
\(357\) 0 0
\(358\) 21.7129 + 11.2254i 1.14756 + 0.593283i
\(359\) 27.1463i 1.43273i −0.697726 0.716365i \(-0.745805\pi\)
0.697726 0.716365i \(-0.254195\pi\)
\(360\) 0 0
\(361\) 16.8593i 0.887331i
\(362\) 7.14347 13.8173i 0.375452 0.726223i
\(363\) 0 0
\(364\) −0.354083 + 2.07642i −0.0185590 + 0.108834i
\(365\) −14.5843 13.8416i −0.763377 0.724505i
\(366\) 0 0
\(367\) −16.3750 + 16.3750i −0.854769 + 0.854769i −0.990716 0.135947i \(-0.956592\pi\)
0.135947 + 0.990716i \(0.456592\pi\)
\(368\) −11.6880 24.3452i −0.609278 1.26908i
\(369\) 0 0
\(370\) 24.5751 8.53771i 1.27760 0.443854i
\(371\) −3.84123 3.84123i −0.199427 0.199427i
\(372\) 0 0
\(373\) −29.7473 −1.54026 −0.770129 0.637888i \(-0.779808\pi\)
−0.770129 + 0.637888i \(0.779808\pi\)
\(374\) −0.775782 2.43652i −0.0401147 0.125989i
\(375\) 0 0
\(376\) −0.217172 + 0.0304597i −0.0111998 + 0.00157084i
\(377\) 2.94464 2.94464i 0.151657 0.151657i
\(378\) 0 0
\(379\) −11.0584 11.0584i −0.568031 0.568031i 0.363546 0.931576i \(-0.381566\pi\)
−0.931576 + 0.363546i \(0.881566\pi\)
\(380\) −0.931082 + 6.47667i −0.0477635 + 0.332246i
\(381\) 0 0
\(382\) 24.6256 7.84074i 1.25996 0.401167i
\(383\) 16.2297 + 16.2297i 0.829298 + 0.829298i 0.987420 0.158122i \(-0.0505439\pi\)
−0.158122 + 0.987420i \(0.550544\pi\)
\(384\) 0 0
\(385\) −3.07500 + 0.0803373i −0.156717 + 0.00409437i
\(386\) 20.0866 + 10.3846i 1.02238 + 0.528565i
\(387\) 0 0
\(388\) −3.61870 0.617081i −0.183712 0.0313276i
\(389\) −12.6341 + 12.6341i −0.640575 + 0.640575i −0.950697 0.310122i \(-0.899630\pi\)
0.310122 + 0.950697i \(0.399630\pi\)
\(390\) 0 0
\(391\) 9.37920 0.474326
\(392\) 10.0174 13.2858i 0.505955 0.671036i
\(393\) 0 0
\(394\) 15.0612 4.79545i 0.758773 0.241591i
\(395\) 19.5944 0.511923i 0.985902 0.0257576i
\(396\) 0 0
\(397\) −5.42044 −0.272044 −0.136022 0.990706i \(-0.543432\pi\)
−0.136022 + 0.990706i \(0.543432\pi\)
\(398\) −25.4512 + 8.10358i −1.27575 + 0.406196i
\(399\) 0 0
\(400\) 5.63393 19.1901i 0.281697 0.959504i
\(401\) −15.7550 −0.786765 −0.393382 0.919375i \(-0.628695\pi\)
−0.393382 + 0.919375i \(0.628695\pi\)
\(402\) 0 0
\(403\) −10.4173 −0.518922
\(404\) 11.8533 + 2.02128i 0.589721 + 0.100563i
\(405\) 0 0
\(406\) 5.95254 1.89527i 0.295419 0.0940608i
\(407\) −7.57135 7.57135i −0.375298 0.375298i
\(408\) 0 0
\(409\) −30.9442 −1.53009 −0.765046 0.643976i \(-0.777284\pi\)
−0.765046 + 0.643976i \(0.777284\pi\)
\(410\) 17.0279 5.91573i 0.840949 0.292157i
\(411\) 0 0
\(412\) 2.81635 16.5157i 0.138751 0.813669i
\(413\) 3.44398i 0.169467i
\(414\) 0 0
\(415\) 27.6260 0.721754i 1.35610 0.0354295i
\(416\) −0.166560 + 5.63426i −0.00816628 + 0.276242i
\(417\) 0 0
\(418\) 2.56611 0.817043i 0.125513 0.0399629i
\(419\) 15.2385 15.2385i 0.744451 0.744451i −0.228980 0.973431i \(-0.573539\pi\)
0.973431 + 0.228980i \(0.0735391\pi\)
\(420\) 0 0
\(421\) 14.4008 + 14.4008i 0.701852 + 0.701852i 0.964808 0.262956i \(-0.0846974\pi\)
−0.262956 + 0.964808i \(0.584697\pi\)
\(422\) −7.30491 + 14.1296i −0.355598 + 0.687819i
\(423\) 0 0
\(424\) −11.6072 8.75176i −0.563698 0.425023i
\(425\) 5.16143 + 4.64849i 0.250366 + 0.225485i
\(426\) 0 0
\(427\) 16.1800 0.783004
\(428\) −0.0905181 + 0.0641442i −0.00437536 + 0.00310053i
\(429\) 0 0
\(430\) −15.6188 + 5.42619i −0.753208 + 0.261674i
\(431\) 4.47310i 0.215461i −0.994180 0.107731i \(-0.965642\pi\)
0.994180 0.107731i \(-0.0343584\pi\)
\(432\) 0 0
\(433\) 20.8589 20.8589i 1.00242 1.00242i 0.00241793 0.999997i \(-0.499230\pi\)
0.999997 0.00241793i \(-0.000769652\pi\)
\(434\) −13.8816 7.17670i −0.666339 0.344493i
\(435\) 0 0
\(436\) 2.64255 + 0.450622i 0.126555 + 0.0215809i
\(437\) 9.87805i 0.472531i
\(438\) 0 0
\(439\) 0.257771i 0.0123027i 0.999981 + 0.00615136i \(0.00195805\pi\)
−0.999981 + 0.00615136i \(0.998042\pi\)
\(440\) −8.11908 + 1.35584i −0.387062 + 0.0646372i
\(441\) 0 0
\(442\) −1.73902 0.899059i −0.0827165 0.0427639i
\(443\) 27.8275i 1.32212i 0.750331 + 0.661062i \(0.229894\pi\)
−0.750331 + 0.661062i \(0.770106\pi\)
\(444\) 0 0
\(445\) −40.3374 + 1.05385i −1.91218 + 0.0499574i
\(446\) 3.88380 7.51229i 0.183903 0.355717i
\(447\) 0 0
\(448\) −4.10352 + 7.39322i −0.193873 + 0.349297i
\(449\) 7.32170i 0.345533i −0.984963 0.172766i \(-0.944729\pi\)
0.984963 0.172766i \(-0.0552705\pi\)
\(450\) 0 0
\(451\) −5.24614 5.24614i −0.247031 0.247031i
\(452\) −5.17301 + 30.3357i −0.243318 + 1.42687i
\(453\) 0 0
\(454\) 21.2448 6.76428i 0.997066 0.317463i
\(455\) −1.62119 + 1.70818i −0.0760027 + 0.0800806i
\(456\) 0 0
\(457\) 13.1962 13.1962i 0.617293 0.617293i −0.327543 0.944836i \(-0.606221\pi\)
0.944836 + 0.327543i \(0.106221\pi\)
\(458\) 1.32560 + 0.685328i 0.0619414 + 0.0320233i
\(459\) 0 0
\(460\) 4.29636 29.8858i 0.200319 1.39343i
\(461\) 19.6030 19.6030i 0.913002 0.913002i −0.0835057 0.996507i \(-0.526612\pi\)
0.996507 + 0.0835057i \(0.0266117\pi\)
\(462\) 0 0
\(463\) −17.2918 17.2918i −0.803619 0.803619i 0.180040 0.983659i \(-0.442377\pi\)
−0.983659 + 0.180040i \(0.942377\pi\)
\(464\) 15.0701 7.23508i 0.699614 0.335880i
\(465\) 0 0
\(466\) 5.27693 10.2070i 0.244449 0.472828i
\(467\) 31.3895i 1.45253i 0.687413 + 0.726267i \(0.258746\pi\)
−0.687413 + 0.726267i \(0.741254\pi\)
\(468\) 0 0
\(469\) −6.71920 + 6.71920i −0.310264 + 0.310264i
\(470\) −0.220663 0.106873i −0.0101784 0.00492968i
\(471\) 0 0
\(472\) 1.28009 + 9.12677i 0.0589209 + 0.420094i
\(473\) 4.81202 + 4.81202i 0.221257 + 0.221257i
\(474\) 0 0
\(475\) −4.89573 + 5.43595i −0.224632 + 0.249419i
\(476\) −1.69795 2.39609i −0.0778256 0.109825i
\(477\) 0 0
\(478\) 12.0023 + 37.6959i 0.548972 + 1.72417i
\(479\) −10.4863 −0.479133 −0.239566 0.970880i \(-0.577005\pi\)
−0.239566 + 0.970880i \(0.577005\pi\)
\(480\) 0 0
\(481\) −8.19767 −0.373781
\(482\) 3.00801 + 9.44735i 0.137011 + 0.430315i
\(483\) 0 0
\(484\) −10.7612 15.1858i −0.489144 0.690263i
\(485\) −2.97694 2.82535i −0.135176 0.128292i
\(486\) 0 0
\(487\) 4.72750 + 4.72750i 0.214224 + 0.214224i 0.806059 0.591835i \(-0.201596\pi\)
−0.591835 + 0.806059i \(0.701596\pi\)
\(488\) 42.8779 6.01391i 1.94099 0.272237i
\(489\) 0 0
\(490\) 17.5729 6.10505i 0.793861 0.275798i
\(491\) 3.00877 3.00877i 0.135784 0.135784i −0.635948 0.771732i \(-0.719391\pi\)
0.771732 + 0.635948i \(0.219391\pi\)
\(492\) 0 0
\(493\) 5.80590i 0.261485i
\(494\) 0.946877 1.83151i 0.0426020 0.0824035i
\(495\) 0 0
\(496\) −39.4546 13.8591i −1.77157 0.622290i
\(497\) 10.5696 + 10.5696i 0.474111 + 0.474111i
\(498\) 0 0
\(499\) −8.75769 + 8.75769i −0.392048 + 0.392048i −0.875417 0.483369i \(-0.839413\pi\)
0.483369 + 0.875417i \(0.339413\pi\)
\(500\) 17.1762 14.3170i 0.768145 0.640276i
\(501\) 0 0
\(502\) −9.62249 4.97476i −0.429473 0.222034i
\(503\) 3.79393 3.79393i 0.169163 0.169163i −0.617448 0.786611i \(-0.711834\pi\)
0.786611 + 0.617448i \(0.211834\pi\)
\(504\) 0 0
\(505\) 9.75112 + 9.25457i 0.433919 + 0.411823i
\(506\) −11.8410 + 3.77015i −0.526397 + 0.167603i
\(507\) 0 0
\(508\) 4.57074 26.8038i 0.202794 1.18923i
\(509\) 9.92183 + 9.92183i 0.439777 + 0.439777i 0.891937 0.452160i \(-0.149346\pi\)
−0.452160 + 0.891937i \(0.649346\pi\)
\(510\) 0 0
\(511\) 9.50433i 0.420447i
\(512\) −8.12660 + 21.1177i −0.359149 + 0.933280i
\(513\) 0 0
\(514\) −15.6391 + 30.2500i −0.689809 + 1.33427i
\(515\) 12.8948 13.5867i 0.568214 0.598701i
\(516\) 0 0
\(517\) 0.100911i 0.00443805i
\(518\) −10.9238 5.64756i −0.479966 0.248139i
\(519\) 0 0
\(520\) −3.66135 + 5.12935i −0.160561 + 0.224937i
\(521\) 31.9555i 1.39999i 0.714146 + 0.699997i \(0.246815\pi\)
−0.714146 + 0.699997i \(0.753185\pi\)
\(522\) 0 0
\(523\) 24.3222i 1.06354i 0.846890 + 0.531768i \(0.178472\pi\)
−0.846890 + 0.531768i \(0.821528\pi\)
\(524\) 15.6189 + 2.66343i 0.682317 + 0.116352i
\(525\) 0 0
\(526\) 12.5191 + 6.47231i 0.545860 + 0.282206i
\(527\) 10.2698 10.2698i 0.447359 0.447359i
\(528\) 0 0
\(529\) 22.5810i 0.981784i
\(530\) −5.33371 15.3526i −0.231682 0.666876i
\(531\) 0 0
\(532\) 2.52353 1.78826i 0.109409 0.0775310i
\(533\) −5.68011 −0.246033
\(534\) 0 0
\(535\) −0.123994 + 0.00323946i −0.00536073 + 0.000140054i
\(536\) −15.3088 + 20.3037i −0.661241 + 0.876988i
\(537\) 0 0
\(538\) −12.1023 + 23.4090i −0.521767 + 1.00923i
\(539\) −5.41404 5.41404i −0.233199 0.233199i
\(540\) 0 0
\(541\) 24.3708 24.3708i 1.04778 1.04778i 0.0489835 0.998800i \(-0.484402\pi\)
0.998800 0.0489835i \(-0.0155982\pi\)
\(542\) −2.71015 + 0.862903i −0.116411 + 0.0370649i
\(543\) 0 0
\(544\) −5.39028 5.71869i −0.231106 0.245187i
\(545\) 2.17390 + 2.06320i 0.0931197 + 0.0883779i
\(546\) 0 0
\(547\) 46.2500i 1.97751i −0.149550 0.988754i \(-0.547782\pi\)
0.149550 0.988754i \(-0.452218\pi\)
\(548\) −2.22691 + 13.0591i −0.0951289 + 0.557857i
\(549\) 0 0
\(550\) −8.38473 3.79387i −0.357526 0.161771i
\(551\) −6.11470 −0.260495
\(552\) 0 0
\(553\) −6.55147 6.55147i −0.278597 0.278597i
\(554\) −6.94369 + 2.21085i −0.295009 + 0.0939301i
\(555\) 0 0
\(556\) 4.59967 + 0.784362i 0.195070 + 0.0332644i
\(557\) 3.18081 0.134775 0.0673876 0.997727i \(-0.478534\pi\)
0.0673876 + 0.997727i \(0.478534\pi\)
\(558\) 0 0
\(559\) 5.21008 0.220363
\(560\) −8.41269 + 4.31276i −0.355501 + 0.182247i
\(561\) 0 0
\(562\) 19.8737 6.32775i 0.838323 0.266920i
\(563\) 26.5795 1.12019 0.560096 0.828427i \(-0.310764\pi\)
0.560096 + 0.828427i \(0.310764\pi\)
\(564\) 0 0
\(565\) −23.6850 + 24.9558i −0.996434 + 1.04990i
\(566\) 10.5388 3.35553i 0.442979 0.141044i
\(567\) 0 0
\(568\) 31.9387 + 24.0815i 1.34012 + 1.01044i
\(569\) 6.17442 0.258845 0.129423 0.991590i \(-0.458688\pi\)
0.129423 + 0.991590i \(0.458688\pi\)
\(570\) 0 0
\(571\) −22.1640 + 22.1640i −0.927533 + 0.927533i −0.997546 0.0700130i \(-0.977696\pi\)
0.0700130 + 0.997546i \(0.477696\pi\)
\(572\) 2.55686 + 0.436010i 0.106908 + 0.0182305i
\(573\) 0 0
\(574\) −7.56907 3.91316i −0.315927 0.163332i
\(575\) 22.5908 25.0835i 0.942100 1.04606i
\(576\) 0 0
\(577\) 16.5888 + 16.5888i 0.690601 + 0.690601i 0.962364 0.271764i \(-0.0876068\pi\)
−0.271764 + 0.962364i \(0.587607\pi\)
\(578\) −20.3077 + 6.46593i −0.844691 + 0.268947i
\(579\) 0 0
\(580\) 18.4999 + 2.65953i 0.768166 + 0.110431i
\(581\) −9.23686 9.23686i −0.383209 0.383209i
\(582\) 0 0
\(583\) −4.73000 + 4.73000i −0.195897 + 0.195897i
\(584\) 3.53265 + 25.1871i 0.146182 + 1.04225i
\(585\) 0 0
\(586\) 8.19997 + 25.7539i 0.338738 + 1.06388i
\(587\) −4.69495 −0.193781 −0.0968907 0.995295i \(-0.530890\pi\)
−0.0968907 + 0.995295i \(0.530890\pi\)
\(588\) 0 0
\(589\) 10.8160 + 10.8160i 0.445666 + 0.445666i
\(590\) −4.49140 + 9.27351i −0.184908 + 0.381785i
\(591\) 0 0
\(592\) −31.0480 10.9061i −1.27607 0.448238i
\(593\) −16.7482 + 16.7482i −0.687765 + 0.687765i −0.961738 0.273972i \(-0.911662\pi\)
0.273972 + 0.961738i \(0.411662\pi\)
\(594\) 0 0
\(595\) −0.0857514 3.28223i −0.00351546 0.134558i
\(596\) −5.74415 + 33.6849i −0.235289 + 1.37979i
\(597\) 0 0
\(598\) −4.36925 + 8.45127i −0.178672 + 0.345598i
\(599\) 3.09289i 0.126372i −0.998002 0.0631860i \(-0.979874\pi\)
0.998002 0.0631860i \(-0.0201261\pi\)
\(600\) 0 0
\(601\) 23.3900i 0.954099i 0.878876 + 0.477050i \(0.158294\pi\)
−0.878876 + 0.477050i \(0.841706\pi\)
\(602\) 6.94272 + 3.58934i 0.282964 + 0.146291i
\(603\) 0 0
\(604\) −20.6430 + 14.6284i −0.839953 + 0.595219i
\(605\) −0.543469 20.8019i −0.0220952 0.845716i
\(606\) 0 0
\(607\) 25.7183 25.7183i 1.04387 1.04387i 0.0448798 0.998992i \(-0.485710\pi\)
0.998992 0.0448798i \(-0.0142905\pi\)
\(608\) 6.02285 5.67698i 0.244259 0.230232i
\(609\) 0 0
\(610\) 43.5673 + 21.1008i 1.76399 + 0.854345i
\(611\) 0.0546292 + 0.0546292i 0.00221006 + 0.00221006i
\(612\) 0 0
\(613\) 35.2830 1.42507 0.712533 0.701639i \(-0.247548\pi\)
0.712533 + 0.701639i \(0.247548\pi\)
\(614\) 4.43411 1.41181i 0.178946 0.0569760i
\(615\) 0 0
\(616\) 3.10678 + 2.34249i 0.125176 + 0.0943814i
\(617\) −4.50814 + 4.50814i −0.181491 + 0.181491i −0.792005 0.610514i \(-0.790963\pi\)
0.610514 + 0.792005i \(0.290963\pi\)
\(618\) 0 0
\(619\) 1.70323 + 1.70323i 0.0684586 + 0.0684586i 0.740507 0.672048i \(-0.234585\pi\)
−0.672048 + 0.740507i \(0.734585\pi\)
\(620\) −28.0193 37.4279i −1.12528 1.50314i
\(621\) 0 0
\(622\) −4.57996 14.3844i −0.183640 0.576763i
\(623\) 13.4870 + 13.4870i 0.540344 + 0.540344i
\(624\) 0 0
\(625\) 24.8637 2.60725i 0.994547 0.104290i
\(626\) −19.7891 + 38.2774i −0.790933 + 1.52987i
\(627\) 0 0
\(628\) 10.3013 7.29987i 0.411068 0.291296i
\(629\) 8.08159 8.08159i 0.322234 0.322234i
\(630\) 0 0
\(631\) 16.8799 0.671980 0.335990 0.941866i \(-0.390929\pi\)
0.335990 + 0.941866i \(0.390929\pi\)
\(632\) −19.7969 14.9267i −0.787479 0.593752i
\(633\) 0 0
\(634\) −6.91805 21.7277i −0.274751 0.862918i
\(635\) 20.9274 22.0503i 0.830480 0.875038i
\(636\) 0 0
\(637\) −5.86190 −0.232257
\(638\) −2.33379 7.32981i −0.0923958 0.290190i
\(639\) 0 0
\(640\) −20.6911 + 14.5560i −0.817889 + 0.575376i
\(641\) 36.2647 1.43237 0.716185 0.697911i \(-0.245887\pi\)
0.716185 + 0.697911i \(0.245887\pi\)
\(642\) 0 0
\(643\) 43.9474 1.73312 0.866559 0.499074i \(-0.166327\pi\)
0.866559 + 0.499074i \(0.166327\pi\)
\(644\) −11.6445 + 8.25172i −0.458859 + 0.325163i
\(645\) 0 0
\(646\) 0.872106 + 2.73905i 0.0343125 + 0.107766i
\(647\) 2.77825 + 2.77825i 0.109224 + 0.109224i 0.759607 0.650382i \(-0.225391\pi\)
−0.650382 + 0.759607i \(0.725391\pi\)
\(648\) 0 0
\(649\) 4.24084 0.166468
\(650\) −6.59302 + 2.48531i −0.258600 + 0.0974819i
\(651\) 0 0
\(652\) −23.8782 + 16.9209i −0.935141 + 0.662673i
\(653\) 15.8532i 0.620384i 0.950674 + 0.310192i \(0.100393\pi\)
−0.950674 + 0.310192i \(0.899607\pi\)
\(654\) 0 0
\(655\) 12.8490 + 12.1947i 0.502051 + 0.476486i
\(656\) −21.5130 7.55677i −0.839941 0.295042i
\(657\) 0 0
\(658\) 0.0351612 + 0.110432i 0.00137073 + 0.00430508i
\(659\) −3.02357 + 3.02357i −0.117781 + 0.117781i −0.763541 0.645759i \(-0.776541\pi\)
0.645759 + 0.763541i \(0.276541\pi\)
\(660\) 0 0
\(661\) −14.5980 14.5980i −0.567797 0.567797i 0.363714 0.931511i \(-0.381509\pi\)
−0.931511 + 0.363714i \(0.881509\pi\)
\(662\) −3.51549 1.81749i −0.136634 0.0706386i
\(663\) 0 0
\(664\) −27.9115 21.0450i −1.08318 0.816705i
\(665\) 3.45680 0.0903123i 0.134049 0.00350216i
\(666\) 0 0
\(667\) 28.2155 1.09251
\(668\) 14.8158 + 2.52648i 0.573242 + 0.0977524i
\(669\) 0 0
\(670\) −26.8553 + 9.32989i −1.03751 + 0.360445i
\(671\) 19.9236i 0.769143i
\(672\) 0 0
\(673\) −11.2973 + 11.2973i −0.435481 + 0.435481i −0.890488 0.455007i \(-0.849637\pi\)
0.455007 + 0.890488i \(0.349637\pi\)
\(674\) 23.1850 44.8458i 0.893052 1.72740i
\(675\) 0 0
\(676\) −19.5934 + 13.8846i −0.753592 + 0.534021i
\(677\) 9.23434i 0.354905i −0.984129 0.177452i \(-0.943214\pi\)
0.984129 0.177452i \(-0.0567855\pi\)
\(678\) 0 0
\(679\) 1.94002i 0.0744510i
\(680\) −1.44721 8.66624i −0.0554981 0.332335i
\(681\) 0 0
\(682\) −8.83722 + 17.0935i −0.338395 + 0.654544i
\(683\) 10.8971i 0.416967i 0.978026 + 0.208483i \(0.0668527\pi\)
−0.978026 + 0.208483i \(0.933147\pi\)
\(684\) 0 0
\(685\) −10.1960 + 10.7431i −0.389571 + 0.410473i
\(686\) −17.1060 8.84369i −0.653110 0.337654i
\(687\) 0 0
\(688\) 19.7328 + 6.93144i 0.752305 + 0.264259i
\(689\) 5.12128i 0.195105i
\(690\) 0 0
\(691\) −12.7458 12.7458i −0.484873 0.484873i 0.421811 0.906684i \(-0.361395\pi\)
−0.906684 + 0.421811i \(0.861395\pi\)
\(692\) 15.2105 + 21.4645i 0.578215 + 0.815957i
\(693\) 0 0
\(694\) 10.3818 + 32.6065i 0.394089 + 1.23773i
\(695\) 3.78394 + 3.59125i 0.143533 + 0.136224i
\(696\) 0 0
\(697\) 5.59969 5.59969i 0.212103 0.212103i
\(698\) 2.10214 4.06609i 0.0795673 0.153904i
\(699\) 0 0
\(700\) −10.4978 1.23027i −0.396778 0.0464997i
\(701\) −28.0269 + 28.0269i −1.05856 + 1.05856i −0.0603853 + 0.998175i \(0.519233\pi\)
−0.998175 + 0.0603853i \(0.980767\pi\)
\(702\) 0 0
\(703\) 8.51143 + 8.51143i 0.321015 + 0.321015i
\(704\) 9.10384 + 5.05298i 0.343114 + 0.190441i
\(705\) 0 0
\(706\) −17.2434 8.91474i −0.648965 0.335511i
\(707\) 6.35463i 0.238991i
\(708\) 0 0
\(709\) 6.39995 6.39995i 0.240355 0.240355i −0.576642 0.816997i \(-0.695637\pi\)
0.816997 + 0.576642i \(0.195637\pi\)
\(710\) 14.6763 + 42.2445i 0.550792 + 1.58541i
\(711\) 0 0
\(712\) 40.7543 + 30.7284i 1.52733 + 1.15159i
\(713\) −49.9091 49.9091i −1.86911 1.86911i
\(714\) 0 0
\(715\) 2.10341 + 1.99630i 0.0786630 + 0.0746574i
\(716\) 5.81080 34.0758i 0.217160 1.27347i
\(717\) 0 0
\(718\) −36.5812 + 11.6474i −1.36520 + 0.434676i
\(719\) −11.7136 −0.436843 −0.218422 0.975854i \(-0.570091\pi\)
−0.218422 + 0.975854i \(0.570091\pi\)
\(720\) 0 0
\(721\) −8.85420 −0.329748
\(722\) 22.7188 7.23362i 0.845508 0.269208i
\(723\) 0 0
\(724\) −21.6846 3.69778i −0.805902 0.137427i
\(725\) 15.5272 + 13.9841i 0.576665 + 0.519357i
\(726\) 0 0
\(727\) −7.19783 7.19783i −0.266953 0.266953i 0.560918 0.827871i \(-0.310448\pi\)
−0.827871 + 0.560918i \(0.810448\pi\)
\(728\) 2.95002 0.413760i 0.109335 0.0153350i
\(729\) 0 0
\(730\) −12.3949 + 25.5920i −0.458755 + 0.947204i
\(731\) −5.13631 + 5.13631i −0.189973 + 0.189973i
\(732\) 0 0
\(733\) 10.6158i 0.392103i 0.980594 + 0.196052i \(0.0628120\pi\)
−0.980594 + 0.196052i \(0.937188\pi\)
\(734\) 29.0921 + 15.0404i 1.07381 + 0.555152i
\(735\) 0 0
\(736\) −27.7917 + 26.1957i −1.02442 + 0.965587i
\(737\) 8.27386 + 8.27386i 0.304772 + 0.304772i
\(738\) 0 0
\(739\) 30.4725 30.4725i 1.12095 1.12095i 0.129349 0.991599i \(-0.458711\pi\)
0.991599 0.129349i \(-0.0412888\pi\)
\(740\) −22.0492 29.4531i −0.810544 1.08272i
\(741\) 0 0
\(742\) −3.52816 + 6.82439i −0.129523 + 0.250531i
\(743\) −6.20995 + 6.20995i −0.227821 + 0.227821i −0.811782 0.583961i \(-0.801502\pi\)
0.583961 + 0.811782i \(0.301502\pi\)
\(744\) 0 0
\(745\) −26.2999 + 27.7110i −0.963555 + 1.01525i
\(746\) 12.7634 + 40.0862i 0.467299 + 1.46766i
\(747\) 0 0
\(748\) −2.95049 + 2.09082i −0.107881 + 0.0764480i
\(749\) 0.0414579 + 0.0414579i 0.00151484 + 0.00151484i
\(750\) 0 0
\(751\) 11.3219i 0.413143i −0.978432 0.206571i \(-0.933769\pi\)
0.978432 0.206571i \(-0.0662305\pi\)
\(752\) 0.134226 + 0.279582i 0.00489470 + 0.0101953i
\(753\) 0 0
\(754\) −5.23150 2.70465i −0.190520 0.0984975i
\(755\) −28.2774 + 0.738773i −1.02912 + 0.0268867i
\(756\) 0 0
\(757\) 11.1139i 0.403942i 0.979391 + 0.201971i \(0.0647348\pi\)
−0.979391 + 0.201971i \(0.935265\pi\)
\(758\) −10.1571 + 19.6465i −0.368922 + 0.713592i
\(759\) 0 0
\(760\) 9.12717 1.52419i 0.331077 0.0552881i
\(761\) 4.08171i 0.147962i −0.997260 0.0739810i \(-0.976430\pi\)
0.997260 0.0739810i \(-0.0235704\pi\)
\(762\) 0 0
\(763\) 1.41669i 0.0512878i
\(764\) −21.1317 29.8203i −0.764518 1.07886i
\(765\) 0 0
\(766\) 14.9069 28.8339i 0.538609 1.04181i
\(767\) 2.29583 2.29583i 0.0828975 0.0828975i
\(768\) 0 0
\(769\) 31.6143i 1.14004i 0.821631 + 0.570020i \(0.193065\pi\)
−0.821631 + 0.570020i \(0.806935\pi\)
\(770\) 1.42761 + 4.10927i 0.0514477 + 0.148088i
\(771\) 0 0
\(772\) 5.37556 31.5235i 0.193471 1.13455i
\(773\) −22.3964 −0.805542 −0.402771 0.915301i \(-0.631953\pi\)
−0.402771 + 0.915301i \(0.631953\pi\)
\(774\) 0 0
\(775\) −2.72947 52.2011i −0.0980455 1.87512i
\(776\) 0.721083 + 5.14117i 0.0258854 + 0.184557i
\(777\) 0 0
\(778\) 22.4460 + 11.6044i 0.804727 + 0.416038i
\(779\) 5.89752 + 5.89752i 0.211301 + 0.211301i
\(780\) 0 0
\(781\) 13.0151 13.0151i 0.465719 0.465719i
\(782\) −4.02422 12.6390i −0.143906 0.451970i
\(783\) 0 0
\(784\) −22.2015 7.79862i −0.792910 0.278522i
\(785\) 14.1110 0.368664i 0.503644 0.0131582i
\(786\) 0 0
\(787\) 45.2339i 1.61242i 0.591633 + 0.806208i \(0.298484\pi\)
−0.591633 + 0.806208i \(0.701516\pi\)
\(788\) −12.9243 18.2383i −0.460408 0.649713i
\(789\) 0 0
\(790\) −9.09699 26.1849i −0.323656 0.931618i
\(791\) 16.2632 0.578254
\(792\) 0 0
\(793\) −10.7859 10.7859i −0.383018 0.383018i
\(794\) 2.32569 + 7.30435i 0.0825356 + 0.259222i
\(795\) 0 0
\(796\) 21.8401 + 30.8200i 0.774101 + 1.09238i
\(797\) 33.6337 1.19137 0.595684 0.803219i \(-0.296881\pi\)
0.595684 + 0.803219i \(0.296881\pi\)
\(798\) 0 0
\(799\) −0.107711 −0.00381056
\(800\) −28.2770 + 0.641619i −0.999743 + 0.0226847i
\(801\) 0 0
\(802\) 6.75980 + 21.2307i 0.238697 + 0.749682i
\(803\) 11.7034 0.413004
\(804\) 0 0
\(805\) −15.9510 + 0.416735i −0.562199 + 0.0146880i
\(806\) 4.46962 + 14.0379i 0.157436 + 0.494463i
\(807\) 0 0
\(808\) −2.36195 16.8402i −0.0830929 0.592435i
\(809\) −7.75023 −0.272483 −0.136242 0.990676i \(-0.543502\pi\)
−0.136242 + 0.990676i \(0.543502\pi\)
\(810\) 0 0
\(811\) 15.5679 15.5679i 0.546661 0.546661i −0.378812 0.925474i \(-0.623667\pi\)
0.925474 + 0.378812i \(0.123667\pi\)
\(812\) −5.10797 7.20820i −0.179255 0.252958i
\(813\) 0 0
\(814\) −6.95427 + 13.4514i −0.243747 + 0.471470i
\(815\) −32.7089 + 0.854552i −1.14574 + 0.0299336i
\(816\) 0 0
\(817\) −5.40950 5.40950i −0.189254 0.189254i
\(818\) 13.2769 + 41.6990i 0.464215 + 1.45797i
\(819\) 0 0
\(820\) −15.2777 20.4079i −0.533522 0.712674i
\(821\) 25.2360 + 25.2360i 0.880741 + 0.880741i 0.993610 0.112869i \(-0.0360041\pi\)
−0.112869 + 0.993610i \(0.536004\pi\)
\(822\) 0 0
\(823\) −24.2751 + 24.2751i −0.846178 + 0.846178i −0.989654 0.143476i \(-0.954172\pi\)
0.143476 + 0.989654i \(0.454172\pi\)
\(824\) −23.4642 + 3.29101i −0.817414 + 0.114648i
\(825\) 0 0
\(826\) 4.64096 1.47767i 0.161480 0.0514147i
\(827\) 8.03445 0.279385 0.139693 0.990195i \(-0.455389\pi\)
0.139693 + 0.990195i \(0.455389\pi\)
\(828\) 0 0
\(829\) 17.2385 + 17.2385i 0.598718 + 0.598718i 0.939971 0.341254i \(-0.110852\pi\)
−0.341254 + 0.939971i \(0.610852\pi\)
\(830\) −12.8258 36.9179i −0.445189 1.28144i
\(831\) 0 0
\(832\) 7.66395 2.19298i 0.265700 0.0760279i
\(833\) 5.77890 5.77890i 0.200227 0.200227i
\(834\) 0 0
\(835\) 12.1883 + 11.5676i 0.421793 + 0.400315i
\(836\) −2.20202 3.10742i −0.0761586 0.107472i
\(837\) 0 0
\(838\) −27.0730 13.9966i −0.935221 0.483503i
\(839\) 23.0026i 0.794136i 0.917789 + 0.397068i \(0.129972\pi\)
−0.917789 + 0.397068i \(0.870028\pi\)
\(840\) 0 0
\(841\) 11.5340i 0.397726i
\(842\) 13.2271 25.5847i 0.455836 0.881706i
\(843\) 0 0
\(844\) 22.1747 + 3.78135i 0.763284 + 0.130160i
\(845\) −26.8395 + 0.701209i −0.923308 + 0.0241223i
\(846\) 0 0
\(847\) −6.95520 + 6.95520i −0.238983 + 0.238983i
\(848\) −6.81331 + 19.3964i −0.233970 + 0.666077i
\(849\) 0 0
\(850\) 4.04955 8.94980i 0.138898 0.306975i
\(851\) −39.2750 39.2750i −1.34633 1.34633i
\(852\) 0 0
\(853\) −17.9417 −0.614312 −0.307156 0.951659i \(-0.599377\pi\)
−0.307156 + 0.951659i \(0.599377\pi\)
\(854\) −6.94216 21.8034i −0.237556 0.746098i
\(855\) 0 0
\(856\) 0.125276 + 0.0944566i 0.00428183 + 0.00322846i
\(857\) 27.5741 27.5741i 0.941914 0.941914i −0.0564890 0.998403i \(-0.517991\pi\)
0.998403 + 0.0564890i \(0.0179906\pi\)
\(858\) 0 0
\(859\) −22.0003 22.0003i −0.750640 0.750640i 0.223959 0.974599i \(-0.428102\pi\)
−0.974599 + 0.223959i \(0.928102\pi\)
\(860\) 14.0135 + 18.7191i 0.477856 + 0.638317i
\(861\) 0 0
\(862\) −6.02775 + 1.91922i −0.205306 + 0.0653689i
\(863\) 16.4456 + 16.4456i 0.559814 + 0.559814i 0.929254 0.369440i \(-0.120451\pi\)
−0.369440 + 0.929254i \(0.620451\pi\)
\(864\) 0 0
\(865\) 0.768171 + 29.4026i 0.0261186 + 0.999718i
\(866\) −37.0582 19.1589i −1.25929 0.651045i
\(867\) 0 0
\(868\) −3.71498 + 21.7855i −0.126095 + 0.739447i
\(869\) −8.06733 + 8.06733i −0.273665 + 0.273665i
\(870\) 0 0
\(871\) 8.95830 0.303540
\(872\) −0.526569 3.75433i −0.0178319 0.127138i
\(873\) 0 0
\(874\) 13.3112 4.23826i 0.450259 0.143361i
\(875\) −8.98447 7.67626i −0.303731 0.259505i
\(876\) 0 0
\(877\) 6.59281 0.222623 0.111312 0.993786i \(-0.464495\pi\)
0.111312 + 0.993786i \(0.464495\pi\)
\(878\) 0.347360 0.110599i 0.0117228 0.00373252i
\(879\) 0 0
\(880\) 5.31063 + 10.3592i 0.179021 + 0.349208i
\(881\) −22.1698 −0.746920 −0.373460 0.927646i \(-0.621829\pi\)
−0.373460 + 0.927646i \(0.621829\pi\)
\(882\) 0 0
\(883\) 38.7205 1.30305 0.651524 0.758628i \(-0.274130\pi\)
0.651524 + 0.758628i \(0.274130\pi\)
\(884\) −0.465394 + 2.72917i −0.0156529 + 0.0917920i
\(885\) 0 0
\(886\) 37.4991 11.9396i 1.25981 0.401120i
\(887\) 25.2413 + 25.2413i 0.847518 + 0.847518i 0.989823 0.142305i \(-0.0454512\pi\)
−0.142305 + 0.989823i \(0.545451\pi\)
\(888\) 0 0
\(889\) −14.3698 −0.481947
\(890\) 18.7272 + 53.9047i 0.627738 + 1.80689i
\(891\) 0 0
\(892\) −11.7896 2.01043i −0.394746 0.0673142i
\(893\) 0.113440i 0.00379613i
\(894\) 0 0
\(895\) 26.6051 28.0326i 0.889310 0.937025i
\(896\) 11.7234 + 2.35760i 0.391652 + 0.0787619i
\(897\) 0 0
\(898\) −9.86641 + 3.14144i −0.329246 + 0.104831i
\(899\) 30.8947 30.8947i 1.03040 1.03040i
\(900\) 0 0
\(901\) −5.04877 5.04877i −0.168199 0.168199i
\(902\) −4.81857 + 9.32037i −0.160441 + 0.310335i
\(903\) 0 0
\(904\) 43.0986 6.04486i 1.43344 0.201049i
\(905\) −17.8389 16.9305i −0.592986 0.562790i
\(906\) 0 0
\(907\) 9.44895 0.313747 0.156874 0.987619i \(-0.449858\pi\)
0.156874 + 0.987619i \(0.449858\pi\)
\(908\) −18.2305 25.7262i −0.605000 0.853755i
\(909\) 0 0
\(910\) 2.99745 + 1.45174i 0.0993646 + 0.0481248i
\(911\) 36.1798i 1.19869i 0.800490 + 0.599346i \(0.204573\pi\)
−0.800490 + 0.599346i \(0.795427\pi\)
\(912\) 0 0
\(913\) −11.3740 + 11.3740i −0.376426 + 0.376426i
\(914\) −23.4446 12.1207i −0.775478 0.400917i
\(915\) 0 0
\(916\) 0.354757 2.08037i 0.0117215 0.0687374i
\(917\) 8.37345i 0.276516i
\(918\) 0 0
\(919\) 45.3587i 1.49624i 0.663561 + 0.748122i \(0.269044\pi\)
−0.663561 + 0.748122i \(0.730956\pi\)
\(920\) −42.1162 + 7.03318i −1.38853 + 0.231877i
\(921\) 0 0
\(922\) −34.8269 18.0053i −1.14696 0.592973i
\(923\) 14.0918i 0.463837i
\(924\) 0 0
\(925\) −2.14790 41.0786i −0.0706226 1.35066i
\(926\) −15.8825 + 30.7209i −0.521932 + 1.00955i
\(927\) 0 0
\(928\) −16.2156 17.2036i −0.532305 0.564735i
\(929\) 0.551101i 0.0180810i 0.999959 + 0.00904052i \(0.00287773\pi\)
−0.999959 + 0.00904052i \(0.997122\pi\)
\(930\) 0 0
\(931\) 6.08626 + 6.08626i 0.199469 + 0.199469i
\(932\) −16.0186 2.73158i −0.524706 0.0894758i
\(933\) 0 0
\(934\) 42.2992 13.4679i 1.38407 0.440685i
\(935\) −4.04166 + 0.105592i −0.132176 + 0.00345324i
\(936\) 0 0
\(937\) −10.4271 + 10.4271i −0.340639 + 0.340639i −0.856607 0.515969i \(-0.827432\pi\)
0.515969 + 0.856607i \(0.327432\pi\)
\(938\) 11.9374 + 6.17157i 0.389771 + 0.201509i
\(939\) 0 0
\(940\) −0.0493397 + 0.343211i −0.00160928 + 0.0111943i
\(941\) −7.44442 + 7.44442i −0.242681 + 0.242681i −0.817958 0.575277i \(-0.804894\pi\)
0.575277 + 0.817958i \(0.304894\pi\)
\(942\) 0 0
\(943\) −27.2134 27.2134i −0.886190 0.886190i
\(944\) 11.7496 5.64091i 0.382417 0.183596i
\(945\) 0 0
\(946\) 4.41983 8.54911i 0.143701 0.277955i
\(947\) 15.8341i 0.514539i −0.966340 0.257270i \(-0.917177\pi\)
0.966340 0.257270i \(-0.0828229\pi\)
\(948\) 0 0
\(949\) 6.33577 6.33577i 0.205668 0.205668i
\(950\) 9.42581 + 4.26493i 0.305814 + 0.138373i
\(951\) 0 0
\(952\) −2.50035 + 3.31615i −0.0810368 + 0.107477i
\(953\) −14.8928 14.8928i −0.482424 0.482424i 0.423481 0.905905i \(-0.360808\pi\)
−0.905905 + 0.423481i \(0.860808\pi\)
\(954\) 0 0
\(955\) −1.06721 40.8486i −0.0345341 1.32183i
\(956\) 45.6477 32.3475i 1.47635 1.04619i
\(957\) 0 0
\(958\) 4.49925 + 14.1309i 0.145364 + 0.456549i
\(959\) 7.00109 0.226077
\(960\) 0 0
\(961\) −78.2963 −2.52569
\(962\) 3.51728 + 11.0468i 0.113402 + 0.356164i
\(963\) 0 0
\(964\) 11.4402 8.10693i 0.368465 0.261107i
\(965\) 24.6123 25.9329i 0.792300 0.834809i
\(966\) 0 0
\(967\) −27.8728 27.8728i −0.896330 0.896330i 0.0987795 0.995109i \(-0.468506\pi\)
−0.995109 + 0.0987795i \(0.968506\pi\)
\(968\) −15.8465 + 21.0169i −0.509327 + 0.675508i
\(969\) 0 0
\(970\) −2.53003 + 5.22383i −0.0812345 + 0.167727i
\(971\) 30.0958 30.0958i 0.965819 0.965819i −0.0336155 0.999435i \(-0.510702\pi\)
0.999435 + 0.0336155i \(0.0107022\pi\)
\(972\) 0 0
\(973\) 2.46593i 0.0790540i
\(974\) 4.34220 8.39895i 0.139133 0.269120i
\(975\) 0 0
\(976\) −26.5012 55.2001i −0.848284 1.76691i
\(977\) 9.03427 + 9.03427i 0.289032 + 0.289032i 0.836697 0.547666i \(-0.184483\pi\)
−0.547666 + 0.836697i \(0.684483\pi\)
\(978\) 0 0
\(979\) 16.6075 16.6075i 0.530780 0.530780i
\(980\) −15.7667 21.0610i −0.503648 0.672769i
\(981\) 0 0
\(982\) −5.34543 2.76355i −0.170579 0.0881884i
\(983\) −24.5191 + 24.5191i −0.782039 + 0.782039i −0.980175 0.198135i \(-0.936511\pi\)
0.198135 + 0.980175i \(0.436511\pi\)
\(984\) 0 0
\(985\) −0.652712 24.9833i −0.0207971 0.796034i
\(986\) 7.82378 2.49107i 0.249160 0.0793319i
\(987\) 0 0
\(988\) −2.87433 0.490147i −0.0914445 0.0155936i
\(989\) 24.9615 + 24.9615i 0.793728 + 0.793728i
\(990\) 0 0
\(991\) 25.8872i 0.822334i 0.911560 + 0.411167i \(0.134879\pi\)
−0.911560 + 0.411167i \(0.865121\pi\)
\(992\) −1.74752 + 59.1137i −0.0554838 + 1.87686i
\(993\) 0 0
\(994\) 9.70815 18.7781i 0.307924 0.595605i
\(995\) 1.10298 + 42.2180i 0.0349670 + 1.33840i
\(996\) 0 0
\(997\) 16.7546i 0.530624i 0.964163 + 0.265312i \(0.0854750\pi\)
−0.964163 + 0.265312i \(0.914525\pi\)
\(998\) 15.5591 + 8.04392i 0.492513 + 0.254626i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.z.f.667.4 16
3.2 odd 2 240.2.y.e.187.5 yes 16
5.3 odd 4 720.2.bd.f.523.1 16
12.11 even 2 960.2.y.e.847.8 16
15.8 even 4 240.2.bc.e.43.8 yes 16
16.3 odd 4 720.2.bd.f.307.1 16
24.5 odd 2 1920.2.y.i.1567.1 16
24.11 even 2 1920.2.y.j.1567.1 16
48.5 odd 4 1920.2.bc.j.607.3 16
48.11 even 4 1920.2.bc.i.607.3 16
48.29 odd 4 960.2.bc.e.367.6 16
48.35 even 4 240.2.bc.e.67.8 yes 16
60.23 odd 4 960.2.bc.e.463.6 16
80.3 even 4 inner 720.2.z.f.163.4 16
120.53 even 4 1920.2.bc.i.1183.3 16
120.83 odd 4 1920.2.bc.j.1183.3 16
240.53 even 4 1920.2.y.j.223.1 16
240.83 odd 4 240.2.y.e.163.5 16
240.173 even 4 960.2.y.e.943.8 16
240.203 odd 4 1920.2.y.i.223.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.5 16 240.83 odd 4
240.2.y.e.187.5 yes 16 3.2 odd 2
240.2.bc.e.43.8 yes 16 15.8 even 4
240.2.bc.e.67.8 yes 16 48.35 even 4
720.2.z.f.163.4 16 80.3 even 4 inner
720.2.z.f.667.4 16 1.1 even 1 trivial
720.2.bd.f.307.1 16 16.3 odd 4
720.2.bd.f.523.1 16 5.3 odd 4
960.2.y.e.847.8 16 12.11 even 2
960.2.y.e.943.8 16 240.173 even 4
960.2.bc.e.367.6 16 48.29 odd 4
960.2.bc.e.463.6 16 60.23 odd 4
1920.2.y.i.223.1 16 240.203 odd 4
1920.2.y.i.1567.1 16 24.5 odd 2
1920.2.y.j.223.1 16 240.53 even 4
1920.2.y.j.1567.1 16 24.11 even 2
1920.2.bc.i.607.3 16 48.11 even 4
1920.2.bc.i.1183.3 16 120.53 even 4
1920.2.bc.j.607.3 16 48.5 odd 4
1920.2.bc.j.1183.3 16 120.83 odd 4