Properties

Label 1936.2.a.bc.1.3
Level $1936$
Weight $2$
Character 1936.1
Self dual yes
Analytic conductor $15.459$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,2,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4590378313\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5225.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48718\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.919131 q^{3} -4.02435 q^{5} -3.72325 q^{7} -2.15520 q^{9} -1.04998 q^{13} -3.69890 q^{15} +0.944761 q^{17} +2.38197 q^{19} -3.42216 q^{21} +1.73830 q^{23} +11.1954 q^{25} -4.73830 q^{27} +2.74888 q^{29} -4.78828 q^{31} +14.9837 q^{35} +2.11501 q^{37} -0.965069 q^{39} +9.12957 q^{41} +0.431946 q^{43} +8.67327 q^{45} -6.32545 q^{47} +6.86261 q^{49} +0.868359 q^{51} +0.316146 q^{53} +2.18934 q^{57} -8.09017 q^{59} +13.6326 q^{61} +8.02435 q^{63} +4.22549 q^{65} -5.68178 q^{67} +1.59773 q^{69} +12.8687 q^{71} +3.52132 q^{73} +10.2900 q^{75} -8.83698 q^{79} +2.11048 q^{81} +14.6667 q^{83} -3.80205 q^{85} +2.52658 q^{87} +2.43195 q^{89} +3.90934 q^{91} -4.40106 q^{93} -9.58586 q^{95} +1.48193 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + q^{5} + q^{7} + 6 q^{9} - q^{13} - 16 q^{15} + 12 q^{17} + 14 q^{19} + q^{21} + 2 q^{23} + 11 q^{25} - 14 q^{27} + 9 q^{29} - 11 q^{31} + 18 q^{35} + 13 q^{37} - 18 q^{39} + 8 q^{41}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.919131 0.530660 0.265330 0.964158i \(-0.414519\pi\)
0.265330 + 0.964158i \(0.414519\pi\)
\(4\) 0 0
\(5\) −4.02435 −1.79974 −0.899872 0.436154i \(-0.856340\pi\)
−0.899872 + 0.436154i \(0.856340\pi\)
\(6\) 0 0
\(7\) −3.72325 −1.40726 −0.703629 0.710568i \(-0.748438\pi\)
−0.703629 + 0.710568i \(0.748438\pi\)
\(8\) 0 0
\(9\) −2.15520 −0.718400
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.04998 −0.291212 −0.145606 0.989343i \(-0.546513\pi\)
−0.145606 + 0.989343i \(0.546513\pi\)
\(14\) 0 0
\(15\) −3.69890 −0.955053
\(16\) 0 0
\(17\) 0.944761 0.229138 0.114569 0.993415i \(-0.463451\pi\)
0.114569 + 0.993415i \(0.463451\pi\)
\(18\) 0 0
\(19\) 2.38197 0.546460 0.273230 0.961949i \(-0.411908\pi\)
0.273230 + 0.961949i \(0.411908\pi\)
\(20\) 0 0
\(21\) −3.42216 −0.746776
\(22\) 0 0
\(23\) 1.73830 0.362461 0.181230 0.983441i \(-0.441992\pi\)
0.181230 + 0.983441i \(0.441992\pi\)
\(24\) 0 0
\(25\) 11.1954 2.23908
\(26\) 0 0
\(27\) −4.73830 −0.911887
\(28\) 0 0
\(29\) 2.74888 0.510455 0.255227 0.966881i \(-0.417850\pi\)
0.255227 + 0.966881i \(0.417850\pi\)
\(30\) 0 0
\(31\) −4.78828 −0.860001 −0.430000 0.902829i \(-0.641487\pi\)
−0.430000 + 0.902829i \(0.641487\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.9837 2.53270
\(36\) 0 0
\(37\) 2.11501 0.347705 0.173853 0.984772i \(-0.444378\pi\)
0.173853 + 0.984772i \(0.444378\pi\)
\(38\) 0 0
\(39\) −0.965069 −0.154535
\(40\) 0 0
\(41\) 9.12957 1.42580 0.712900 0.701266i \(-0.247382\pi\)
0.712900 + 0.701266i \(0.247382\pi\)
\(42\) 0 0
\(43\) 0.431946 0.0658711 0.0329356 0.999457i \(-0.489514\pi\)
0.0329356 + 0.999457i \(0.489514\pi\)
\(44\) 0 0
\(45\) 8.67327 1.29294
\(46\) 0 0
\(47\) −6.32545 −0.922661 −0.461331 0.887228i \(-0.652628\pi\)
−0.461331 + 0.887228i \(0.652628\pi\)
\(48\) 0 0
\(49\) 6.86261 0.980373
\(50\) 0 0
\(51\) 0.868359 0.121595
\(52\) 0 0
\(53\) 0.316146 0.0434259 0.0217130 0.999764i \(-0.493088\pi\)
0.0217130 + 0.999764i \(0.493088\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.18934 0.289985
\(58\) 0 0
\(59\) −8.09017 −1.05325 −0.526625 0.850098i \(-0.676543\pi\)
−0.526625 + 0.850098i \(0.676543\pi\)
\(60\) 0 0
\(61\) 13.6326 1.74547 0.872737 0.488190i \(-0.162343\pi\)
0.872737 + 0.488190i \(0.162343\pi\)
\(62\) 0 0
\(63\) 8.02435 1.01097
\(64\) 0 0
\(65\) 4.22549 0.524107
\(66\) 0 0
\(67\) −5.68178 −0.694140 −0.347070 0.937839i \(-0.612823\pi\)
−0.347070 + 0.937839i \(0.612823\pi\)
\(68\) 0 0
\(69\) 1.59773 0.192344
\(70\) 0 0
\(71\) 12.8687 1.52723 0.763615 0.645672i \(-0.223423\pi\)
0.763615 + 0.645672i \(0.223423\pi\)
\(72\) 0 0
\(73\) 3.52132 0.412140 0.206070 0.978537i \(-0.433933\pi\)
0.206070 + 0.978537i \(0.433933\pi\)
\(74\) 0 0
\(75\) 10.2900 1.18819
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.83698 −0.994238 −0.497119 0.867682i \(-0.665609\pi\)
−0.497119 + 0.867682i \(0.665609\pi\)
\(80\) 0 0
\(81\) 2.11048 0.234498
\(82\) 0 0
\(83\) 14.6667 1.60988 0.804942 0.593354i \(-0.202197\pi\)
0.804942 + 0.593354i \(0.202197\pi\)
\(84\) 0 0
\(85\) −3.80205 −0.412390
\(86\) 0 0
\(87\) 2.52658 0.270878
\(88\) 0 0
\(89\) 2.43195 0.257786 0.128893 0.991659i \(-0.458858\pi\)
0.128893 + 0.991659i \(0.458858\pi\)
\(90\) 0 0
\(91\) 3.90934 0.409810
\(92\) 0 0
\(93\) −4.40106 −0.456368
\(94\) 0 0
\(95\) −9.58586 −0.983489
\(96\) 0 0
\(97\) 1.48193 0.150467 0.0752334 0.997166i \(-0.476030\pi\)
0.0752334 + 0.997166i \(0.476030\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.34783 0.432625 0.216312 0.976324i \(-0.430597\pi\)
0.216312 + 0.976324i \(0.430597\pi\)
\(102\) 0 0
\(103\) −11.0894 −1.09267 −0.546334 0.837567i \(-0.683977\pi\)
−0.546334 + 0.837567i \(0.683977\pi\)
\(104\) 0 0
\(105\) 13.7720 1.34400
\(106\) 0 0
\(107\) 9.55301 0.923524 0.461762 0.887004i \(-0.347217\pi\)
0.461762 + 0.887004i \(0.347217\pi\)
\(108\) 0 0
\(109\) −4.14866 −0.397369 −0.198685 0.980063i \(-0.563667\pi\)
−0.198685 + 0.980063i \(0.563667\pi\)
\(110\) 0 0
\(111\) 1.94397 0.184513
\(112\) 0 0
\(113\) −9.29456 −0.874358 −0.437179 0.899374i \(-0.644022\pi\)
−0.437179 + 0.899374i \(0.644022\pi\)
\(114\) 0 0
\(115\) −6.99553 −0.652337
\(116\) 0 0
\(117\) 2.26292 0.209207
\(118\) 0 0
\(119\) −3.51758 −0.322456
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 8.39127 0.756615
\(124\) 0 0
\(125\) −24.9324 −2.23002
\(126\) 0 0
\(127\) 7.95607 0.705987 0.352994 0.935626i \(-0.385164\pi\)
0.352994 + 0.935626i \(0.385164\pi\)
\(128\) 0 0
\(129\) 0.397015 0.0349552
\(130\) 0 0
\(131\) 12.2670 1.07177 0.535885 0.844291i \(-0.319978\pi\)
0.535885 + 0.844291i \(0.319978\pi\)
\(132\) 0 0
\(133\) −8.86866 −0.769010
\(134\) 0 0
\(135\) 19.0686 1.64116
\(136\) 0 0
\(137\) −2.51807 −0.215134 −0.107567 0.994198i \(-0.534306\pi\)
−0.107567 + 0.994198i \(0.534306\pi\)
\(138\) 0 0
\(139\) 14.0954 1.19556 0.597779 0.801661i \(-0.296050\pi\)
0.597779 + 0.801661i \(0.296050\pi\)
\(140\) 0 0
\(141\) −5.81391 −0.489620
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −11.0625 −0.918688
\(146\) 0 0
\(147\) 6.30764 0.520245
\(148\) 0 0
\(149\) −10.6752 −0.874550 −0.437275 0.899328i \(-0.644056\pi\)
−0.437275 + 0.899328i \(0.644056\pi\)
\(150\) 0 0
\(151\) −20.2441 −1.64744 −0.823720 0.566996i \(-0.808105\pi\)
−0.823720 + 0.566996i \(0.808105\pi\)
\(152\) 0 0
\(153\) −2.03615 −0.164613
\(154\) 0 0
\(155\) 19.2697 1.54778
\(156\) 0 0
\(157\) 19.4103 1.54911 0.774555 0.632507i \(-0.217974\pi\)
0.774555 + 0.632507i \(0.217974\pi\)
\(158\) 0 0
\(159\) 0.290579 0.0230444
\(160\) 0 0
\(161\) −6.47214 −0.510076
\(162\) 0 0
\(163\) −18.8739 −1.47832 −0.739160 0.673530i \(-0.764777\pi\)
−0.739160 + 0.673530i \(0.764777\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.7642 −1.37464 −0.687319 0.726356i \(-0.741212\pi\)
−0.687319 + 0.726356i \(0.741212\pi\)
\(168\) 0 0
\(169\) −11.8975 −0.915196
\(170\) 0 0
\(171\) −5.13361 −0.392577
\(172\) 0 0
\(173\) 6.35554 0.483203 0.241602 0.970376i \(-0.422327\pi\)
0.241602 + 0.970376i \(0.422327\pi\)
\(174\) 0 0
\(175\) −41.6833 −3.15096
\(176\) 0 0
\(177\) −7.43592 −0.558918
\(178\) 0 0
\(179\) 1.40760 0.105209 0.0526044 0.998615i \(-0.483248\pi\)
0.0526044 + 0.998615i \(0.483248\pi\)
\(180\) 0 0
\(181\) 17.3408 1.28893 0.644466 0.764633i \(-0.277080\pi\)
0.644466 + 0.764633i \(0.277080\pi\)
\(182\) 0 0
\(183\) 12.5301 0.926254
\(184\) 0 0
\(185\) −8.51153 −0.625780
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 17.6419 1.28326
\(190\) 0 0
\(191\) 6.98942 0.505737 0.252868 0.967501i \(-0.418626\pi\)
0.252868 + 0.967501i \(0.418626\pi\)
\(192\) 0 0
\(193\) −23.3392 −1.67999 −0.839997 0.542592i \(-0.817443\pi\)
−0.839997 + 0.542592i \(0.817443\pi\)
\(194\) 0 0
\(195\) 3.88377 0.278123
\(196\) 0 0
\(197\) 10.8142 0.770481 0.385240 0.922816i \(-0.374119\pi\)
0.385240 + 0.922816i \(0.374119\pi\)
\(198\) 0 0
\(199\) −9.07433 −0.643262 −0.321631 0.946865i \(-0.604231\pi\)
−0.321631 + 0.946865i \(0.604231\pi\)
\(200\) 0 0
\(201\) −5.22230 −0.368353
\(202\) 0 0
\(203\) −10.2348 −0.718341
\(204\) 0 0
\(205\) −36.7406 −2.56607
\(206\) 0 0
\(207\) −3.74639 −0.260392
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.38643 −0.164289 −0.0821444 0.996620i \(-0.526177\pi\)
−0.0821444 + 0.996620i \(0.526177\pi\)
\(212\) 0 0
\(213\) 11.8280 0.810440
\(214\) 0 0
\(215\) −1.73830 −0.118551
\(216\) 0 0
\(217\) 17.8280 1.21024
\(218\) 0 0
\(219\) 3.23656 0.218706
\(220\) 0 0
\(221\) −0.991980 −0.0667278
\(222\) 0 0
\(223\) 15.3802 1.02993 0.514967 0.857210i \(-0.327804\pi\)
0.514967 + 0.857210i \(0.327804\pi\)
\(224\) 0 0
\(225\) −24.1283 −1.60855
\(226\) 0 0
\(227\) −12.5411 −0.832385 −0.416192 0.909277i \(-0.636636\pi\)
−0.416192 + 0.909277i \(0.636636\pi\)
\(228\) 0 0
\(229\) 13.3408 0.881585 0.440792 0.897609i \(-0.354698\pi\)
0.440792 + 0.897609i \(0.354698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.4794 1.53818 0.769092 0.639138i \(-0.220709\pi\)
0.769092 + 0.639138i \(0.220709\pi\)
\(234\) 0 0
\(235\) 25.4558 1.66055
\(236\) 0 0
\(237\) −8.12234 −0.527603
\(238\) 0 0
\(239\) 3.73377 0.241518 0.120759 0.992682i \(-0.461467\pi\)
0.120759 + 0.992682i \(0.461467\pi\)
\(240\) 0 0
\(241\) −15.9621 −1.02821 −0.514104 0.857728i \(-0.671875\pi\)
−0.514104 + 0.857728i \(0.671875\pi\)
\(242\) 0 0
\(243\) 16.1547 1.03633
\(244\) 0 0
\(245\) −27.6175 −1.76442
\(246\) 0 0
\(247\) −2.50102 −0.159136
\(248\) 0 0
\(249\) 13.4806 0.854301
\(250\) 0 0
\(251\) 11.0817 0.699468 0.349734 0.936849i \(-0.386272\pi\)
0.349734 + 0.936849i \(0.386272\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.49458 −0.218839
\(256\) 0 0
\(257\) 14.9848 0.934729 0.467365 0.884065i \(-0.345204\pi\)
0.467365 + 0.884065i \(0.345204\pi\)
\(258\) 0 0
\(259\) −7.87471 −0.489311
\(260\) 0 0
\(261\) −5.92439 −0.366711
\(262\) 0 0
\(263\) 8.96129 0.552577 0.276288 0.961075i \(-0.410896\pi\)
0.276288 + 0.961075i \(0.410896\pi\)
\(264\) 0 0
\(265\) −1.27228 −0.0781555
\(266\) 0 0
\(267\) 2.23528 0.136797
\(268\) 0 0
\(269\) 1.04998 0.0640184 0.0320092 0.999488i \(-0.489809\pi\)
0.0320092 + 0.999488i \(0.489809\pi\)
\(270\) 0 0
\(271\) 18.1653 1.10346 0.551731 0.834022i \(-0.313967\pi\)
0.551731 + 0.834022i \(0.313967\pi\)
\(272\) 0 0
\(273\) 3.59320 0.217470
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −19.9430 −1.19826 −0.599129 0.800652i \(-0.704486\pi\)
−0.599129 + 0.800652i \(0.704486\pi\)
\(278\) 0 0
\(279\) 10.3197 0.617824
\(280\) 0 0
\(281\) 21.0072 1.25319 0.626593 0.779347i \(-0.284449\pi\)
0.626593 + 0.779347i \(0.284449\pi\)
\(282\) 0 0
\(283\) 6.54640 0.389143 0.194572 0.980888i \(-0.437668\pi\)
0.194572 + 0.980888i \(0.437668\pi\)
\(284\) 0 0
\(285\) −8.81066 −0.521899
\(286\) 0 0
\(287\) −33.9917 −2.00647
\(288\) 0 0
\(289\) −16.1074 −0.947496
\(290\) 0 0
\(291\) 1.36208 0.0798468
\(292\) 0 0
\(293\) 16.0231 0.936081 0.468041 0.883707i \(-0.344960\pi\)
0.468041 + 0.883707i \(0.344960\pi\)
\(294\) 0 0
\(295\) 32.5577 1.89558
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.82518 −0.105553
\(300\) 0 0
\(301\) −1.60824 −0.0926976
\(302\) 0 0
\(303\) 3.99622 0.229577
\(304\) 0 0
\(305\) −54.8623 −3.14141
\(306\) 0 0
\(307\) 10.8016 0.616478 0.308239 0.951309i \(-0.400260\pi\)
0.308239 + 0.951309i \(0.400260\pi\)
\(308\) 0 0
\(309\) −10.1926 −0.579836
\(310\) 0 0
\(311\) −3.18934 −0.180851 −0.0904254 0.995903i \(-0.528823\pi\)
−0.0904254 + 0.995903i \(0.528823\pi\)
\(312\) 0 0
\(313\) 15.0552 0.850972 0.425486 0.904965i \(-0.360103\pi\)
0.425486 + 0.904965i \(0.360103\pi\)
\(314\) 0 0
\(315\) −32.2928 −1.81949
\(316\) 0 0
\(317\) 13.2499 0.744189 0.372094 0.928195i \(-0.378640\pi\)
0.372094 + 0.928195i \(0.378640\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8.78046 0.490078
\(322\) 0 0
\(323\) 2.25039 0.125215
\(324\) 0 0
\(325\) −11.7549 −0.652046
\(326\) 0 0
\(327\) −3.81316 −0.210868
\(328\) 0 0
\(329\) 23.5512 1.29842
\(330\) 0 0
\(331\) 33.5540 1.84429 0.922147 0.386839i \(-0.126433\pi\)
0.922147 + 0.386839i \(0.126433\pi\)
\(332\) 0 0
\(333\) −4.55826 −0.249791
\(334\) 0 0
\(335\) 22.8655 1.24927
\(336\) 0 0
\(337\) −6.90536 −0.376159 −0.188080 0.982154i \(-0.560226\pi\)
−0.188080 + 0.982154i \(0.560226\pi\)
\(338\) 0 0
\(339\) −8.54291 −0.463987
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.511534 0.0276203
\(344\) 0 0
\(345\) −6.42981 −0.346169
\(346\) 0 0
\(347\) −20.6991 −1.11119 −0.555593 0.831454i \(-0.687509\pi\)
−0.555593 + 0.831454i \(0.687509\pi\)
\(348\) 0 0
\(349\) 11.0567 0.591853 0.295926 0.955211i \(-0.404372\pi\)
0.295926 + 0.955211i \(0.404372\pi\)
\(350\) 0 0
\(351\) 4.97512 0.265552
\(352\) 0 0
\(353\) 13.5005 0.718557 0.359279 0.933230i \(-0.383023\pi\)
0.359279 + 0.933230i \(0.383023\pi\)
\(354\) 0 0
\(355\) −51.7880 −2.74862
\(356\) 0 0
\(357\) −3.23312 −0.171115
\(358\) 0 0
\(359\) 33.4263 1.76417 0.882087 0.471086i \(-0.156138\pi\)
0.882087 + 0.471086i \(0.156138\pi\)
\(360\) 0 0
\(361\) −13.3262 −0.701381
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.1710 −0.741746
\(366\) 0 0
\(367\) −20.0938 −1.04889 −0.524445 0.851444i \(-0.675727\pi\)
−0.524445 + 0.851444i \(0.675727\pi\)
\(368\) 0 0
\(369\) −19.6760 −1.02429
\(370\) 0 0
\(371\) −1.17709 −0.0611115
\(372\) 0 0
\(373\) 26.4379 1.36890 0.684451 0.729059i \(-0.260042\pi\)
0.684451 + 0.729059i \(0.260042\pi\)
\(374\) 0 0
\(375\) −22.9161 −1.18338
\(376\) 0 0
\(377\) −2.88627 −0.148651
\(378\) 0 0
\(379\) −20.2580 −1.04058 −0.520291 0.853989i \(-0.674176\pi\)
−0.520291 + 0.853989i \(0.674176\pi\)
\(380\) 0 0
\(381\) 7.31267 0.374639
\(382\) 0 0
\(383\) 4.60953 0.235536 0.117768 0.993041i \(-0.462426\pi\)
0.117768 + 0.993041i \(0.462426\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.930929 −0.0473218
\(388\) 0 0
\(389\) 30.8267 1.56298 0.781488 0.623920i \(-0.214461\pi\)
0.781488 + 0.623920i \(0.214461\pi\)
\(390\) 0 0
\(391\) 1.64228 0.0830537
\(392\) 0 0
\(393\) 11.2749 0.568745
\(394\) 0 0
\(395\) 35.5631 1.78937
\(396\) 0 0
\(397\) 15.9382 0.799916 0.399958 0.916533i \(-0.369025\pi\)
0.399958 + 0.916533i \(0.369025\pi\)
\(398\) 0 0
\(399\) −8.15146 −0.408083
\(400\) 0 0
\(401\) 23.0680 1.15196 0.575981 0.817463i \(-0.304620\pi\)
0.575981 + 0.817463i \(0.304620\pi\)
\(402\) 0 0
\(403\) 5.02760 0.250443
\(404\) 0 0
\(405\) −8.49330 −0.422035
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14.5347 −0.718693 −0.359347 0.933204i \(-0.617000\pi\)
−0.359347 + 0.933204i \(0.617000\pi\)
\(410\) 0 0
\(411\) −2.31444 −0.114163
\(412\) 0 0
\(413\) 30.1217 1.48219
\(414\) 0 0
\(415\) −59.0241 −2.89738
\(416\) 0 0
\(417\) 12.9555 0.634436
\(418\) 0 0
\(419\) −7.34710 −0.358929 −0.179465 0.983764i \(-0.557437\pi\)
−0.179465 + 0.983764i \(0.557437\pi\)
\(420\) 0 0
\(421\) 1.76801 0.0861677 0.0430839 0.999071i \(-0.486282\pi\)
0.0430839 + 0.999071i \(0.486282\pi\)
\(422\) 0 0
\(423\) 13.6326 0.662839
\(424\) 0 0
\(425\) 10.5770 0.513058
\(426\) 0 0
\(427\) −50.7576 −2.45633
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.2860 −0.784471 −0.392236 0.919865i \(-0.628298\pi\)
−0.392236 + 0.919865i \(0.628298\pi\)
\(432\) 0 0
\(433\) −2.24935 −0.108097 −0.0540483 0.998538i \(-0.517213\pi\)
−0.0540483 + 0.998538i \(0.517213\pi\)
\(434\) 0 0
\(435\) −10.1679 −0.487511
\(436\) 0 0
\(437\) 4.14058 0.198071
\(438\) 0 0
\(439\) −8.85337 −0.422549 −0.211274 0.977427i \(-0.567761\pi\)
−0.211274 + 0.977427i \(0.567761\pi\)
\(440\) 0 0
\(441\) −14.7903 −0.704300
\(442\) 0 0
\(443\) −15.9649 −0.758517 −0.379259 0.925291i \(-0.623821\pi\)
−0.379259 + 0.925291i \(0.623821\pi\)
\(444\) 0 0
\(445\) −9.78700 −0.463948
\(446\) 0 0
\(447\) −9.81194 −0.464089
\(448\) 0 0
\(449\) 23.7996 1.12317 0.561586 0.827418i \(-0.310191\pi\)
0.561586 + 0.827418i \(0.310191\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −18.6070 −0.874231
\(454\) 0 0
\(455\) −15.7326 −0.737553
\(456\) 0 0
\(457\) −29.6427 −1.38663 −0.693313 0.720636i \(-0.743850\pi\)
−0.693313 + 0.720636i \(0.743850\pi\)
\(458\) 0 0
\(459\) −4.47656 −0.208948
\(460\) 0 0
\(461\) −9.00605 −0.419454 −0.209727 0.977760i \(-0.567257\pi\)
−0.209727 + 0.977760i \(0.567257\pi\)
\(462\) 0 0
\(463\) −16.0634 −0.746528 −0.373264 0.927725i \(-0.621761\pi\)
−0.373264 + 0.927725i \(0.621761\pi\)
\(464\) 0 0
\(465\) 17.7114 0.821346
\(466\) 0 0
\(467\) 4.07463 0.188551 0.0942757 0.995546i \(-0.469946\pi\)
0.0942757 + 0.995546i \(0.469946\pi\)
\(468\) 0 0
\(469\) 21.1547 0.976834
\(470\) 0 0
\(471\) 17.8406 0.822051
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 26.6670 1.22357
\(476\) 0 0
\(477\) −0.681356 −0.0311972
\(478\) 0 0
\(479\) 0.349410 0.0159649 0.00798247 0.999968i \(-0.497459\pi\)
0.00798247 + 0.999968i \(0.497459\pi\)
\(480\) 0 0
\(481\) −2.22072 −0.101256
\(482\) 0 0
\(483\) −5.94874 −0.270677
\(484\) 0 0
\(485\) −5.96379 −0.270802
\(486\) 0 0
\(487\) −39.1502 −1.77406 −0.887032 0.461708i \(-0.847237\pi\)
−0.887032 + 0.461708i \(0.847237\pi\)
\(488\) 0 0
\(489\) −17.3476 −0.784486
\(490\) 0 0
\(491\) −8.78651 −0.396530 −0.198265 0.980148i \(-0.563531\pi\)
−0.198265 + 0.980148i \(0.563531\pi\)
\(492\) 0 0
\(493\) 2.59704 0.116965
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −47.9133 −2.14920
\(498\) 0 0
\(499\) 25.7478 1.15263 0.576315 0.817228i \(-0.304490\pi\)
0.576315 + 0.817228i \(0.304490\pi\)
\(500\) 0 0
\(501\) −16.3277 −0.729466
\(502\) 0 0
\(503\) 14.8659 0.662836 0.331418 0.943484i \(-0.392473\pi\)
0.331418 + 0.943484i \(0.392473\pi\)
\(504\) 0 0
\(505\) −17.4972 −0.778614
\(506\) 0 0
\(507\) −10.9354 −0.485658
\(508\) 0 0
\(509\) 3.44295 0.152606 0.0763031 0.997085i \(-0.475688\pi\)
0.0763031 + 0.997085i \(0.475688\pi\)
\(510\) 0 0
\(511\) −13.1108 −0.579987
\(512\) 0 0
\(513\) −11.2865 −0.498310
\(514\) 0 0
\(515\) 44.6275 1.96652
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 5.84158 0.256417
\(520\) 0 0
\(521\) 40.2208 1.76211 0.881053 0.473017i \(-0.156835\pi\)
0.881053 + 0.473017i \(0.156835\pi\)
\(522\) 0 0
\(523\) −34.4269 −1.50538 −0.752691 0.658374i \(-0.771245\pi\)
−0.752691 + 0.658374i \(0.771245\pi\)
\(524\) 0 0
\(525\) −38.3124 −1.67209
\(526\) 0 0
\(527\) −4.52378 −0.197059
\(528\) 0 0
\(529\) −19.9783 −0.868622
\(530\) 0 0
\(531\) 17.4359 0.756655
\(532\) 0 0
\(533\) −9.58586 −0.415210
\(534\) 0 0
\(535\) −38.4446 −1.66211
\(536\) 0 0
\(537\) 1.29377 0.0558301
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 18.9239 0.813600 0.406800 0.913517i \(-0.366645\pi\)
0.406800 + 0.913517i \(0.366645\pi\)
\(542\) 0 0
\(543\) 15.9385 0.683985
\(544\) 0 0
\(545\) 16.6957 0.715163
\(546\) 0 0
\(547\) 32.8385 1.40407 0.702036 0.712142i \(-0.252275\pi\)
0.702036 + 0.712142i \(0.252275\pi\)
\(548\) 0 0
\(549\) −29.3809 −1.25395
\(550\) 0 0
\(551\) 6.54775 0.278943
\(552\) 0 0
\(553\) 32.9023 1.39915
\(554\) 0 0
\(555\) −7.82321 −0.332077
\(556\) 0 0
\(557\) 32.0612 1.35848 0.679238 0.733918i \(-0.262310\pi\)
0.679238 + 0.733918i \(0.262310\pi\)
\(558\) 0 0
\(559\) −0.453535 −0.0191825
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.25289 0.0528029 0.0264014 0.999651i \(-0.491595\pi\)
0.0264014 + 0.999651i \(0.491595\pi\)
\(564\) 0 0
\(565\) 37.4045 1.57362
\(566\) 0 0
\(567\) −7.85784 −0.329998
\(568\) 0 0
\(569\) −5.16194 −0.216400 −0.108200 0.994129i \(-0.534509\pi\)
−0.108200 + 0.994129i \(0.534509\pi\)
\(570\) 0 0
\(571\) 1.46767 0.0614200 0.0307100 0.999528i \(-0.490223\pi\)
0.0307100 + 0.999528i \(0.490223\pi\)
\(572\) 0 0
\(573\) 6.42419 0.268374
\(574\) 0 0
\(575\) 19.4610 0.811578
\(576\) 0 0
\(577\) −19.2013 −0.799362 −0.399681 0.916654i \(-0.630879\pi\)
−0.399681 + 0.916654i \(0.630879\pi\)
\(578\) 0 0
\(579\) −21.4518 −0.891506
\(580\) 0 0
\(581\) −54.6080 −2.26552
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −9.10676 −0.376518
\(586\) 0 0
\(587\) 5.71149 0.235739 0.117869 0.993029i \(-0.462394\pi\)
0.117869 + 0.993029i \(0.462394\pi\)
\(588\) 0 0
\(589\) −11.4055 −0.469956
\(590\) 0 0
\(591\) 9.93968 0.408864
\(592\) 0 0
\(593\) −36.3301 −1.49190 −0.745949 0.666003i \(-0.768004\pi\)
−0.745949 + 0.666003i \(0.768004\pi\)
\(594\) 0 0
\(595\) 14.1560 0.580339
\(596\) 0 0
\(597\) −8.34050 −0.341354
\(598\) 0 0
\(599\) 41.2464 1.68528 0.842640 0.538477i \(-0.181000\pi\)
0.842640 + 0.538477i \(0.181000\pi\)
\(600\) 0 0
\(601\) −21.4570 −0.875249 −0.437624 0.899158i \(-0.644180\pi\)
−0.437624 + 0.899158i \(0.644180\pi\)
\(602\) 0 0
\(603\) 12.2454 0.498670
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.72447 0.151172 0.0755858 0.997139i \(-0.475917\pi\)
0.0755858 + 0.997139i \(0.475917\pi\)
\(608\) 0 0
\(609\) −9.40711 −0.381195
\(610\) 0 0
\(611\) 6.64159 0.268690
\(612\) 0 0
\(613\) 14.2457 0.575377 0.287689 0.957724i \(-0.407113\pi\)
0.287689 + 0.957724i \(0.407113\pi\)
\(614\) 0 0
\(615\) −33.7694 −1.36171
\(616\) 0 0
\(617\) 33.2403 1.33821 0.669103 0.743170i \(-0.266678\pi\)
0.669103 + 0.743170i \(0.266678\pi\)
\(618\) 0 0
\(619\) 15.6642 0.629596 0.314798 0.949159i \(-0.398063\pi\)
0.314798 + 0.949159i \(0.398063\pi\)
\(620\) 0 0
\(621\) −8.23660 −0.330523
\(622\) 0 0
\(623\) −9.05475 −0.362771
\(624\) 0 0
\(625\) 44.3598 1.77439
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.99818 0.0796726
\(630\) 0 0
\(631\) −7.63381 −0.303897 −0.151949 0.988388i \(-0.548555\pi\)
−0.151949 + 0.988388i \(0.548555\pi\)
\(632\) 0 0
\(633\) −2.19344 −0.0871816
\(634\) 0 0
\(635\) −32.0180 −1.27060
\(636\) 0 0
\(637\) −7.20560 −0.285496
\(638\) 0 0
\(639\) −27.7345 −1.09716
\(640\) 0 0
\(641\) −18.9809 −0.749701 −0.374850 0.927085i \(-0.622306\pi\)
−0.374850 + 0.927085i \(0.622306\pi\)
\(642\) 0 0
\(643\) −16.4749 −0.649707 −0.324853 0.945764i \(-0.605315\pi\)
−0.324853 + 0.945764i \(0.605315\pi\)
\(644\) 0 0
\(645\) −1.59773 −0.0629104
\(646\) 0 0
\(647\) −39.8210 −1.56553 −0.782763 0.622320i \(-0.786190\pi\)
−0.782763 + 0.622320i \(0.786190\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.3862 0.642228
\(652\) 0 0
\(653\) −24.6544 −0.964803 −0.482401 0.875950i \(-0.660235\pi\)
−0.482401 + 0.875950i \(0.660235\pi\)
\(654\) 0 0
\(655\) −49.3665 −1.92891
\(656\) 0 0
\(657\) −7.58915 −0.296081
\(658\) 0 0
\(659\) −11.3599 −0.442518 −0.221259 0.975215i \(-0.571017\pi\)
−0.221259 + 0.975215i \(0.571017\pi\)
\(660\) 0 0
\(661\) −5.05889 −0.196768 −0.0983841 0.995149i \(-0.531367\pi\)
−0.0983841 + 0.995149i \(0.531367\pi\)
\(662\) 0 0
\(663\) −0.911760 −0.0354098
\(664\) 0 0
\(665\) 35.6906 1.38402
\(666\) 0 0
\(667\) 4.77839 0.185020
\(668\) 0 0
\(669\) 14.1364 0.546545
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 40.3560 1.55561 0.777806 0.628505i \(-0.216333\pi\)
0.777806 + 0.628505i \(0.216333\pi\)
\(674\) 0 0
\(675\) −53.0471 −2.04178
\(676\) 0 0
\(677\) −31.4789 −1.20983 −0.604917 0.796289i \(-0.706794\pi\)
−0.604917 + 0.796289i \(0.706794\pi\)
\(678\) 0 0
\(679\) −5.51758 −0.211745
\(680\) 0 0
\(681\) −11.5269 −0.441714
\(682\) 0 0
\(683\) −40.0582 −1.53279 −0.766393 0.642372i \(-0.777950\pi\)
−0.766393 + 0.642372i \(0.777950\pi\)
\(684\) 0 0
\(685\) 10.1336 0.387185
\(686\) 0 0
\(687\) 12.2619 0.467822
\(688\) 0 0
\(689\) −0.331946 −0.0126462
\(690\) 0 0
\(691\) 12.9739 0.493550 0.246775 0.969073i \(-0.420629\pi\)
0.246775 + 0.969073i \(0.420629\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −56.7249 −2.15170
\(696\) 0 0
\(697\) 8.62526 0.326705
\(698\) 0 0
\(699\) 21.5806 0.816253
\(700\) 0 0
\(701\) −13.1844 −0.497969 −0.248984 0.968508i \(-0.580097\pi\)
−0.248984 + 0.968508i \(0.580097\pi\)
\(702\) 0 0
\(703\) 5.03788 0.190007
\(704\) 0 0
\(705\) 23.3972 0.881190
\(706\) 0 0
\(707\) −16.1881 −0.608815
\(708\) 0 0
\(709\) 16.3437 0.613800 0.306900 0.951742i \(-0.400708\pi\)
0.306900 + 0.951742i \(0.400708\pi\)
\(710\) 0 0
\(711\) 19.0454 0.714260
\(712\) 0 0
\(713\) −8.32348 −0.311717
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.43182 0.128164
\(718\) 0 0
\(719\) 5.60213 0.208924 0.104462 0.994529i \(-0.466688\pi\)
0.104462 + 0.994529i \(0.466688\pi\)
\(720\) 0 0
\(721\) 41.2886 1.53767
\(722\) 0 0
\(723\) −14.6712 −0.545629
\(724\) 0 0
\(725\) 30.7748 1.14295
\(726\) 0 0
\(727\) 29.1822 1.08231 0.541155 0.840923i \(-0.317987\pi\)
0.541155 + 0.840923i \(0.317987\pi\)
\(728\) 0 0
\(729\) 8.51686 0.315439
\(730\) 0 0
\(731\) 0.408086 0.0150936
\(732\) 0 0
\(733\) −24.7911 −0.915680 −0.457840 0.889035i \(-0.651377\pi\)
−0.457840 + 0.889035i \(0.651377\pi\)
\(734\) 0 0
\(735\) −25.3841 −0.936308
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 26.7504 0.984028 0.492014 0.870587i \(-0.336261\pi\)
0.492014 + 0.870587i \(0.336261\pi\)
\(740\) 0 0
\(741\) −2.29876 −0.0844471
\(742\) 0 0
\(743\) 36.7239 1.34727 0.673635 0.739064i \(-0.264732\pi\)
0.673635 + 0.739064i \(0.264732\pi\)
\(744\) 0 0
\(745\) 42.9609 1.57397
\(746\) 0 0
\(747\) −31.6097 −1.15654
\(748\) 0 0
\(749\) −35.5683 −1.29964
\(750\) 0 0
\(751\) 22.8122 0.832431 0.416215 0.909266i \(-0.363356\pi\)
0.416215 + 0.909266i \(0.363356\pi\)
\(752\) 0 0
\(753\) 10.1855 0.371180
\(754\) 0 0
\(755\) 81.4693 2.96497
\(756\) 0 0
\(757\) −26.7174 −0.971062 −0.485531 0.874219i \(-0.661374\pi\)
−0.485531 + 0.874219i \(0.661374\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.7222 −0.787428 −0.393714 0.919233i \(-0.628810\pi\)
−0.393714 + 0.919233i \(0.628810\pi\)
\(762\) 0 0
\(763\) 15.4465 0.559201
\(764\) 0 0
\(765\) 8.19417 0.296261
\(766\) 0 0
\(767\) 8.49452 0.306719
\(768\) 0 0
\(769\) 53.7688 1.93895 0.969476 0.245185i \(-0.0788488\pi\)
0.969476 + 0.245185i \(0.0788488\pi\)
\(770\) 0 0
\(771\) 13.7730 0.496024
\(772\) 0 0
\(773\) 9.73219 0.350042 0.175021 0.984565i \(-0.444001\pi\)
0.175021 + 0.984565i \(0.444001\pi\)
\(774\) 0 0
\(775\) −53.6067 −1.92561
\(776\) 0 0
\(777\) −7.23789 −0.259658
\(778\) 0 0
\(779\) 21.7463 0.779143
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −13.0250 −0.465477
\(784\) 0 0
\(785\) −78.1138 −2.78800
\(786\) 0 0
\(787\) 38.2155 1.36223 0.681117 0.732174i \(-0.261494\pi\)
0.681117 + 0.732174i \(0.261494\pi\)
\(788\) 0 0
\(789\) 8.23660 0.293231
\(790\) 0 0
\(791\) 34.6060 1.23045
\(792\) 0 0
\(793\) −14.3139 −0.508303
\(794\) 0 0
\(795\) −1.16939 −0.0414741
\(796\) 0 0
\(797\) 21.7617 0.770838 0.385419 0.922742i \(-0.374057\pi\)
0.385419 + 0.922742i \(0.374057\pi\)
\(798\) 0 0
\(799\) −5.97604 −0.211417
\(800\) 0 0
\(801\) −5.24133 −0.185193
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 26.0461 0.918006
\(806\) 0 0
\(807\) 0.965069 0.0339720
\(808\) 0 0
\(809\) 13.6681 0.480544 0.240272 0.970706i \(-0.422763\pi\)
0.240272 + 0.970706i \(0.422763\pi\)
\(810\) 0 0
\(811\) 35.4756 1.24572 0.622858 0.782335i \(-0.285971\pi\)
0.622858 + 0.782335i \(0.285971\pi\)
\(812\) 0 0
\(813\) 16.6963 0.585564
\(814\) 0 0
\(815\) 75.9553 2.66060
\(816\) 0 0
\(817\) 1.02888 0.0359960
\(818\) 0 0
\(819\) −8.42541 −0.294408
\(820\) 0 0
\(821\) 14.9658 0.522311 0.261155 0.965297i \(-0.415897\pi\)
0.261155 + 0.965297i \(0.415897\pi\)
\(822\) 0 0
\(823\) −12.2152 −0.425795 −0.212898 0.977075i \(-0.568290\pi\)
−0.212898 + 0.977075i \(0.568290\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.9035 0.483472 0.241736 0.970342i \(-0.422283\pi\)
0.241736 + 0.970342i \(0.422283\pi\)
\(828\) 0 0
\(829\) −12.3466 −0.428815 −0.214408 0.976744i \(-0.568782\pi\)
−0.214408 + 0.976744i \(0.568782\pi\)
\(830\) 0 0
\(831\) −18.3302 −0.635868
\(832\) 0 0
\(833\) 6.48353 0.224641
\(834\) 0 0
\(835\) 71.4895 2.47400
\(836\) 0 0
\(837\) 22.6883 0.784223
\(838\) 0 0
\(839\) −20.3651 −0.703081 −0.351540 0.936173i \(-0.614342\pi\)
−0.351540 + 0.936173i \(0.614342\pi\)
\(840\) 0 0
\(841\) −21.4436 −0.739436
\(842\) 0 0
\(843\) 19.3084 0.665016
\(844\) 0 0
\(845\) 47.8799 1.64712
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.01700 0.206503
\(850\) 0 0
\(851\) 3.67652 0.126030
\(852\) 0 0
\(853\) 52.2362 1.78853 0.894266 0.447536i \(-0.147698\pi\)
0.894266 + 0.447536i \(0.147698\pi\)
\(854\) 0 0
\(855\) 20.6594 0.706538
\(856\) 0 0
\(857\) 38.4691 1.31408 0.657041 0.753855i \(-0.271808\pi\)
0.657041 + 0.753855i \(0.271808\pi\)
\(858\) 0 0
\(859\) −33.3955 −1.13944 −0.569720 0.821839i \(-0.692948\pi\)
−0.569720 + 0.821839i \(0.692948\pi\)
\(860\) 0 0
\(861\) −31.2428 −1.06475
\(862\) 0 0
\(863\) 15.1147 0.514511 0.257255 0.966343i \(-0.417182\pi\)
0.257255 + 0.966343i \(0.417182\pi\)
\(864\) 0 0
\(865\) −25.5769 −0.869642
\(866\) 0 0
\(867\) −14.8048 −0.502798
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 5.96576 0.202142
\(872\) 0 0
\(873\) −3.19384 −0.108095
\(874\) 0 0
\(875\) 92.8297 3.13822
\(876\) 0 0
\(877\) −15.9971 −0.540182 −0.270091 0.962835i \(-0.587054\pi\)
−0.270091 + 0.962835i \(0.587054\pi\)
\(878\) 0 0
\(879\) 14.7274 0.496741
\(880\) 0 0
\(881\) −43.0908 −1.45177 −0.725883 0.687818i \(-0.758569\pi\)
−0.725883 + 0.687818i \(0.758569\pi\)
\(882\) 0 0
\(883\) 44.9734 1.51347 0.756737 0.653720i \(-0.226792\pi\)
0.756737 + 0.653720i \(0.226792\pi\)
\(884\) 0 0
\(885\) 29.9248 1.00591
\(886\) 0 0
\(887\) −45.3094 −1.52134 −0.760670 0.649139i \(-0.775129\pi\)
−0.760670 + 0.649139i \(0.775129\pi\)
\(888\) 0 0
\(889\) −29.6225 −0.993505
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.0670 −0.504198
\(894\) 0 0
\(895\) −5.66466 −0.189349
\(896\) 0 0
\(897\) −1.67758 −0.0560128
\(898\) 0 0
\(899\) −13.1624 −0.438992
\(900\) 0 0
\(901\) 0.298682 0.00995054
\(902\) 0 0
\(903\) −1.47819 −0.0491910
\(904\) 0 0
\(905\) −69.7854 −2.31975
\(906\) 0 0
\(907\) 21.2120 0.704332 0.352166 0.935938i \(-0.385445\pi\)
0.352166 + 0.935938i \(0.385445\pi\)
\(908\) 0 0
\(909\) −9.37043 −0.310798
\(910\) 0 0
\(911\) 19.1313 0.633850 0.316925 0.948451i \(-0.397350\pi\)
0.316925 + 0.948451i \(0.397350\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −50.4256 −1.66702
\(916\) 0 0
\(917\) −45.6730 −1.50825
\(918\) 0 0
\(919\) 41.1068 1.35599 0.677993 0.735068i \(-0.262850\pi\)
0.677993 + 0.735068i \(0.262850\pi\)
\(920\) 0 0
\(921\) 9.92805 0.327140
\(922\) 0 0
\(923\) −13.5118 −0.444748
\(924\) 0 0
\(925\) 23.6783 0.778539
\(926\) 0 0
\(927\) 23.8998 0.784973
\(928\) 0 0
\(929\) −47.4720 −1.55750 −0.778752 0.627331i \(-0.784147\pi\)
−0.778752 + 0.627331i \(0.784147\pi\)
\(930\) 0 0
\(931\) 16.3465 0.535735
\(932\) 0 0
\(933\) −2.93142 −0.0959703
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.4615 0.897126 0.448563 0.893751i \(-0.351936\pi\)
0.448563 + 0.893751i \(0.351936\pi\)
\(938\) 0 0
\(939\) 13.8377 0.451577
\(940\) 0 0
\(941\) 16.1641 0.526934 0.263467 0.964668i \(-0.415134\pi\)
0.263467 + 0.964668i \(0.415134\pi\)
\(942\) 0 0
\(943\) 15.8699 0.516796
\(944\) 0 0
\(945\) −70.9971 −2.30954
\(946\) 0 0
\(947\) 28.3252 0.920445 0.460223 0.887804i \(-0.347770\pi\)
0.460223 + 0.887804i \(0.347770\pi\)
\(948\) 0 0
\(949\) −3.69732 −0.120020
\(950\) 0 0
\(951\) 12.1784 0.394911
\(952\) 0 0
\(953\) 53.3846 1.72930 0.864648 0.502379i \(-0.167542\pi\)
0.864648 + 0.502379i \(0.167542\pi\)
\(954\) 0 0
\(955\) −28.1279 −0.910196
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.37543 0.302748
\(960\) 0 0
\(961\) −8.07236 −0.260399
\(962\) 0 0
\(963\) −20.5886 −0.663459
\(964\) 0 0
\(965\) 93.9252 3.02356
\(966\) 0 0
\(967\) −45.0985 −1.45027 −0.725136 0.688606i \(-0.758223\pi\)
−0.725136 + 0.688606i \(0.758223\pi\)
\(968\) 0 0
\(969\) 2.06840 0.0664466
\(970\) 0 0
\(971\) 47.5369 1.52553 0.762766 0.646674i \(-0.223841\pi\)
0.762766 + 0.646674i \(0.223841\pi\)
\(972\) 0 0
\(973\) −52.4808 −1.68246
\(974\) 0 0
\(975\) −10.8043 −0.346015
\(976\) 0 0
\(977\) −5.31562 −0.170062 −0.0850308 0.996378i \(-0.527099\pi\)
−0.0850308 + 0.996378i \(0.527099\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8.94118 0.285470
\(982\) 0 0
\(983\) −3.55660 −0.113438 −0.0567189 0.998390i \(-0.518064\pi\)
−0.0567189 + 0.998390i \(0.518064\pi\)
\(984\) 0 0
\(985\) −43.5202 −1.38667
\(986\) 0 0
\(987\) 21.6467 0.689021
\(988\) 0 0
\(989\) 0.750852 0.0238757
\(990\) 0 0
\(991\) 38.1592 1.21217 0.606083 0.795401i \(-0.292740\pi\)
0.606083 + 0.795401i \(0.292740\pi\)
\(992\) 0 0
\(993\) 30.8405 0.978694
\(994\) 0 0
\(995\) 36.5183 1.15771
\(996\) 0 0
\(997\) −29.1688 −0.923785 −0.461892 0.886936i \(-0.652829\pi\)
−0.461892 + 0.886936i \(0.652829\pi\)
\(998\) 0 0
\(999\) −10.0215 −0.317068
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.2.a.bc.1.3 4
4.3 odd 2 968.2.a.m.1.2 4
8.3 odd 2 7744.2.a.dh.1.3 4
8.5 even 2 7744.2.a.ds.1.2 4
11.7 odd 10 176.2.m.d.49.1 8
11.8 odd 10 176.2.m.d.97.1 8
11.10 odd 2 1936.2.a.bb.1.3 4
12.11 even 2 8712.2.a.cd.1.4 4
44.3 odd 10 968.2.i.p.9.2 8
44.7 even 10 88.2.i.b.49.2 yes 8
44.15 odd 10 968.2.i.p.753.2 8
44.19 even 10 88.2.i.b.9.2 8
44.27 odd 10 968.2.i.t.729.1 8
44.31 odd 10 968.2.i.t.81.1 8
44.35 even 10 968.2.i.s.81.1 8
44.39 even 10 968.2.i.s.729.1 8
44.43 even 2 968.2.a.n.1.2 4
88.19 even 10 704.2.m.l.449.1 8
88.21 odd 2 7744.2.a.dr.1.2 4
88.29 odd 10 704.2.m.i.577.2 8
88.43 even 2 7744.2.a.di.1.3 4
88.51 even 10 704.2.m.l.577.1 8
88.85 odd 10 704.2.m.i.449.2 8
132.95 odd 10 792.2.r.g.577.2 8
132.107 odd 10 792.2.r.g.361.2 8
132.131 odd 2 8712.2.a.ce.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.9.2 8 44.19 even 10
88.2.i.b.49.2 yes 8 44.7 even 10
176.2.m.d.49.1 8 11.7 odd 10
176.2.m.d.97.1 8 11.8 odd 10
704.2.m.i.449.2 8 88.85 odd 10
704.2.m.i.577.2 8 88.29 odd 10
704.2.m.l.449.1 8 88.19 even 10
704.2.m.l.577.1 8 88.51 even 10
792.2.r.g.361.2 8 132.107 odd 10
792.2.r.g.577.2 8 132.95 odd 10
968.2.a.m.1.2 4 4.3 odd 2
968.2.a.n.1.2 4 44.43 even 2
968.2.i.p.9.2 8 44.3 odd 10
968.2.i.p.753.2 8 44.15 odd 10
968.2.i.s.81.1 8 44.35 even 10
968.2.i.s.729.1 8 44.39 even 10
968.2.i.t.81.1 8 44.31 odd 10
968.2.i.t.729.1 8 44.27 odd 10
1936.2.a.bb.1.3 4 11.10 odd 2
1936.2.a.bc.1.3 4 1.1 even 1 trivial
7744.2.a.dh.1.3 4 8.3 odd 2
7744.2.a.di.1.3 4 88.43 even 2
7744.2.a.dr.1.2 4 88.21 odd 2
7744.2.a.ds.1.2 4 8.5 even 2
8712.2.a.cd.1.4 4 12.11 even 2
8712.2.a.ce.1.4 4 132.131 odd 2