Properties

Label 704.2.m.i.577.2
Level $704$
Weight $2$
Character 704.577
Analytic conductor $5.621$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(257,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 577.2
Root \(-1.20316 - 0.874145i\) of defining polynomial
Character \(\chi\) \(=\) 704.577
Dual form 704.2.m.i.449.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.743592 + 0.540251i) q^{3} +(1.24359 - 3.82738i) q^{5} +(-3.01217 + 2.18847i) q^{7} +(-0.665993 - 2.04972i) q^{9} +(-1.97174 - 2.66688i) q^{11} +(-0.324462 - 0.998590i) q^{13} +(2.99248 - 2.17416i) q^{15} +(-0.291947 + 0.898521i) q^{17} +(-1.92705 - 1.40008i) q^{19} -3.42216 q^{21} +1.73830 q^{23} +(-9.05726 - 6.58048i) q^{25} +(1.46422 - 4.50639i) q^{27} +(-2.22389 + 1.61575i) q^{29} +(-1.47966 - 4.55393i) q^{31} +(-0.0253858 - 3.04831i) q^{33} +(4.63021 + 14.2503i) q^{35} +(1.71108 - 1.24317i) q^{37} +(0.298223 - 0.917835i) q^{39} +(7.38598 + 5.36623i) q^{41} +0.431946 q^{43} -8.67327 q^{45} +(5.11739 + 3.71800i) q^{47} +(2.12066 - 6.52673i) q^{49} +(-0.702517 + 0.510409i) q^{51} +(-0.0976943 - 0.300672i) q^{53} +(-12.6592 + 4.23010i) q^{55} +(-0.676543 - 2.08218i) q^{57} +(-6.54508 + 4.75528i) q^{59} +(4.21270 - 12.9654i) q^{61} +(6.49184 + 4.71659i) q^{63} -4.22549 q^{65} +5.68178 q^{67} +(1.29259 + 0.939120i) q^{69} +(3.97664 - 12.2388i) q^{71} +(2.84881 - 2.06978i) q^{73} +(-3.17979 - 9.78640i) q^{75} +(11.7756 + 3.71800i) q^{77} +(2.73078 + 8.40447i) q^{79} +(-1.70741 + 1.24051i) q^{81} +(4.53227 - 13.9489i) q^{83} +(3.07592 + 2.23479i) q^{85} -2.52658 q^{87} +2.43195 q^{89} +(3.16272 + 2.29785i) q^{91} +(1.36000 - 4.18565i) q^{93} +(-7.75513 + 5.63443i) q^{95} +(0.457940 + 1.40940i) q^{97} +(-4.15318 + 5.81763i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + 3 q^{5} - 7 q^{7} - 13 q^{9} + 7 q^{11} - 7 q^{13} + 13 q^{15} + q^{17} - 2 q^{19} + 2 q^{21} + 4 q^{23} - 33 q^{25} - 22 q^{27} - 17 q^{29} + 13 q^{31} + 16 q^{33} + 11 q^{35} - q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.743592 + 0.540251i 0.429313 + 0.311914i 0.781374 0.624063i \(-0.214519\pi\)
−0.352061 + 0.935977i \(0.614519\pi\)
\(4\) 0 0
\(5\) 1.24359 3.82738i 0.556151 1.71166i −0.136732 0.990608i \(-0.543660\pi\)
0.692883 0.721050i \(-0.256340\pi\)
\(6\) 0 0
\(7\) −3.01217 + 2.18847i −1.13850 + 0.827165i −0.986909 0.161279i \(-0.948438\pi\)
−0.151586 + 0.988444i \(0.548438\pi\)
\(8\) 0 0
\(9\) −0.665993 2.04972i −0.221998 0.683239i
\(10\) 0 0
\(11\) −1.97174 2.66688i −0.594502 0.804094i
\(12\) 0 0
\(13\) −0.324462 0.998590i −0.0899895 0.276959i 0.895926 0.444203i \(-0.146513\pi\)
−0.985916 + 0.167244i \(0.946513\pi\)
\(14\) 0 0
\(15\) 2.99248 2.17416i 0.772654 0.561366i
\(16\) 0 0
\(17\) −0.291947 + 0.898521i −0.0708076 + 0.217923i −0.980198 0.198020i \(-0.936549\pi\)
0.909390 + 0.415944i \(0.136549\pi\)
\(18\) 0 0
\(19\) −1.92705 1.40008i −0.442096 0.321201i 0.344371 0.938834i \(-0.388092\pi\)
−0.786467 + 0.617632i \(0.788092\pi\)
\(20\) 0 0
\(21\) −3.42216 −0.746776
\(22\) 0 0
\(23\) 1.73830 0.362461 0.181230 0.983441i \(-0.441992\pi\)
0.181230 + 0.983441i \(0.441992\pi\)
\(24\) 0 0
\(25\) −9.05726 6.58048i −1.81145 1.31610i
\(26\) 0 0
\(27\) 1.46422 4.50639i 0.281788 0.867256i
\(28\) 0 0
\(29\) −2.22389 + 1.61575i −0.412967 + 0.300038i −0.774802 0.632204i \(-0.782150\pi\)
0.361835 + 0.932242i \(0.382150\pi\)
\(30\) 0 0
\(31\) −1.47966 4.55393i −0.265755 0.817909i −0.991519 0.129965i \(-0.958513\pi\)
0.725764 0.687944i \(-0.241487\pi\)
\(32\) 0 0
\(33\) −0.0253858 3.04831i −0.00441911 0.530642i
\(34\) 0 0
\(35\) 4.63021 + 14.2503i 0.782648 + 2.40874i
\(36\) 0 0
\(37\) 1.71108 1.24317i 0.281299 0.204376i −0.438185 0.898885i \(-0.644378\pi\)
0.719484 + 0.694509i \(0.244378\pi\)
\(38\) 0 0
\(39\) 0.298223 0.917835i 0.0477538 0.146971i
\(40\) 0 0
\(41\) 7.38598 + 5.36623i 1.15350 + 0.838064i 0.988942 0.148304i \(-0.0473816\pi\)
0.164554 + 0.986368i \(0.447382\pi\)
\(42\) 0 0
\(43\) 0.431946 0.0658711 0.0329356 0.999457i \(-0.489514\pi\)
0.0329356 + 0.999457i \(0.489514\pi\)
\(44\) 0 0
\(45\) −8.67327 −1.29294
\(46\) 0 0
\(47\) 5.11739 + 3.71800i 0.746449 + 0.542327i 0.894724 0.446619i \(-0.147372\pi\)
−0.148275 + 0.988946i \(0.547372\pi\)
\(48\) 0 0
\(49\) 2.12066 6.52673i 0.302952 0.932390i
\(50\) 0 0
\(51\) −0.702517 + 0.510409i −0.0983721 + 0.0714715i
\(52\) 0 0
\(53\) −0.0976943 0.300672i −0.0134194 0.0413005i 0.944123 0.329594i \(-0.106912\pi\)
−0.957542 + 0.288294i \(0.906912\pi\)
\(54\) 0 0
\(55\) −12.6592 + 4.23010i −1.70697 + 0.570386i
\(56\) 0 0
\(57\) −0.676543 2.08218i −0.0896103 0.275792i
\(58\) 0 0
\(59\) −6.54508 + 4.75528i −0.852097 + 0.619085i −0.925724 0.378201i \(-0.876543\pi\)
0.0736261 + 0.997286i \(0.476543\pi\)
\(60\) 0 0
\(61\) 4.21270 12.9654i 0.539381 1.66005i −0.194606 0.980882i \(-0.562343\pi\)
0.733987 0.679164i \(-0.237657\pi\)
\(62\) 0 0
\(63\) 6.49184 + 4.71659i 0.817894 + 0.594235i
\(64\) 0 0
\(65\) −4.22549 −0.524107
\(66\) 0 0
\(67\) 5.68178 0.694140 0.347070 0.937839i \(-0.387177\pi\)
0.347070 + 0.937839i \(0.387177\pi\)
\(68\) 0 0
\(69\) 1.29259 + 0.939120i 0.155609 + 0.113057i
\(70\) 0 0
\(71\) 3.97664 12.2388i 0.471940 1.45248i −0.378101 0.925764i \(-0.623423\pi\)
0.850041 0.526717i \(-0.176577\pi\)
\(72\) 0 0
\(73\) 2.84881 2.06978i 0.333428 0.242250i −0.408456 0.912778i \(-0.633933\pi\)
0.741884 + 0.670528i \(0.233933\pi\)
\(74\) 0 0
\(75\) −3.17979 9.78640i −0.367171 1.13004i
\(76\) 0 0
\(77\) 11.7756 + 3.71800i 1.34196 + 0.423706i
\(78\) 0 0
\(79\) 2.73078 + 8.40447i 0.307236 + 0.945577i 0.978833 + 0.204660i \(0.0656088\pi\)
−0.671597 + 0.740917i \(0.734391\pi\)
\(80\) 0 0
\(81\) −1.70741 + 1.24051i −0.189712 + 0.137834i
\(82\) 0 0
\(83\) 4.53227 13.9489i 0.497481 1.53109i −0.315573 0.948901i \(-0.602197\pi\)
0.813054 0.582188i \(-0.197803\pi\)
\(84\) 0 0
\(85\) 3.07592 + 2.23479i 0.333631 + 0.242397i
\(86\) 0 0
\(87\) −2.52658 −0.270878
\(88\) 0 0
\(89\) 2.43195 0.257786 0.128893 0.991659i \(-0.458858\pi\)
0.128893 + 0.991659i \(0.458858\pi\)
\(90\) 0 0
\(91\) 3.16272 + 2.29785i 0.331543 + 0.240880i
\(92\) 0 0
\(93\) 1.36000 4.18565i 0.141026 0.434032i
\(94\) 0 0
\(95\) −7.75513 + 5.63443i −0.795659 + 0.578080i
\(96\) 0 0
\(97\) 0.457940 + 1.40940i 0.0464968 + 0.143102i 0.971610 0.236590i \(-0.0760298\pi\)
−0.925113 + 0.379692i \(0.876030\pi\)
\(98\) 0 0
\(99\) −4.15318 + 5.81763i −0.417410 + 0.584694i
\(100\) 0 0
\(101\) 1.34355 + 4.13503i 0.133688 + 0.411451i 0.995384 0.0959754i \(-0.0305970\pi\)
−0.861695 + 0.507426i \(0.830597\pi\)
\(102\) 0 0
\(103\) 8.97150 6.51817i 0.883988 0.642255i −0.0503157 0.998733i \(-0.516023\pi\)
0.934303 + 0.356479i \(0.116023\pi\)
\(104\) 0 0
\(105\) −4.25577 + 13.0979i −0.415320 + 1.27822i
\(106\) 0 0
\(107\) −7.72854 5.61512i −0.747147 0.542834i 0.147795 0.989018i \(-0.452783\pi\)
−0.894941 + 0.446184i \(0.852783\pi\)
\(108\) 0 0
\(109\) −4.14866 −0.397369 −0.198685 0.980063i \(-0.563667\pi\)
−0.198685 + 0.980063i \(0.563667\pi\)
\(110\) 0 0
\(111\) 1.94397 0.184513
\(112\) 0 0
\(113\) 7.51945 + 5.46320i 0.707371 + 0.513935i 0.882324 0.470642i \(-0.155978\pi\)
−0.174954 + 0.984577i \(0.555978\pi\)
\(114\) 0 0
\(115\) 2.16174 6.65315i 0.201583 0.620409i
\(116\) 0 0
\(117\) −1.83074 + 1.33011i −0.169252 + 0.122969i
\(118\) 0 0
\(119\) −1.08699 3.34542i −0.0996445 0.306674i
\(120\) 0 0
\(121\) −3.22448 + 10.5168i −0.293135 + 0.956071i
\(122\) 0 0
\(123\) 2.59304 + 7.98057i 0.233807 + 0.719584i
\(124\) 0 0
\(125\) −20.1707 + 14.6549i −1.80413 + 1.31077i
\(126\) 0 0
\(127\) −2.45856 + 7.56667i −0.218162 + 0.671434i 0.780752 + 0.624841i \(0.214836\pi\)
−0.998914 + 0.0465926i \(0.985164\pi\)
\(128\) 0 0
\(129\) 0.321192 + 0.233359i 0.0282794 + 0.0205462i
\(130\) 0 0
\(131\) 12.2670 1.07177 0.535885 0.844291i \(-0.319978\pi\)
0.535885 + 0.844291i \(0.319978\pi\)
\(132\) 0 0
\(133\) 8.86866 0.769010
\(134\) 0 0
\(135\) −15.4268 11.2082i −1.32773 0.964651i
\(136\) 0 0
\(137\) −0.778128 + 2.39483i −0.0664799 + 0.204604i −0.978778 0.204922i \(-0.934306\pi\)
0.912298 + 0.409526i \(0.134306\pi\)
\(138\) 0 0
\(139\) −11.4034 + 8.28509i −0.967227 + 0.702732i −0.954818 0.297191i \(-0.903950\pi\)
−0.0124093 + 0.999923i \(0.503950\pi\)
\(140\) 0 0
\(141\) 1.79660 + 5.52936i 0.151301 + 0.465656i
\(142\) 0 0
\(143\) −2.02336 + 2.83426i −0.169202 + 0.237013i
\(144\) 0 0
\(145\) 3.41849 + 10.5210i 0.283890 + 0.873724i
\(146\) 0 0
\(147\) 5.10299 3.70754i 0.420887 0.305792i
\(148\) 0 0
\(149\) −3.29883 + 10.1528i −0.270251 + 0.831746i 0.720186 + 0.693781i \(0.244056\pi\)
−0.990437 + 0.137966i \(0.955944\pi\)
\(150\) 0 0
\(151\) −16.3778 11.8992i −1.33281 0.968341i −0.999676 0.0254609i \(-0.991895\pi\)
−0.333132 0.942880i \(-0.608105\pi\)
\(152\) 0 0
\(153\) 2.03615 0.164613
\(154\) 0 0
\(155\) −19.2697 −1.54778
\(156\) 0 0
\(157\) 15.7033 + 11.4091i 1.25326 + 0.910544i 0.998406 0.0564365i \(-0.0179738\pi\)
0.254850 + 0.966981i \(0.417974\pi\)
\(158\) 0 0
\(159\) 0.0897939 0.276357i 0.00712112 0.0219165i
\(160\) 0 0
\(161\) −5.23607 + 3.80423i −0.412660 + 0.299815i
\(162\) 0 0
\(163\) 5.83236 + 17.9502i 0.456826 + 1.40597i 0.868978 + 0.494850i \(0.164777\pi\)
−0.412152 + 0.911115i \(0.635223\pi\)
\(164\) 0 0
\(165\) −11.6986 3.69369i −0.910735 0.287553i
\(166\) 0 0
\(167\) 5.48945 + 16.8948i 0.424786 + 1.30736i 0.903199 + 0.429223i \(0.141212\pi\)
−0.478412 + 0.878135i \(0.658788\pi\)
\(168\) 0 0
\(169\) 9.62531 6.99320i 0.740409 0.537938i
\(170\) 0 0
\(171\) −1.58637 + 4.88235i −0.121313 + 0.373363i
\(172\) 0 0
\(173\) −5.14174 3.73569i −0.390919 0.284020i 0.374913 0.927060i \(-0.377673\pi\)
−0.765832 + 0.643040i \(0.777673\pi\)
\(174\) 0 0
\(175\) 41.6833 3.15096
\(176\) 0 0
\(177\) −7.43592 −0.558918
\(178\) 0 0
\(179\) 1.13877 + 0.827364i 0.0851156 + 0.0618401i 0.629529 0.776977i \(-0.283248\pi\)
−0.544414 + 0.838817i \(0.683248\pi\)
\(180\) 0 0
\(181\) −5.35860 + 16.4921i −0.398302 + 1.22585i 0.528059 + 0.849208i \(0.322920\pi\)
−0.926360 + 0.376639i \(0.877080\pi\)
\(182\) 0 0
\(183\) 10.1371 7.36503i 0.749355 0.544439i
\(184\) 0 0
\(185\) −2.63021 8.09495i −0.193377 0.595153i
\(186\) 0 0
\(187\) 2.97189 0.993063i 0.217326 0.0726199i
\(188\) 0 0
\(189\) 5.45165 + 16.7784i 0.396549 + 1.22045i
\(190\) 0 0
\(191\) −5.65456 + 4.10828i −0.409149 + 0.297264i −0.773257 0.634092i \(-0.781374\pi\)
0.364108 + 0.931357i \(0.381374\pi\)
\(192\) 0 0
\(193\) 7.21221 22.1969i 0.519147 1.59777i −0.256462 0.966554i \(-0.582557\pi\)
0.775608 0.631214i \(-0.217443\pi\)
\(194\) 0 0
\(195\) −3.14204 2.28283i −0.225006 0.163477i
\(196\) 0 0
\(197\) 10.8142 0.770481 0.385240 0.922816i \(-0.374119\pi\)
0.385240 + 0.922816i \(0.374119\pi\)
\(198\) 0 0
\(199\) −9.07433 −0.643262 −0.321631 0.946865i \(-0.604231\pi\)
−0.321631 + 0.946865i \(0.604231\pi\)
\(200\) 0 0
\(201\) 4.22493 + 3.06959i 0.298004 + 0.216512i
\(202\) 0 0
\(203\) 3.16272 9.73386i 0.221980 0.683183i
\(204\) 0 0
\(205\) 29.7237 21.5956i 2.07600 1.50830i
\(206\) 0 0
\(207\) −1.15770 3.56302i −0.0804655 0.247647i
\(208\) 0 0
\(209\) 0.0657885 + 7.89981i 0.00455068 + 0.546442i
\(210\) 0 0
\(211\) −0.737448 2.26963i −0.0507680 0.156248i 0.922458 0.386097i \(-0.126177\pi\)
−0.973226 + 0.229849i \(0.926177\pi\)
\(212\) 0 0
\(213\) 9.56904 6.95231i 0.655660 0.476365i
\(214\) 0 0
\(215\) 0.537165 1.65322i 0.0366343 0.112749i
\(216\) 0 0
\(217\) 14.4231 + 10.4790i 0.979107 + 0.711363i
\(218\) 0 0
\(219\) 3.23656 0.218706
\(220\) 0 0
\(221\) 0.991980 0.0667278
\(222\) 0 0
\(223\) −12.4428 9.04025i −0.833234 0.605380i 0.0872383 0.996187i \(-0.472196\pi\)
−0.920472 + 0.390807i \(0.872196\pi\)
\(224\) 0 0
\(225\) −7.45605 + 22.9474i −0.497070 + 1.52982i
\(226\) 0 0
\(227\) 10.1460 7.37150i 0.673414 0.489264i −0.197753 0.980252i \(-0.563364\pi\)
0.871166 + 0.490988i \(0.163364\pi\)
\(228\) 0 0
\(229\) −4.12253 12.6879i −0.272425 0.838437i −0.989889 0.141842i \(-0.954698\pi\)
0.717465 0.696595i \(-0.245302\pi\)
\(230\) 0 0
\(231\) 6.74760 + 9.12647i 0.443960 + 0.600478i
\(232\) 0 0
\(233\) −7.25552 22.3302i −0.475325 1.46290i −0.845519 0.533946i \(-0.820709\pi\)
0.370194 0.928955i \(-0.379291\pi\)
\(234\) 0 0
\(235\) 20.5942 14.9625i 1.34342 0.976049i
\(236\) 0 0
\(237\) −2.50994 + 7.72480i −0.163038 + 0.501780i
\(238\) 0 0
\(239\) 3.02068 + 2.19466i 0.195392 + 0.141960i 0.681180 0.732116i \(-0.261467\pi\)
−0.485788 + 0.874077i \(0.661467\pi\)
\(240\) 0 0
\(241\) 15.9621 1.02821 0.514104 0.857728i \(-0.328125\pi\)
0.514104 + 0.857728i \(0.328125\pi\)
\(242\) 0 0
\(243\) −16.1547 −1.03633
\(244\) 0 0
\(245\) −22.3431 16.2332i −1.42745 1.03710i
\(246\) 0 0
\(247\) −0.772857 + 2.37861i −0.0491757 + 0.151347i
\(248\) 0 0
\(249\) 10.9061 7.92372i 0.691144 0.502146i
\(250\) 0 0
\(251\) −3.42442 10.5393i −0.216148 0.665234i −0.999070 0.0431147i \(-0.986272\pi\)
0.782923 0.622119i \(-0.213728\pi\)
\(252\) 0 0
\(253\) −3.42748 4.63584i −0.215484 0.291453i
\(254\) 0 0
\(255\) 1.07988 + 3.32354i 0.0676250 + 0.208128i
\(256\) 0 0
\(257\) −12.1230 + 8.80787i −0.756212 + 0.549420i −0.897746 0.440513i \(-0.854796\pi\)
0.141534 + 0.989933i \(0.454796\pi\)
\(258\) 0 0
\(259\) −2.43342 + 7.48930i −0.151205 + 0.465362i
\(260\) 0 0
\(261\) 4.79293 + 3.48227i 0.296675 + 0.215547i
\(262\) 0 0
\(263\) −8.96129 −0.552577 −0.276288 0.961075i \(-0.589104\pi\)
−0.276288 + 0.961075i \(0.589104\pi\)
\(264\) 0 0
\(265\) −1.27228 −0.0781555
\(266\) 0 0
\(267\) 1.80838 + 1.31386i 0.110671 + 0.0804071i
\(268\) 0 0
\(269\) −0.324462 + 0.998590i −0.0197828 + 0.0608851i −0.960461 0.278416i \(-0.910191\pi\)
0.940678 + 0.339301i \(0.110191\pi\)
\(270\) 0 0
\(271\) 14.6960 10.6773i 0.892720 0.648599i −0.0438656 0.999037i \(-0.513967\pi\)
0.936586 + 0.350438i \(0.113967\pi\)
\(272\) 0 0
\(273\) 1.11036 + 3.41733i 0.0672019 + 0.206826i
\(274\) 0 0
\(275\) 0.309210 + 37.1296i 0.0186461 + 2.23900i
\(276\) 0 0
\(277\) −6.16272 18.9669i −0.370282 1.13961i −0.946607 0.322390i \(-0.895514\pi\)
0.576325 0.817221i \(-0.304486\pi\)
\(278\) 0 0
\(279\) −8.34881 + 6.06577i −0.499830 + 0.363148i
\(280\) 0 0
\(281\) −6.49159 + 19.9791i −0.387256 + 1.19185i 0.547575 + 0.836757i \(0.315551\pi\)
−0.934831 + 0.355094i \(0.884449\pi\)
\(282\) 0 0
\(283\) −5.29615 3.84788i −0.314823 0.228733i 0.419140 0.907922i \(-0.362332\pi\)
−0.733963 + 0.679189i \(0.762332\pi\)
\(284\) 0 0
\(285\) −8.81066 −0.521899
\(286\) 0 0
\(287\) −33.9917 −2.00647
\(288\) 0 0
\(289\) 13.0312 + 9.46771i 0.766540 + 0.556924i
\(290\) 0 0
\(291\) −0.420907 + 1.29542i −0.0246740 + 0.0759388i
\(292\) 0 0
\(293\) −12.9630 + 9.41816i −0.757306 + 0.550215i −0.898083 0.439826i \(-0.855040\pi\)
0.140777 + 0.990041i \(0.455040\pi\)
\(294\) 0 0
\(295\) 10.0609 + 30.9642i 0.585767 + 1.80280i
\(296\) 0 0
\(297\) −14.9051 + 4.98055i −0.864879 + 0.289001i
\(298\) 0 0
\(299\) −0.564012 1.73585i −0.0326177 0.100387i
\(300\) 0 0
\(301\) −1.30110 + 0.945302i −0.0749940 + 0.0544863i
\(302\) 0 0
\(303\) −1.23490 + 3.80063i −0.0709432 + 0.218341i
\(304\) 0 0
\(305\) −44.3845 32.2473i −2.54145 1.84647i
\(306\) 0 0
\(307\) 10.8016 0.616478 0.308239 0.951309i \(-0.400260\pi\)
0.308239 + 0.951309i \(0.400260\pi\)
\(308\) 0 0
\(309\) 10.1926 0.579836
\(310\) 0 0
\(311\) 2.58023 + 1.87465i 0.146311 + 0.106301i 0.658533 0.752552i \(-0.271177\pi\)
−0.512222 + 0.858853i \(0.671177\pi\)
\(312\) 0 0
\(313\) 4.65232 14.3184i 0.262965 0.809323i −0.729190 0.684311i \(-0.760103\pi\)
0.992155 0.125012i \(-0.0398969\pi\)
\(314\) 0 0
\(315\) 26.1254 18.9812i 1.47200 1.06947i
\(316\) 0 0
\(317\) −4.09444 12.6014i −0.229967 0.707765i −0.997749 0.0670547i \(-0.978640\pi\)
0.767782 0.640711i \(-0.221360\pi\)
\(318\) 0 0
\(319\) 8.69396 + 2.74501i 0.486768 + 0.153691i
\(320\) 0 0
\(321\) −2.71331 8.35071i −0.151442 0.466091i
\(322\) 0 0
\(323\) 1.82060 1.32275i 0.101301 0.0735995i
\(324\) 0 0
\(325\) −3.63247 + 11.1796i −0.201493 + 0.620133i
\(326\) 0 0
\(327\) −3.08491 2.24132i −0.170596 0.123945i
\(328\) 0 0
\(329\) −23.5512 −1.29842
\(330\) 0 0
\(331\) −33.5540 −1.84429 −0.922147 0.386839i \(-0.873567\pi\)
−0.922147 + 0.386839i \(0.873567\pi\)
\(332\) 0 0
\(333\) −3.68771 2.67928i −0.202085 0.146824i
\(334\) 0 0
\(335\) 7.06582 21.7464i 0.386047 1.18813i
\(336\) 0 0
\(337\) −5.58656 + 4.05887i −0.304319 + 0.221101i −0.729455 0.684029i \(-0.760226\pi\)
0.425136 + 0.905129i \(0.360226\pi\)
\(338\) 0 0
\(339\) 2.63991 + 8.12479i 0.143380 + 0.441278i
\(340\) 0 0
\(341\) −9.22726 + 12.9252i −0.499684 + 0.699941i
\(342\) 0 0
\(343\) −0.158073 0.486498i −0.00853513 0.0262684i
\(344\) 0 0
\(345\) 5.20182 3.77935i 0.280057 0.203473i
\(346\) 0 0
\(347\) −6.39637 + 19.6860i −0.343375 + 1.05680i 0.619072 + 0.785334i \(0.287509\pi\)
−0.962448 + 0.271467i \(0.912491\pi\)
\(348\) 0 0
\(349\) −8.94507 6.49898i −0.478819 0.347882i 0.322049 0.946723i \(-0.395628\pi\)
−0.800868 + 0.598841i \(0.795628\pi\)
\(350\) 0 0
\(351\) −4.97512 −0.265552
\(352\) 0 0
\(353\) 13.5005 0.718557 0.359279 0.933230i \(-0.383023\pi\)
0.359279 + 0.933230i \(0.383023\pi\)
\(354\) 0 0
\(355\) −41.8974 30.4402i −2.22368 1.61560i
\(356\) 0 0
\(357\) 0.999089 3.07488i 0.0528774 0.162740i
\(358\) 0 0
\(359\) 27.0425 19.6475i 1.42725 1.03696i 0.436726 0.899595i \(-0.356138\pi\)
0.990521 0.137361i \(-0.0438621\pi\)
\(360\) 0 0
\(361\) −4.11803 12.6740i −0.216739 0.667053i
\(362\) 0 0
\(363\) −8.07941 + 6.07817i −0.424059 + 0.319021i
\(364\) 0 0
\(365\) −4.37909 13.4775i −0.229212 0.705442i
\(366\) 0 0
\(367\) 16.2563 11.8109i 0.848570 0.616522i −0.0761814 0.997094i \(-0.524273\pi\)
0.924751 + 0.380572i \(0.124273\pi\)
\(368\) 0 0
\(369\) 6.08023 18.7130i 0.316524 0.974161i
\(370\) 0 0
\(371\) 0.952286 + 0.691876i 0.0494402 + 0.0359204i
\(372\) 0 0
\(373\) 26.4379 1.36890 0.684451 0.729059i \(-0.260042\pi\)
0.684451 + 0.729059i \(0.260042\pi\)
\(374\) 0 0
\(375\) −22.9161 −1.18338
\(376\) 0 0
\(377\) 2.33504 + 1.69651i 0.120261 + 0.0873746i
\(378\) 0 0
\(379\) 6.26005 19.2665i 0.321557 0.989652i −0.651413 0.758723i \(-0.725824\pi\)
0.972971 0.230929i \(-0.0741764\pi\)
\(380\) 0 0
\(381\) −5.91607 + 4.29828i −0.303090 + 0.220208i
\(382\) 0 0
\(383\) 1.42442 + 4.38392i 0.0727845 + 0.224008i 0.980831 0.194863i \(-0.0624261\pi\)
−0.908046 + 0.418870i \(0.862426\pi\)
\(384\) 0 0
\(385\) 28.8743 40.4461i 1.47157 2.06133i
\(386\) 0 0
\(387\) −0.287673 0.885366i −0.0146232 0.0450057i
\(388\) 0 0
\(389\) 24.9393 18.1195i 1.26447 0.918694i 0.265506 0.964109i \(-0.414461\pi\)
0.998968 + 0.0454151i \(0.0144611\pi\)
\(390\) 0 0
\(391\) −0.507492 + 1.56190i −0.0256650 + 0.0789887i
\(392\) 0 0
\(393\) 9.12162 + 6.62724i 0.460125 + 0.334300i
\(394\) 0 0
\(395\) 35.5631 1.78937
\(396\) 0 0
\(397\) −15.9382 −0.799916 −0.399958 0.916533i \(-0.630975\pi\)
−0.399958 + 0.916533i \(0.630975\pi\)
\(398\) 0 0
\(399\) 6.59467 + 4.79131i 0.330146 + 0.239865i
\(400\) 0 0
\(401\) 7.12841 21.9390i 0.355976 1.09558i −0.599466 0.800401i \(-0.704620\pi\)
0.955441 0.295181i \(-0.0953799\pi\)
\(402\) 0 0
\(403\) −4.06741 + 2.95515i −0.202612 + 0.147206i
\(404\) 0 0
\(405\) 2.62457 + 8.07761i 0.130416 + 0.401380i
\(406\) 0 0
\(407\) −6.68919 2.11203i −0.331571 0.104689i
\(408\) 0 0
\(409\) 4.49146 + 13.8233i 0.222088 + 0.683518i 0.998574 + 0.0533829i \(0.0170004\pi\)
−0.776486 + 0.630135i \(0.783000\pi\)
\(410\) 0 0
\(411\) −1.87242 + 1.36039i −0.0923597 + 0.0671033i
\(412\) 0 0
\(413\) 9.30813 28.6475i 0.458023 1.40965i
\(414\) 0 0
\(415\) −47.7515 34.6935i −2.34403 1.70304i
\(416\) 0 0
\(417\) −12.9555 −0.634436
\(418\) 0 0
\(419\) 7.34710 0.358929 0.179465 0.983764i \(-0.442563\pi\)
0.179465 + 0.983764i \(0.442563\pi\)
\(420\) 0 0
\(421\) 1.43035 + 1.03921i 0.0697111 + 0.0506481i 0.622095 0.782942i \(-0.286282\pi\)
−0.552384 + 0.833590i \(0.686282\pi\)
\(422\) 0 0
\(423\) 4.21270 12.9654i 0.204829 0.630398i
\(424\) 0 0
\(425\) 8.55695 6.21699i 0.415073 0.301568i
\(426\) 0 0
\(427\) 15.6850 + 48.2733i 0.759048 + 2.33611i
\(428\) 0 0
\(429\) −3.03577 + 1.01441i −0.146568 + 0.0489761i
\(430\) 0 0
\(431\) 5.03267 + 15.4890i 0.242415 + 0.746077i 0.996051 + 0.0887844i \(0.0282982\pi\)
−0.753636 + 0.657292i \(0.771702\pi\)
\(432\) 0 0
\(433\) 1.81976 1.32213i 0.0874521 0.0635376i −0.543200 0.839603i \(-0.682787\pi\)
0.630652 + 0.776066i \(0.282787\pi\)
\(434\) 0 0
\(435\) −3.14204 + 9.67020i −0.150649 + 0.463651i
\(436\) 0 0
\(437\) −3.34980 2.43377i −0.160242 0.116423i
\(438\) 0 0
\(439\) 8.85337 0.422549 0.211274 0.977427i \(-0.432239\pi\)
0.211274 + 0.977427i \(0.432239\pi\)
\(440\) 0 0
\(441\) −14.7903 −0.704300
\(442\) 0 0
\(443\) −12.9159 9.38396i −0.613654 0.445845i 0.237045 0.971499i \(-0.423821\pi\)
−0.850699 + 0.525653i \(0.823821\pi\)
\(444\) 0 0
\(445\) 3.02435 9.30799i 0.143368 0.441241i
\(446\) 0 0
\(447\) −7.93803 + 5.76732i −0.375456 + 0.272785i
\(448\) 0 0
\(449\) 7.35448 + 22.6348i 0.347079 + 1.06820i 0.960461 + 0.278414i \(0.0898086\pi\)
−0.613382 + 0.789786i \(0.710191\pi\)
\(450\) 0 0
\(451\) −0.252153 30.2783i −0.0118734 1.42575i
\(452\) 0 0
\(453\) −5.74987 17.6963i −0.270152 0.831443i
\(454\) 0 0
\(455\) 12.7279 9.24736i 0.596693 0.433523i
\(456\) 0 0
\(457\) 9.16009 28.1919i 0.428491 1.31876i −0.471120 0.882069i \(-0.656150\pi\)
0.899612 0.436691i \(-0.143850\pi\)
\(458\) 0 0
\(459\) 3.62162 + 2.63126i 0.169043 + 0.122817i
\(460\) 0 0
\(461\) −9.00605 −0.419454 −0.209727 0.977760i \(-0.567257\pi\)
−0.209727 + 0.977760i \(0.567257\pi\)
\(462\) 0 0
\(463\) −16.0634 −0.746528 −0.373264 0.927725i \(-0.621761\pi\)
−0.373264 + 0.927725i \(0.621761\pi\)
\(464\) 0 0
\(465\) −14.3288 10.4105i −0.664483 0.482775i
\(466\) 0 0
\(467\) −1.25913 + 3.87521i −0.0582656 + 0.179323i −0.975953 0.217979i \(-0.930054\pi\)
0.917688 + 0.397302i \(0.130054\pi\)
\(468\) 0 0
\(469\) −17.1145 + 12.4344i −0.790275 + 0.574168i
\(470\) 0 0
\(471\) 5.51305 + 16.9674i 0.254028 + 0.781817i
\(472\) 0 0
\(473\) −0.851685 1.15195i −0.0391605 0.0529666i
\(474\) 0 0
\(475\) 8.24057 + 25.3619i 0.378103 + 1.16368i
\(476\) 0 0
\(477\) −0.551229 + 0.400491i −0.0252390 + 0.0183372i
\(478\) 0 0
\(479\) −0.107974 + 0.332309i −0.00493344 + 0.0151836i −0.953493 0.301415i \(-0.902541\pi\)
0.948559 + 0.316599i \(0.102541\pi\)
\(480\) 0 0
\(481\) −1.79660 1.30530i −0.0819178 0.0595168i
\(482\) 0 0
\(483\) −5.94874 −0.270677
\(484\) 0 0
\(485\) 5.96379 0.270802
\(486\) 0 0
\(487\) 31.6732 + 23.0119i 1.43525 + 1.04277i 0.989009 + 0.147855i \(0.0472368\pi\)
0.446239 + 0.894914i \(0.352763\pi\)
\(488\) 0 0
\(489\) −5.36070 + 16.4985i −0.242419 + 0.746090i
\(490\) 0 0
\(491\) 7.10844 5.16458i 0.320799 0.233074i −0.415717 0.909494i \(-0.636469\pi\)
0.736516 + 0.676420i \(0.236469\pi\)
\(492\) 0 0
\(493\) −0.802529 2.46993i −0.0361441 0.111240i
\(494\) 0 0
\(495\) 17.1014 + 23.1306i 0.768653 + 1.03964i
\(496\) 0 0
\(497\) 14.8060 + 45.5682i 0.664141 + 2.04401i
\(498\) 0 0
\(499\) 20.8304 15.1342i 0.932497 0.677499i −0.0141058 0.999901i \(-0.504490\pi\)
0.946603 + 0.322402i \(0.104490\pi\)
\(500\) 0 0
\(501\) −5.04552 + 15.5285i −0.225417 + 0.693763i
\(502\) 0 0
\(503\) 12.0267 + 8.73793i 0.536246 + 0.389605i 0.822689 0.568492i \(-0.192473\pi\)
−0.286443 + 0.958097i \(0.592473\pi\)
\(504\) 0 0
\(505\) 17.4972 0.778614
\(506\) 0 0
\(507\) 10.9354 0.485658
\(508\) 0 0
\(509\) 2.78541 + 2.02372i 0.123461 + 0.0896997i 0.647802 0.761809i \(-0.275688\pi\)
−0.524341 + 0.851508i \(0.675688\pi\)
\(510\) 0 0
\(511\) −4.05145 + 12.4691i −0.179226 + 0.551600i
\(512\) 0 0
\(513\) −9.13095 + 6.63402i −0.403141 + 0.292899i
\(514\) 0 0
\(515\) −13.7907 42.4433i −0.607689 1.87028i
\(516\) 0 0
\(517\) −0.174705 20.9784i −0.00768352 0.922629i
\(518\) 0 0
\(519\) −1.80515 5.55567i −0.0792371 0.243867i
\(520\) 0 0
\(521\) −32.5393 + 23.6412i −1.42557 + 1.03574i −0.434755 + 0.900549i \(0.643165\pi\)
−0.990820 + 0.135191i \(0.956835\pi\)
\(522\) 0 0
\(523\) −10.6385 + 32.7419i −0.465189 + 1.43170i 0.393556 + 0.919301i \(0.371245\pi\)
−0.858745 + 0.512403i \(0.828755\pi\)
\(524\) 0 0
\(525\) 30.9954 + 22.5194i 1.35275 + 0.982829i
\(526\) 0 0
\(527\) 4.52378 0.197059
\(528\) 0 0
\(529\) −19.9783 −0.868622
\(530\) 0 0
\(531\) 14.1060 + 10.2486i 0.612146 + 0.444750i
\(532\) 0 0
\(533\) 2.96219 9.11670i 0.128307 0.394888i
\(534\) 0 0
\(535\) −31.1024 + 22.5972i −1.34467 + 0.976962i
\(536\) 0 0
\(537\) 0.399795 + 1.23044i 0.0172524 + 0.0530976i
\(538\) 0 0
\(539\) −21.5874 + 7.21347i −0.929835 + 0.310706i
\(540\) 0 0
\(541\) 5.84779 + 17.9977i 0.251416 + 0.773780i 0.994515 + 0.104598i \(0.0333555\pi\)
−0.743098 + 0.669182i \(0.766645\pi\)
\(542\) 0 0
\(543\) −12.8945 + 9.36839i −0.553355 + 0.402036i
\(544\) 0 0
\(545\) −5.15924 + 15.8785i −0.220998 + 0.680161i
\(546\) 0 0
\(547\) −26.5669 19.3020i −1.13592 0.825292i −0.149372 0.988781i \(-0.547725\pi\)
−0.986545 + 0.163489i \(0.947725\pi\)
\(548\) 0 0
\(549\) −29.3809 −1.25395
\(550\) 0 0
\(551\) 6.54775 0.278943
\(552\) 0 0
\(553\) −26.6185 19.3395i −1.13194 0.822399i
\(554\) 0 0
\(555\) 2.41751 7.44032i 0.102617 0.315824i
\(556\) 0 0
\(557\) −25.9380 + 18.8451i −1.09903 + 0.798492i −0.980901 0.194506i \(-0.937690\pi\)
−0.118129 + 0.992998i \(0.537690\pi\)
\(558\) 0 0
\(559\) −0.140150 0.431337i −0.00592771 0.0182436i
\(560\) 0 0
\(561\) 2.74638 + 0.867135i 0.115952 + 0.0366105i
\(562\) 0 0
\(563\) 0.387163 + 1.19157i 0.0163170 + 0.0502185i 0.958883 0.283800i \(-0.0915952\pi\)
−0.942567 + 0.334019i \(0.891595\pi\)
\(564\) 0 0
\(565\) 30.2609 21.9858i 1.27309 0.924951i
\(566\) 0 0
\(567\) 2.42821 7.47325i 0.101975 0.313847i
\(568\) 0 0
\(569\) −4.17610 3.03411i −0.175071 0.127197i 0.496799 0.867866i \(-0.334509\pi\)
−0.671870 + 0.740669i \(0.734509\pi\)
\(570\) 0 0
\(571\) 1.46767 0.0614200 0.0307100 0.999528i \(-0.490223\pi\)
0.0307100 + 0.999528i \(0.490223\pi\)
\(572\) 0 0
\(573\) −6.42419 −0.268374
\(574\) 0 0
\(575\) −15.7442 11.4389i −0.656581 0.477034i
\(576\) 0 0
\(577\) −5.93354 + 18.2616i −0.247016 + 0.760238i 0.748282 + 0.663381i \(0.230879\pi\)
−0.995298 + 0.0968575i \(0.969121\pi\)
\(578\) 0 0
\(579\) 17.3549 12.6090i 0.721243 0.524014i
\(580\) 0 0
\(581\) 16.8748 + 51.9353i 0.700084 + 2.15464i
\(582\) 0 0
\(583\) −0.609229 + 0.853387i −0.0252317 + 0.0353437i
\(584\) 0 0
\(585\) 2.81414 + 8.66105i 0.116351 + 0.358090i
\(586\) 0 0
\(587\) 4.62070 3.35713i 0.190717 0.138564i −0.488330 0.872659i \(-0.662394\pi\)
0.679046 + 0.734096i \(0.262394\pi\)
\(588\) 0 0
\(589\) −3.52450 + 10.8473i −0.145225 + 0.446955i
\(590\) 0 0
\(591\) 8.04137 + 5.84240i 0.330778 + 0.240324i
\(592\) 0 0
\(593\) 36.3301 1.49190 0.745949 0.666003i \(-0.231996\pi\)
0.745949 + 0.666003i \(0.231996\pi\)
\(594\) 0 0
\(595\) −14.1560 −0.580339
\(596\) 0 0
\(597\) −6.74760 4.90242i −0.276161 0.200643i
\(598\) 0 0
\(599\) 12.7458 39.2276i 0.520780 1.60280i −0.251732 0.967797i \(-0.581000\pi\)
0.772512 0.635000i \(-0.219000\pi\)
\(600\) 0 0
\(601\) −17.3591 + 12.6121i −0.708091 + 0.514458i −0.882557 0.470205i \(-0.844180\pi\)
0.174466 + 0.984663i \(0.444180\pi\)
\(602\) 0 0
\(603\) −3.78403 11.6460i −0.154097 0.474263i
\(604\) 0 0
\(605\) 36.2418 + 25.4199i 1.47344 + 1.03347i
\(606\) 0 0
\(607\) −1.15092 3.54218i −0.0467146 0.143773i 0.924979 0.380019i \(-0.124083\pi\)
−0.971693 + 0.236247i \(0.924083\pi\)
\(608\) 0 0
\(609\) 7.61051 5.52936i 0.308393 0.224061i
\(610\) 0 0
\(611\) 2.05236 6.31653i 0.0830298 0.255539i
\(612\) 0 0
\(613\) −11.5250 8.37340i −0.465490 0.338198i 0.330191 0.943914i \(-0.392887\pi\)
−0.795681 + 0.605716i \(0.792887\pi\)
\(614\) 0 0
\(615\) 33.7694 1.36171
\(616\) 0 0
\(617\) 33.2403 1.33821 0.669103 0.743170i \(-0.266678\pi\)
0.669103 + 0.743170i \(0.266678\pi\)
\(618\) 0 0
\(619\) 12.6726 + 9.20717i 0.509354 + 0.370067i 0.812578 0.582852i \(-0.198063\pi\)
−0.303224 + 0.952919i \(0.598063\pi\)
\(620\) 0 0
\(621\) 2.54525 7.83347i 0.102137 0.314346i
\(622\) 0 0
\(623\) −7.32545 + 5.32225i −0.293488 + 0.213231i
\(624\) 0 0
\(625\) 13.7079 + 42.1887i 0.548317 + 1.68755i
\(626\) 0 0
\(627\) −4.21897 + 5.90978i −0.168489 + 0.236014i
\(628\) 0 0
\(629\) 0.617471 + 1.90038i 0.0246202 + 0.0757731i
\(630\) 0 0
\(631\) 6.17588 4.48704i 0.245858 0.178626i −0.458031 0.888936i \(-0.651445\pi\)
0.703889 + 0.710310i \(0.251445\pi\)
\(632\) 0 0
\(633\) 0.677811 2.08609i 0.0269406 0.0829146i
\(634\) 0 0
\(635\) 25.9031 + 18.8197i 1.02793 + 0.746838i
\(636\) 0 0
\(637\) −7.20560 −0.285496
\(638\) 0 0
\(639\) −27.7345 −1.09716
\(640\) 0 0
\(641\) 15.3559 + 11.1567i 0.606521 + 0.440663i 0.848187 0.529696i \(-0.177694\pi\)
−0.241667 + 0.970359i \(0.577694\pi\)
\(642\) 0 0
\(643\) 5.09102 15.6686i 0.200770 0.617908i −0.799090 0.601211i \(-0.794685\pi\)
0.999861 0.0166965i \(-0.00531491\pi\)
\(644\) 0 0
\(645\) 1.29259 0.939120i 0.0508956 0.0369778i
\(646\) 0 0
\(647\) −12.3054 37.8720i −0.483774 1.48890i −0.833749 0.552144i \(-0.813810\pi\)
0.349975 0.936759i \(-0.386190\pi\)
\(648\) 0 0
\(649\) 25.5870 + 8.07877i 1.00438 + 0.317119i
\(650\) 0 0
\(651\) 5.06363 + 15.5842i 0.198459 + 0.610795i
\(652\) 0 0
\(653\) −19.9459 + 14.4915i −0.780542 + 0.567097i −0.905142 0.425110i \(-0.860235\pi\)
0.124600 + 0.992207i \(0.460235\pi\)
\(654\) 0 0
\(655\) 15.2551 46.9504i 0.596066 1.83450i
\(656\) 0 0
\(657\) −6.13975 4.46079i −0.239535 0.174032i
\(658\) 0 0
\(659\) −11.3599 −0.442518 −0.221259 0.975215i \(-0.571017\pi\)
−0.221259 + 0.975215i \(0.571017\pi\)
\(660\) 0 0
\(661\) 5.05889 0.196768 0.0983841 0.995149i \(-0.468633\pi\)
0.0983841 + 0.995149i \(0.468633\pi\)
\(662\) 0 0
\(663\) 0.737629 + 0.535919i 0.0286471 + 0.0208134i
\(664\) 0 0
\(665\) 11.0290 33.9438i 0.427686 1.31628i
\(666\) 0 0
\(667\) −3.86580 + 2.80867i −0.149684 + 0.108752i
\(668\) 0 0
\(669\) −4.36839 13.4445i −0.168892 0.519795i
\(670\) 0 0
\(671\) −42.8834 + 14.3296i −1.65550 + 0.553187i
\(672\) 0 0
\(673\) −12.4707 38.3809i −0.480710 1.47947i −0.838099 0.545518i \(-0.816333\pi\)
0.357389 0.933956i \(-0.383667\pi\)
\(674\) 0 0
\(675\) −42.9160 + 31.1803i −1.65184 + 1.20013i
\(676\) 0 0
\(677\) −9.72753 + 29.9382i −0.373859 + 1.15062i 0.570386 + 0.821377i \(0.306794\pi\)
−0.944245 + 0.329244i \(0.893206\pi\)
\(678\) 0 0
\(679\) −4.46382 3.24315i −0.171306 0.124461i
\(680\) 0 0
\(681\) 11.5269 0.441714
\(682\) 0 0
\(683\) 40.0582 1.53279 0.766393 0.642372i \(-0.222050\pi\)
0.766393 + 0.642372i \(0.222050\pi\)
\(684\) 0 0
\(685\) 8.19826 + 5.95639i 0.313240 + 0.227582i
\(686\) 0 0
\(687\) 3.78915 11.6618i 0.144565 0.444925i
\(688\) 0 0
\(689\) −0.268550 + 0.195113i −0.0102310 + 0.00743322i
\(690\) 0 0
\(691\) −4.00915 12.3389i −0.152515 0.469394i 0.845385 0.534157i \(-0.179371\pi\)
−0.997901 + 0.0647632i \(0.979371\pi\)
\(692\) 0 0
\(693\) −0.221628 26.6128i −0.00841894 1.01094i
\(694\) 0 0
\(695\) 17.5290 + 53.9486i 0.664912 + 2.04639i
\(696\) 0 0
\(697\) −6.97798 + 5.06980i −0.264310 + 0.192032i
\(698\) 0 0
\(699\) 6.66877 20.5244i 0.252236 0.776303i
\(700\) 0 0
\(701\) 10.6664 + 7.74961i 0.402865 + 0.292699i 0.770707 0.637190i \(-0.219903\pi\)
−0.367842 + 0.929888i \(0.619903\pi\)
\(702\) 0 0
\(703\) −5.03788 −0.190007
\(704\) 0 0
\(705\) 23.3972 0.881190
\(706\) 0 0
\(707\) −13.0964 9.51510i −0.492541 0.357852i
\(708\) 0 0
\(709\) −5.05048 + 15.5438i −0.189675 + 0.583758i −0.999998 0.00222523i \(-0.999292\pi\)
0.810323 + 0.585984i \(0.199292\pi\)
\(710\) 0 0
\(711\) 15.4081 11.1946i 0.577849 0.419832i
\(712\) 0 0
\(713\) −2.57210 7.91610i −0.0963257 0.296460i
\(714\) 0 0
\(715\) 8.33156 + 11.2689i 0.311583 + 0.421431i
\(716\) 0 0
\(717\) 1.06049 + 3.26386i 0.0396048 + 0.121891i
\(718\) 0 0
\(719\) −4.53222 + 3.29285i −0.169023 + 0.122803i −0.669081 0.743189i \(-0.733312\pi\)
0.500058 + 0.865992i \(0.333312\pi\)
\(720\) 0 0
\(721\) −12.7589 + 39.2678i −0.475165 + 1.46241i
\(722\) 0 0
\(723\) 11.8693 + 8.62354i 0.441423 + 0.320713i
\(724\) 0 0
\(725\) 30.7748 1.14295
\(726\) 0 0
\(727\) 29.1822 1.08231 0.541155 0.840923i \(-0.317987\pi\)
0.541155 + 0.840923i \(0.317987\pi\)
\(728\) 0 0
\(729\) −6.89028 5.00608i −0.255196 0.185410i
\(730\) 0 0
\(731\) −0.126105 + 0.388113i −0.00466418 + 0.0143549i
\(732\) 0 0
\(733\) 20.0564 14.5718i 0.740800 0.538223i −0.152161 0.988356i \(-0.548623\pi\)
0.892962 + 0.450133i \(0.148623\pi\)
\(734\) 0 0
\(735\) −7.84413 24.1417i −0.289335 0.890482i
\(736\) 0 0
\(737\) −11.2030 15.1526i −0.412668 0.558154i
\(738\) 0 0
\(739\) 8.26632 + 25.4411i 0.304081 + 0.935866i 0.980018 + 0.198907i \(0.0637391\pi\)
−0.675937 + 0.736959i \(0.736261\pi\)
\(740\) 0 0
\(741\) −1.85974 + 1.35118i −0.0683191 + 0.0496368i
\(742\) 0 0
\(743\) −11.3483 + 34.9265i −0.416330 + 1.28133i 0.494727 + 0.869049i \(0.335268\pi\)
−0.911056 + 0.412282i \(0.864732\pi\)
\(744\) 0 0
\(745\) 34.7561 + 25.2518i 1.27337 + 0.925154i
\(746\) 0 0
\(747\) −31.6097 −1.15654
\(748\) 0 0
\(749\) 35.5683 1.29964
\(750\) 0 0
\(751\) −18.4555 13.4087i −0.673451 0.489290i 0.197728 0.980257i \(-0.436644\pi\)
−0.871178 + 0.490966i \(0.836644\pi\)
\(752\) 0 0
\(753\) 3.14749 9.68698i 0.114701 0.353013i
\(754\) 0 0
\(755\) −65.9100 + 47.8864i −2.39871 + 1.74277i
\(756\) 0 0
\(757\) 8.25614 + 25.4098i 0.300075 + 0.923535i 0.981469 + 0.191619i \(0.0613737\pi\)
−0.681395 + 0.731916i \(0.738626\pi\)
\(758\) 0 0
\(759\) −0.0441282 5.29888i −0.00160175 0.192337i
\(760\) 0 0
\(761\) 6.71252 + 20.6590i 0.243329 + 0.748889i 0.995907 + 0.0903857i \(0.0288100\pi\)
−0.752578 + 0.658503i \(0.771190\pi\)
\(762\) 0 0
\(763\) 12.4965 9.07923i 0.452403 0.328690i
\(764\) 0 0
\(765\) 2.53214 7.79312i 0.0915497 0.281761i
\(766\) 0 0
\(767\) 6.87221 + 4.99295i 0.248141 + 0.180285i
\(768\) 0 0
\(769\) −53.7688 −1.93895 −0.969476 0.245185i \(-0.921151\pi\)
−0.969476 + 0.245185i \(0.921151\pi\)
\(770\) 0 0
\(771\) −13.7730 −0.496024
\(772\) 0 0
\(773\) 7.87350 + 5.72044i 0.283190 + 0.205750i 0.720308 0.693655i \(-0.244001\pi\)
−0.437117 + 0.899404i \(0.644001\pi\)
\(774\) 0 0
\(775\) −16.5654 + 50.9830i −0.595046 + 1.83136i
\(776\) 0 0
\(777\) −5.85558 + 4.25432i −0.210068 + 0.152623i
\(778\) 0 0
\(779\) −6.71998 20.6820i −0.240768 0.741009i
\(780\) 0 0
\(781\) −40.4803 + 13.5266i −1.44850 + 0.484019i
\(782\) 0 0
\(783\) 4.02496 + 12.3875i 0.143840 + 0.442695i
\(784\) 0 0
\(785\) 63.1954 45.9141i 2.25554 1.63875i
\(786\) 0 0
\(787\) 11.8092 36.3451i 0.420954 1.29556i −0.485862 0.874035i \(-0.661494\pi\)
0.906816 0.421527i \(-0.138506\pi\)
\(788\) 0 0
\(789\) −6.66355 4.84135i −0.237229 0.172357i
\(790\) 0 0
\(791\) −34.6060 −1.23045
\(792\) 0 0
\(793\) −14.3139 −0.508303
\(794\) 0 0
\(795\) −0.946058 0.687351i −0.0335532 0.0243778i
\(796\) 0 0
\(797\) −6.72473 + 20.6966i −0.238202 + 0.733110i 0.758478 + 0.651698i \(0.225943\pi\)
−0.996681 + 0.0814124i \(0.974057\pi\)
\(798\) 0 0
\(799\) −4.83471 + 3.51263i −0.171040 + 0.124268i
\(800\) 0 0
\(801\) −1.61966 4.98480i −0.0572278 0.176129i
\(802\) 0 0
\(803\) −11.1370 3.51636i −0.393015 0.124090i
\(804\) 0 0
\(805\) 8.04870 + 24.7713i 0.283679 + 0.873075i
\(806\) 0 0
\(807\) −0.780757 + 0.567253i −0.0274840 + 0.0199683i
\(808\) 0 0
\(809\) −4.22367 + 12.9991i −0.148496 + 0.457025i −0.997444 0.0714523i \(-0.977237\pi\)
0.848948 + 0.528477i \(0.177237\pi\)
\(810\) 0 0
\(811\) −28.7004 20.8520i −1.00781 0.732214i −0.0440580 0.999029i \(-0.514029\pi\)
−0.963748 + 0.266815i \(0.914029\pi\)
\(812\) 0 0
\(813\) 16.6963 0.585564
\(814\) 0 0
\(815\) 75.9553 2.66060
\(816\) 0 0
\(817\) −0.832382 0.604761i −0.0291214 0.0211579i
\(818\) 0 0
\(819\) 2.60359 8.01304i 0.0909769 0.279998i
\(820\) 0 0
\(821\) −12.1076 + 8.79669i −0.422558 + 0.307007i −0.778666 0.627438i \(-0.784103\pi\)
0.356108 + 0.934445i \(0.384103\pi\)
\(822\) 0 0
\(823\) −3.77471 11.6174i −0.131578 0.404955i 0.863464 0.504410i \(-0.168290\pi\)
−0.995042 + 0.0994549i \(0.968290\pi\)
\(824\) 0 0
\(825\) −19.8294 + 27.7764i −0.690371 + 0.967048i
\(826\) 0 0
\(827\) 4.29641 + 13.2230i 0.149401 + 0.459809i 0.997551 0.0699477i \(-0.0222833\pi\)
−0.848150 + 0.529757i \(0.822283\pi\)
\(828\) 0 0
\(829\) −9.98862 + 7.25716i −0.346919 + 0.252051i −0.747575 0.664177i \(-0.768782\pi\)
0.400656 + 0.916228i \(0.368782\pi\)
\(830\) 0 0
\(831\) 5.66435 17.4331i 0.196494 0.604747i
\(832\) 0 0
\(833\) 5.24528 + 3.81092i 0.181738 + 0.132041i
\(834\) 0 0
\(835\) 71.4895 2.47400
\(836\) 0 0
\(837\) −22.6883 −0.784223
\(838\) 0 0
\(839\) 16.4757 + 11.9703i 0.568804 + 0.413260i 0.834671 0.550749i \(-0.185658\pi\)
−0.265866 + 0.964010i \(0.585658\pi\)
\(840\) 0 0
\(841\) −6.62645 + 20.3941i −0.228498 + 0.703245i
\(842\) 0 0
\(843\) −15.6208 + 11.3492i −0.538009 + 0.390887i
\(844\) 0 0
\(845\) −14.7957 45.5365i −0.508987 1.56650i
\(846\) 0 0
\(847\) −13.3030 38.7351i −0.457096 1.33095i
\(848\) 0 0
\(849\) −1.85935 5.72251i −0.0638129 0.196396i
\(850\) 0 0
\(851\) 2.97437 2.16101i 0.101960 0.0740783i
\(852\) 0 0
\(853\) 16.1419 49.6795i 0.552687 1.70100i −0.149288 0.988794i \(-0.547698\pi\)
0.701975 0.712201i \(-0.252302\pi\)
\(854\) 0 0
\(855\) 16.7138 + 12.1433i 0.571601 + 0.415293i
\(856\) 0 0
\(857\) −38.4691 −1.31408 −0.657041 0.753855i \(-0.728192\pi\)
−0.657041 + 0.753855i \(0.728192\pi\)
\(858\) 0 0
\(859\) 33.3955 1.13944 0.569720 0.821839i \(-0.307052\pi\)
0.569720 + 0.821839i \(0.307052\pi\)
\(860\) 0 0
\(861\) −25.2760 18.3641i −0.861402 0.625846i
\(862\) 0 0
\(863\) 4.67070 14.3750i 0.158993 0.489329i −0.839551 0.543281i \(-0.817182\pi\)
0.998544 + 0.0539520i \(0.0171818\pi\)
\(864\) 0 0
\(865\) −20.6922 + 15.0337i −0.703555 + 0.511163i
\(866\) 0 0
\(867\) 4.57494 + 14.0802i 0.155373 + 0.478190i
\(868\) 0 0
\(869\) 17.0293 23.8541i 0.577680 0.809194i
\(870\) 0 0
\(871\) −1.84352 5.67377i −0.0624653 0.192248i
\(872\) 0 0
\(873\) 2.58387 1.87729i 0.0874509 0.0635368i
\(874\) 0 0
\(875\) 28.6859 88.2863i 0.969762 2.98462i
\(876\) 0 0
\(877\) 12.9419 + 9.40283i 0.437016 + 0.317511i 0.784448 0.620194i \(-0.212946\pi\)
−0.347432 + 0.937705i \(0.612946\pi\)
\(878\) 0 0
\(879\) −14.7274 −0.496741
\(880\) 0 0
\(881\) −43.0908 −1.45177 −0.725883 0.687818i \(-0.758569\pi\)
−0.725883 + 0.687818i \(0.758569\pi\)
\(882\) 0 0
\(883\) 36.3842 + 26.4347i 1.22443 + 0.889598i 0.996460 0.0840715i \(-0.0267924\pi\)
0.227966 + 0.973669i \(0.426792\pi\)
\(884\) 0 0
\(885\) −9.24726 + 28.4601i −0.310843 + 0.956677i
\(886\) 0 0
\(887\) −36.6560 + 26.6322i −1.23079 + 0.894221i −0.996949 0.0780543i \(-0.975129\pi\)
−0.233840 + 0.972275i \(0.575129\pi\)
\(888\) 0 0
\(889\) −9.15384 28.1726i −0.307010 0.944880i
\(890\) 0 0
\(891\) 6.67486 + 2.10750i 0.223616 + 0.0706040i
\(892\) 0 0
\(893\) −4.65596 14.3296i −0.155806 0.479521i
\(894\) 0 0
\(895\) 4.58281 3.32960i 0.153186 0.111296i
\(896\) 0 0
\(897\) 0.518401 1.59547i 0.0173089 0.0532713i
\(898\) 0 0
\(899\) 10.6486 + 7.73668i 0.355152 + 0.258033i
\(900\) 0 0
\(901\) 0.298682 0.00995054
\(902\) 0 0
\(903\) −1.47819 −0.0491910
\(904\) 0 0
\(905\) 56.4576 + 41.0188i 1.87671 + 1.36351i
\(906\) 0 0
\(907\) −6.55486 + 20.1738i −0.217651 + 0.669860i 0.781304 + 0.624150i \(0.214555\pi\)
−0.998955 + 0.0457093i \(0.985445\pi\)
\(908\) 0 0
\(909\) 7.58084 5.50780i 0.251441 0.182682i
\(910\) 0 0
\(911\) 5.91191 + 18.1950i 0.195870 + 0.602827i 0.999965 + 0.00832598i \(0.00265027\pi\)
−0.804095 + 0.594501i \(0.797350\pi\)
\(912\) 0 0
\(913\) −46.1365 + 15.4166i −1.52689 + 0.510214i
\(914\) 0 0
\(915\) −15.5824 47.9576i −0.515138 1.58543i
\(916\) 0 0
\(917\) −36.9502 + 26.8459i −1.22020 + 0.886530i
\(918\) 0 0
\(919\) −12.7027 + 39.0949i −0.419023 + 1.28962i 0.489580 + 0.871959i \(0.337150\pi\)
−0.908603 + 0.417662i \(0.862850\pi\)
\(920\) 0 0
\(921\) 8.03196 + 5.83556i 0.264662 + 0.192288i
\(922\) 0 0
\(923\) −13.5118 −0.444748
\(924\) 0 0
\(925\) −23.6783 −0.778539
\(926\) 0 0
\(927\) −19.3354 14.0480i −0.635056 0.461395i
\(928\) 0 0
\(929\) −14.6696 + 45.1485i −0.481295 + 1.48128i 0.355980 + 0.934494i \(0.384147\pi\)
−0.837275 + 0.546781i \(0.815853\pi\)
\(930\) 0 0
\(931\) −13.2246 + 9.60824i −0.433419 + 0.314897i
\(932\) 0 0
\(933\) 0.905858 + 2.78794i 0.0296565 + 0.0912732i
\(934\) 0 0
\(935\) −0.105010 12.6095i −0.00343420 0.412376i
\(936\) 0 0
\(937\) −8.48605 26.1174i −0.277227 0.853218i −0.988621 0.150425i \(-0.951936\pi\)
0.711394 0.702793i \(-0.248064\pi\)
\(938\) 0 0
\(939\) 11.1950 8.13362i 0.365334 0.265430i
\(940\) 0 0
\(941\) 4.99497 15.3729i 0.162831 0.501144i −0.836038 0.548671i \(-0.815134\pi\)
0.998870 + 0.0475271i \(0.0151340\pi\)
\(942\) 0 0
\(943\) 12.8391 + 9.32812i 0.418097 + 0.303765i
\(944\) 0 0
\(945\) 70.9971 2.30954
\(946\) 0 0
\(947\) −28.3252 −0.920445 −0.460223 0.887804i \(-0.652230\pi\)
−0.460223 + 0.887804i \(0.652230\pi\)
\(948\) 0 0
\(949\) −2.99119 2.17323i −0.0970983 0.0705460i
\(950\) 0 0
\(951\) 3.76333 11.5823i 0.122034 0.375583i
\(952\) 0 0
\(953\) 43.1890 31.3787i 1.39903 1.01645i 0.404224 0.914660i \(-0.367542\pi\)
0.994805 0.101794i \(-0.0324584\pi\)
\(954\) 0 0
\(955\) 8.69199 + 26.7512i 0.281266 + 0.865648i
\(956\) 0 0
\(957\) 4.98177 + 6.73809i 0.161038 + 0.217812i
\(958\) 0 0
\(959\) −2.89717 8.91656i −0.0935544 0.287931i
\(960\) 0 0
\(961\) 6.53068 4.74481i 0.210667 0.153059i
\(962\) 0 0
\(963\) −6.36223 + 19.5809i −0.205020 + 0.630987i
\(964\) 0 0
\(965\) −75.9870 55.2078i −2.44611 1.77720i
\(966\) 0 0
\(967\) 45.0985 1.45027 0.725136 0.688606i \(-0.241777\pi\)
0.725136 + 0.688606i \(0.241777\pi\)
\(968\) 0 0
\(969\) 2.06840 0.0664466
\(970\) 0 0
\(971\) 38.4582 + 27.9415i 1.23418 + 0.896686i 0.997197 0.0748274i \(-0.0238406\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(972\) 0 0
\(973\) 16.2175 49.9122i 0.519908 1.60011i
\(974\) 0 0
\(975\) −8.74088 + 6.35062i −0.279932 + 0.203383i
\(976\) 0 0
\(977\) −1.64262 5.05545i −0.0525519 0.161738i 0.921336 0.388767i \(-0.127099\pi\)
−0.973888 + 0.227029i \(0.927099\pi\)
\(978\) 0 0
\(979\) −4.79517 6.48570i −0.153254 0.207284i
\(980\) 0 0
\(981\) 2.76298 + 8.50357i 0.0882151 + 0.271498i
\(982\) 0 0
\(983\) 2.87735 2.09052i 0.0917731 0.0666771i −0.540952 0.841053i \(-0.681936\pi\)
0.632726 + 0.774376i \(0.281936\pi\)
\(984\) 0 0
\(985\) 13.4485 41.3901i 0.428504 1.31880i
\(986\) 0 0
\(987\) −17.5125 12.7236i −0.557430 0.404996i
\(988\) 0 0
\(989\) 0.750852 0.0238757
\(990\) 0 0
\(991\) 38.1592 1.21217 0.606083 0.795401i \(-0.292740\pi\)
0.606083 + 0.795401i \(0.292740\pi\)
\(992\) 0 0
\(993\) −24.9505 18.1276i −0.791780 0.575262i
\(994\) 0 0
\(995\) −11.2848 + 34.7309i −0.357751 + 1.10104i
\(996\) 0 0
\(997\) 23.5980 17.1450i 0.747357 0.542987i −0.147649 0.989040i \(-0.547171\pi\)
0.895007 + 0.446053i \(0.147171\pi\)
\(998\) 0 0
\(999\) −3.09683 9.53106i −0.0979793 0.301549i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.i.577.2 8
4.3 odd 2 704.2.m.l.577.1 8
8.3 odd 2 88.2.i.b.49.2 yes 8
8.5 even 2 176.2.m.d.49.1 8
11.3 even 5 7744.2.a.dr.1.2 4
11.8 odd 10 7744.2.a.ds.1.2 4
11.9 even 5 inner 704.2.m.i.449.2 8
24.11 even 2 792.2.r.g.577.2 8
44.3 odd 10 7744.2.a.di.1.3 4
44.19 even 10 7744.2.a.dh.1.3 4
44.31 odd 10 704.2.m.l.449.1 8
88.3 odd 10 968.2.a.n.1.2 4
88.19 even 10 968.2.a.m.1.2 4
88.27 odd 10 968.2.i.s.81.1 8
88.35 even 10 968.2.i.p.9.2 8
88.43 even 2 968.2.i.p.753.2 8
88.51 even 10 968.2.i.t.729.1 8
88.53 even 10 176.2.m.d.97.1 8
88.59 odd 10 968.2.i.s.729.1 8
88.69 even 10 1936.2.a.bb.1.3 4
88.75 odd 10 88.2.i.b.9.2 8
88.83 even 10 968.2.i.t.81.1 8
88.85 odd 10 1936.2.a.bc.1.3 4
264.107 odd 10 8712.2.a.cd.1.4 4
264.179 even 10 8712.2.a.ce.1.4 4
264.251 even 10 792.2.r.g.361.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.b.9.2 8 88.75 odd 10
88.2.i.b.49.2 yes 8 8.3 odd 2
176.2.m.d.49.1 8 8.5 even 2
176.2.m.d.97.1 8 88.53 even 10
704.2.m.i.449.2 8 11.9 even 5 inner
704.2.m.i.577.2 8 1.1 even 1 trivial
704.2.m.l.449.1 8 44.31 odd 10
704.2.m.l.577.1 8 4.3 odd 2
792.2.r.g.361.2 8 264.251 even 10
792.2.r.g.577.2 8 24.11 even 2
968.2.a.m.1.2 4 88.19 even 10
968.2.a.n.1.2 4 88.3 odd 10
968.2.i.p.9.2 8 88.35 even 10
968.2.i.p.753.2 8 88.43 even 2
968.2.i.s.81.1 8 88.27 odd 10
968.2.i.s.729.1 8 88.59 odd 10
968.2.i.t.81.1 8 88.83 even 10
968.2.i.t.729.1 8 88.51 even 10
1936.2.a.bb.1.3 4 88.69 even 10
1936.2.a.bc.1.3 4 88.85 odd 10
7744.2.a.dh.1.3 4 44.19 even 10
7744.2.a.di.1.3 4 44.3 odd 10
7744.2.a.dr.1.2 4 11.3 even 5
7744.2.a.ds.1.2 4 11.8 odd 10
8712.2.a.cd.1.4 4 264.107 odd 10
8712.2.a.ce.1.4 4 264.179 even 10