Properties

Label 195.2.s.b.38.8
Level $195$
Weight $2$
Character 195.38
Analytic conductor $1.557$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,2,Mod(38,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.38");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 38.8
Character \(\chi\) \(=\) 195.38
Dual form 195.2.s.b.77.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.299314 + 0.299314i) q^{2} +(1.72753 - 0.125002i) q^{3} +1.82082i q^{4} +(2.19735 - 0.414323i) q^{5} +(-0.479660 + 0.554490i) q^{6} +(-0.976029 - 0.976029i) q^{7} +(-1.14363 - 1.14363i) q^{8} +(2.96875 - 0.431892i) q^{9} +(-0.533684 + 0.781709i) q^{10} -1.78302 q^{11} +(0.227607 + 3.14553i) q^{12} +(-2.32186 + 2.75844i) q^{13} +0.584278 q^{14} +(3.74420 - 0.990431i) q^{15} -2.95704 q^{16} +(-3.26089 - 3.26089i) q^{17} +(-0.759317 + 1.01786i) q^{18} +6.18928 q^{19} +(0.754408 + 4.00098i) q^{20} +(-1.80813 - 1.56412i) q^{21} +(0.533684 - 0.533684i) q^{22} +(0.696530 - 0.696530i) q^{23} +(-2.11861 - 1.83270i) q^{24} +(4.65667 - 1.82082i) q^{25} +(-0.130675 - 1.52060i) q^{26} +(5.07463 - 1.11721i) q^{27} +(1.77718 - 1.77718i) q^{28} -7.33056 q^{29} +(-0.824242 + 1.41714i) q^{30} +6.61539i q^{31} +(3.17233 - 3.17233i) q^{32} +(-3.08024 + 0.222882i) q^{33} +1.95206 q^{34} +(-2.54907 - 1.74028i) q^{35} +(0.786399 + 5.40556i) q^{36} +(-5.21325 - 5.21325i) q^{37} +(-1.85254 + 1.85254i) q^{38} +(-3.66628 + 5.05553i) q^{39} +(-2.98677 - 2.03911i) q^{40} -6.45687 q^{41} +(1.00936 - 0.0730362i) q^{42} +(-1.78171 - 1.78171i) q^{43} -3.24657i q^{44} +(6.34443 - 2.17904i) q^{45} +0.416963i q^{46} +(5.69410 - 5.69410i) q^{47} +(-5.10838 + 0.369637i) q^{48} -5.09473i q^{49} +(-0.848810 + 1.93881i) q^{50} +(-6.04091 - 5.22568i) q^{51} +(-5.02263 - 4.22769i) q^{52} +(-1.74028 + 1.74028i) q^{53} +(-1.18451 + 1.85330i) q^{54} +(-3.91793 + 0.738748i) q^{55} +2.23242i q^{56} +(10.6922 - 0.773675i) q^{57} +(2.19414 - 2.19414i) q^{58} +9.15008i q^{59} +(1.80340 + 6.81753i) q^{60} +1.01503 q^{61} +(-1.98008 - 1.98008i) q^{62} +(-3.31913 - 2.47605i) q^{63} -4.01503i q^{64} +(-3.95904 + 7.02325i) q^{65} +(0.855246 - 0.988670i) q^{66} +(-3.72923 - 3.72923i) q^{67} +(5.93750 - 5.93750i) q^{68} +(1.11621 - 1.29035i) q^{69} +(1.28386 - 0.242080i) q^{70} +5.49755 q^{71} +(-3.88906 - 2.90121i) q^{72} +(1.35106 - 1.35106i) q^{73} +3.12079 q^{74} +(7.81696 - 3.72763i) q^{75} +11.2696i q^{76} +(1.74028 + 1.74028i) q^{77} +(-0.415824 - 2.61056i) q^{78} +10.2889i q^{79} +(-6.49764 + 1.22517i) q^{80} +(8.62694 - 2.56436i) q^{81} +(1.93263 - 1.93263i) q^{82} +(-7.93716 - 7.93716i) q^{83} +(2.84798 - 3.29228i) q^{84} +(-8.51636 - 5.81424i) q^{85} +1.06658 q^{86} +(-12.6638 + 0.916338i) q^{87} +(2.03911 + 2.03911i) q^{88} +3.75080i q^{89} +(-1.24676 + 2.55119i) q^{90} +(4.95852 - 0.426116i) q^{91} +(1.26826 + 1.26826i) q^{92} +(0.826940 + 11.4283i) q^{93} +3.40865i q^{94} +(13.6000 - 2.56436i) q^{95} +(5.08377 - 5.87686i) q^{96} +(6.92322 + 6.92322i) q^{97} +(1.52492 + 1.52492i) q^{98} +(-5.29335 + 0.770074i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{3} - 24 q^{10} - 24 q^{12} + 24 q^{16} + 24 q^{22} - 8 q^{25} - 16 q^{27} + 36 q^{30} - 8 q^{36} + 16 q^{40} + 12 q^{42} - 64 q^{43} - 20 q^{48} + 16 q^{51} - 72 q^{52} - 80 q^{55} + 8 q^{61}+ \cdots - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.299314 + 0.299314i −0.211647 + 0.211647i −0.804967 0.593320i \(-0.797817\pi\)
0.593320 + 0.804967i \(0.297817\pi\)
\(3\) 1.72753 0.125002i 0.997392 0.0721702i
\(4\) 1.82082i 0.910411i
\(5\) 2.19735 0.414323i 0.982684 0.185291i
\(6\) −0.479660 + 0.554490i −0.195820 + 0.226370i
\(7\) −0.976029 0.976029i −0.368904 0.368904i 0.498173 0.867078i \(-0.334004\pi\)
−0.867078 + 0.498173i \(0.834004\pi\)
\(8\) −1.14363 1.14363i −0.404333 0.404333i
\(9\) 2.96875 0.431892i 0.989583 0.143964i
\(10\) −0.533684 + 0.781709i −0.168766 + 0.247198i
\(11\) −1.78302 −0.537602 −0.268801 0.963196i \(-0.586627\pi\)
−0.268801 + 0.963196i \(0.586627\pi\)
\(12\) 0.227607 + 3.14553i 0.0657045 + 0.908037i
\(13\) −2.32186 + 2.75844i −0.643967 + 0.765053i
\(14\) 0.584278 0.156155
\(15\) 3.74420 0.990431i 0.966749 0.255728i
\(16\) −2.95704 −0.739260
\(17\) −3.26089 3.26089i −0.790882 0.790882i 0.190756 0.981637i \(-0.438906\pi\)
−0.981637 + 0.190756i \(0.938906\pi\)
\(18\) −0.759317 + 1.01786i −0.178973 + 0.239912i
\(19\) 6.18928 1.41992 0.709959 0.704243i \(-0.248714\pi\)
0.709959 + 0.704243i \(0.248714\pi\)
\(20\) 0.754408 + 4.00098i 0.168691 + 0.894646i
\(21\) −1.80813 1.56412i −0.394566 0.341319i
\(22\) 0.533684 0.533684i 0.113782 0.113782i
\(23\) 0.696530 0.696530i 0.145237 0.145237i −0.630750 0.775986i \(-0.717253\pi\)
0.775986 + 0.630750i \(0.217253\pi\)
\(24\) −2.11861 1.83270i −0.432459 0.374098i
\(25\) 4.65667 1.82082i 0.931335 0.364164i
\(26\) −0.130675 1.52060i −0.0256274 0.298215i
\(27\) 5.07463 1.11721i 0.976613 0.215007i
\(28\) 1.77718 1.77718i 0.335855 0.335855i
\(29\) −7.33056 −1.36125 −0.680625 0.732632i \(-0.738292\pi\)
−0.680625 + 0.732632i \(0.738292\pi\)
\(30\) −0.824242 + 1.41714i −0.150485 + 0.258733i
\(31\) 6.61539i 1.18816i 0.804406 + 0.594080i \(0.202484\pi\)
−0.804406 + 0.594080i \(0.797516\pi\)
\(32\) 3.17233 3.17233i 0.560795 0.560795i
\(33\) −3.08024 + 0.222882i −0.536200 + 0.0387989i
\(34\) 1.95206 0.334775
\(35\) −2.54907 1.74028i −0.430871 0.294162i
\(36\) 0.786399 + 5.40556i 0.131066 + 0.900927i
\(37\) −5.21325 5.21325i −0.857052 0.857052i 0.133937 0.990990i \(-0.457238\pi\)
−0.990990 + 0.133937i \(0.957238\pi\)
\(38\) −1.85254 + 1.85254i −0.300521 + 0.300521i
\(39\) −3.66628 + 5.05553i −0.587074 + 0.809533i
\(40\) −2.98677 2.03911i −0.472250 0.322412i
\(41\) −6.45687 −1.00839 −0.504197 0.863589i \(-0.668211\pi\)
−0.504197 + 0.863589i \(0.668211\pi\)
\(42\) 1.00936 0.0730362i 0.155748 0.0112697i
\(43\) −1.78171 1.78171i −0.271708 0.271708i 0.558079 0.829788i \(-0.311538\pi\)
−0.829788 + 0.558079i \(0.811538\pi\)
\(44\) 3.24657i 0.489439i
\(45\) 6.34443 2.17904i 0.945772 0.324832i
\(46\) 0.416963i 0.0614778i
\(47\) 5.69410 5.69410i 0.830570 0.830570i −0.157025 0.987595i \(-0.550190\pi\)
0.987595 + 0.157025i \(0.0501902\pi\)
\(48\) −5.10838 + 0.369637i −0.737332 + 0.0533525i
\(49\) 5.09473i 0.727819i
\(50\) −0.848810 + 1.93881i −0.120040 + 0.274188i
\(51\) −6.04091 5.22568i −0.845897 0.731741i
\(52\) −5.02263 4.22769i −0.696513 0.586275i
\(53\) −1.74028 + 1.74028i −0.239046 + 0.239046i −0.816455 0.577409i \(-0.804064\pi\)
0.577409 + 0.816455i \(0.304064\pi\)
\(54\) −1.18451 + 1.85330i −0.161191 + 0.252203i
\(55\) −3.91793 + 0.738748i −0.528293 + 0.0996127i
\(56\) 2.23242i 0.298320i
\(57\) 10.6922 0.773675i 1.41621 0.102476i
\(58\) 2.19414 2.19414i 0.288105 0.288105i
\(59\) 9.15008i 1.19124i 0.803267 + 0.595620i \(0.203093\pi\)
−0.803267 + 0.595620i \(0.796907\pi\)
\(60\) 1.80340 + 6.81753i 0.232818 + 0.880139i
\(61\) 1.01503 0.129961 0.0649806 0.997887i \(-0.479301\pi\)
0.0649806 + 0.997887i \(0.479301\pi\)
\(62\) −1.98008 1.98008i −0.251470 0.251470i
\(63\) −3.31913 2.47605i −0.418170 0.311953i
\(64\) 4.01503i 0.501879i
\(65\) −3.95904 + 7.02325i −0.491059 + 0.871126i
\(66\) 0.855246 0.988670i 0.105274 0.121697i
\(67\) −3.72923 3.72923i −0.455599 0.455599i 0.441609 0.897208i \(-0.354408\pi\)
−0.897208 + 0.441609i \(0.854408\pi\)
\(68\) 5.93750 5.93750i 0.720027 0.720027i
\(69\) 1.11621 1.29035i 0.134376 0.155340i
\(70\) 1.28386 0.242080i 0.153451 0.0289341i
\(71\) 5.49755 0.652439 0.326220 0.945294i \(-0.394225\pi\)
0.326220 + 0.945294i \(0.394225\pi\)
\(72\) −3.88906 2.90121i −0.458330 0.341911i
\(73\) 1.35106 1.35106i 0.158130 0.158130i −0.623608 0.781737i \(-0.714334\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(74\) 3.12079 0.362785
\(75\) 7.81696 3.72763i 0.902624 0.430429i
\(76\) 11.2696i 1.29271i
\(77\) 1.74028 + 1.74028i 0.198324 + 0.198324i
\(78\) −0.415824 2.61056i −0.0470828 0.295588i
\(79\) 10.2889i 1.15760i 0.815471 + 0.578798i \(0.196478\pi\)
−0.815471 + 0.578798i \(0.803522\pi\)
\(80\) −6.49764 + 1.22517i −0.726458 + 0.136978i
\(81\) 8.62694 2.56436i 0.958549 0.284929i
\(82\) 1.93263 1.93263i 0.213423 0.213423i
\(83\) −7.93716 7.93716i −0.871217 0.871217i 0.121388 0.992605i \(-0.461265\pi\)
−0.992605 + 0.121388i \(0.961265\pi\)
\(84\) 2.84798 3.29228i 0.310740 0.359218i
\(85\) −8.51636 5.81424i −0.923729 0.630643i
\(86\) 1.06658 0.115012
\(87\) −12.6638 + 0.916338i −1.35770 + 0.0982417i
\(88\) 2.03911 + 2.03911i 0.217370 + 0.217370i
\(89\) 3.75080i 0.397584i 0.980042 + 0.198792i \(0.0637018\pi\)
−0.980042 + 0.198792i \(0.936298\pi\)
\(90\) −1.24676 + 2.55119i −0.131420 + 0.268919i
\(91\) 4.95852 0.426116i 0.519794 0.0446691i
\(92\) 1.26826 + 1.26826i 0.132225 + 0.132225i
\(93\) 0.826940 + 11.4283i 0.0857497 + 1.18506i
\(94\) 3.40865i 0.351575i
\(95\) 13.6000 2.56436i 1.39533 0.263098i
\(96\) 5.08377 5.87686i 0.518860 0.599805i
\(97\) 6.92322 + 6.92322i 0.702947 + 0.702947i 0.965042 0.262095i \(-0.0844134\pi\)
−0.262095 + 0.965042i \(0.584413\pi\)
\(98\) 1.52492 + 1.52492i 0.154041 + 0.154041i
\(99\) −5.29335 + 0.770074i −0.532002 + 0.0773954i
\(100\) 3.31539 + 8.47897i 0.331539 + 0.847897i
\(101\) 9.05829i 0.901334i 0.892692 + 0.450667i \(0.148814\pi\)
−0.892692 + 0.450667i \(0.851186\pi\)
\(102\) 3.37225 0.244012i 0.333902 0.0241608i
\(103\) 7.98677 + 7.98677i 0.786960 + 0.786960i 0.980995 0.194035i \(-0.0621574\pi\)
−0.194035 + 0.980995i \(0.562157\pi\)
\(104\) 5.80996 0.499285i 0.569713 0.0489589i
\(105\) −4.62114 2.68776i −0.450977 0.262299i
\(106\) 1.04178i 0.101187i
\(107\) 12.5715 + 12.5715i 1.21534 + 1.21534i 0.969248 + 0.246088i \(0.0791451\pi\)
0.246088 + 0.969248i \(0.420855\pi\)
\(108\) 2.03424 + 9.23999i 0.195745 + 0.889119i
\(109\) 17.1929 1.64679 0.823393 0.567472i \(-0.192079\pi\)
0.823393 + 0.567472i \(0.192079\pi\)
\(110\) 0.951572 1.39381i 0.0907289 0.132894i
\(111\) −9.65773 8.35439i −0.916671 0.792964i
\(112\) 2.88616 + 2.88616i 0.272716 + 0.272716i
\(113\) 3.70507 3.70507i 0.348544 0.348544i −0.511023 0.859567i \(-0.670733\pi\)
0.859567 + 0.511023i \(0.170733\pi\)
\(114\) −2.96875 + 3.43189i −0.278049 + 0.321426i
\(115\) 1.24193 1.81911i 0.115811 0.169633i
\(116\) 13.3476i 1.23930i
\(117\) −5.70166 + 9.19190i −0.527119 + 0.849792i
\(118\) −2.73875 2.73875i −0.252122 0.252122i
\(119\) 6.36545i 0.583519i
\(120\) −5.41465 3.14928i −0.494287 0.287489i
\(121\) −7.82082 −0.710984
\(122\) −0.303812 + 0.303812i −0.0275059 + 0.0275059i
\(123\) −11.1545 + 0.807124i −1.00576 + 0.0727760i
\(124\) −12.0455 −1.08171
\(125\) 9.47792 5.93035i 0.847731 0.530426i
\(126\) 1.73458 0.252345i 0.154528 0.0224807i
\(127\) −1.94381 + 1.94381i −0.172485 + 0.172485i −0.788070 0.615585i \(-0.788920\pi\)
0.615585 + 0.788070i \(0.288920\pi\)
\(128\) 7.54642 + 7.54642i 0.667016 + 0.667016i
\(129\) −3.30068 2.85525i −0.290609 0.251390i
\(130\) −0.917159 3.28715i −0.0804401 0.288302i
\(131\) 2.31201i 0.202001i −0.994886 0.101001i \(-0.967796\pi\)
0.994886 0.101001i \(-0.0322044\pi\)
\(132\) −0.405829 5.60856i −0.0353229 0.488163i
\(133\) −6.04091 6.04091i −0.523814 0.523814i
\(134\) 2.23242 0.192852
\(135\) 10.6878 4.55743i 0.919862 0.392241i
\(136\) 7.45847i 0.639558i
\(137\) −9.28076 + 9.28076i −0.792909 + 0.792909i −0.981966 0.189057i \(-0.939457\pi\)
0.189057 + 0.981966i \(0.439457\pi\)
\(138\) 0.0521213 + 0.720317i 0.00443686 + 0.0613175i
\(139\) 6.42368i 0.544849i −0.962177 0.272425i \(-0.912174\pi\)
0.962177 0.272425i \(-0.0878255\pi\)
\(140\) 3.16875 4.64140i 0.267808 0.392270i
\(141\) 9.12498 10.5485i 0.768462 0.888347i
\(142\) −1.64549 + 1.64549i −0.138087 + 0.138087i
\(143\) 4.13993 4.91836i 0.346198 0.411294i
\(144\) −8.77870 + 1.27712i −0.731559 + 0.106427i
\(145\) −16.1078 + 3.03722i −1.33768 + 0.252227i
\(146\) 0.808782i 0.0669353i
\(147\) −0.636854 8.80133i −0.0525268 0.725921i
\(148\) 9.49239 9.49239i 0.780270 0.780270i
\(149\) 18.3935i 1.50685i −0.657532 0.753427i \(-0.728400\pi\)
0.657532 0.753427i \(-0.271600\pi\)
\(150\) −1.22399 + 3.45546i −0.0999386 + 0.282137i
\(151\) 6.18928i 0.503676i 0.967769 + 0.251838i \(0.0810350\pi\)
−0.967769 + 0.251838i \(0.918965\pi\)
\(152\) −7.07821 7.07821i −0.574119 0.574119i
\(153\) −11.0891 8.27241i −0.896501 0.668784i
\(154\) −1.04178 −0.0839493
\(155\) 2.74091 + 14.5363i 0.220155 + 1.16758i
\(156\) −9.20523 6.67564i −0.737008 0.534479i
\(157\) −0.617238 + 0.617238i −0.0492609 + 0.0492609i −0.731308 0.682047i \(-0.761090\pi\)
0.682047 + 0.731308i \(0.261090\pi\)
\(158\) −3.07962 3.07962i −0.245002 0.245002i
\(159\) −2.78886 + 3.22394i −0.221171 + 0.255675i
\(160\) 5.65635 8.28509i 0.447174 0.654994i
\(161\) −1.35967 −0.107157
\(162\) −1.81462 + 3.34971i −0.142570 + 0.263178i
\(163\) 1.40215 1.40215i 0.109824 0.109824i −0.650059 0.759884i \(-0.725256\pi\)
0.759884 + 0.650059i \(0.225256\pi\)
\(164\) 11.7568i 0.918053i
\(165\) −6.67601 + 1.76596i −0.519726 + 0.137480i
\(166\) 4.75141 0.368781
\(167\) −5.82972 + 5.82972i −0.451117 + 0.451117i −0.895725 0.444608i \(-0.853343\pi\)
0.444608 + 0.895725i \(0.353343\pi\)
\(168\) 0.279058 + 3.85659i 0.0215298 + 0.297542i
\(169\) −2.21796 12.8094i −0.170612 0.985338i
\(170\) 4.28935 0.808782i 0.328978 0.0620308i
\(171\) 18.3744 2.67310i 1.40513 0.204417i
\(172\) 3.24418 3.24418i 0.247366 0.247366i
\(173\) −15.4525 + 15.4525i −1.17483 + 1.17483i −0.193791 + 0.981043i \(0.562078\pi\)
−0.981043 + 0.193791i \(0.937922\pi\)
\(174\) 3.51618 4.06472i 0.266561 0.308146i
\(175\) −6.32223 2.76787i −0.477915 0.209232i
\(176\) 5.27247 0.397428
\(177\) 1.14378 + 15.8071i 0.0859720 + 1.18813i
\(178\) −1.12267 1.12267i −0.0841474 0.0841474i
\(179\) 12.5389 0.937199 0.468599 0.883411i \(-0.344759\pi\)
0.468599 + 0.883411i \(0.344759\pi\)
\(180\) 3.96764 + 11.5521i 0.295730 + 0.861041i
\(181\) −15.6411 −1.16259 −0.581296 0.813692i \(-0.697454\pi\)
−0.581296 + 0.813692i \(0.697454\pi\)
\(182\) −1.35661 + 1.61170i −0.100559 + 0.119467i
\(183\) 1.75350 0.126881i 0.129622 0.00937932i
\(184\) −1.59314 −0.117448
\(185\) −13.6153 9.29535i −1.00102 0.683408i
\(186\) −3.66817 3.17314i −0.268963 0.232666i
\(187\) 5.81424 + 5.81424i 0.425180 + 0.425180i
\(188\) 10.3679 + 10.3679i 0.756160 + 0.756160i
\(189\) −6.04341 3.86256i −0.439594 0.280960i
\(190\) −3.30312 + 4.83822i −0.239633 + 0.351001i
\(191\) 21.3421i 1.54426i 0.635466 + 0.772129i \(0.280808\pi\)
−0.635466 + 0.772129i \(0.719192\pi\)
\(192\) −0.501888 6.93610i −0.0362207 0.500570i
\(193\) 11.1604 11.1604i 0.803346 0.803346i −0.180271 0.983617i \(-0.557697\pi\)
0.983617 + 0.180271i \(0.0576974\pi\)
\(194\) −4.14444 −0.297553
\(195\) −5.96146 + 12.6278i −0.426909 + 0.904295i
\(196\) 9.27660 0.662615
\(197\) −13.0719 + 13.0719i −0.931333 + 0.931333i −0.997789 0.0664562i \(-0.978831\pi\)
0.0664562 + 0.997789i \(0.478831\pi\)
\(198\) 1.35388 1.81487i 0.0962161 0.128977i
\(199\) 11.8546i 0.840351i 0.907443 + 0.420175i \(0.138031\pi\)
−0.907443 + 0.420175i \(0.861969\pi\)
\(200\) −7.40783 3.24315i −0.523813 0.229325i
\(201\) −6.90854 5.97622i −0.487291 0.421530i
\(202\) −2.71127 2.71127i −0.190765 0.190765i
\(203\) 7.15484 + 7.15484i 0.502171 + 0.502171i
\(204\) 9.51503 10.9994i 0.666185 0.770114i
\(205\) −14.1880 + 2.67523i −0.990932 + 0.186846i
\(206\) −4.78111 −0.333115
\(207\) 1.76700 2.36865i 0.122815 0.164633i
\(208\) 6.86582 8.15681i 0.476059 0.565573i
\(209\) −11.0356 −0.763351
\(210\) 2.18766 0.578687i 0.150963 0.0399332i
\(211\) 6.82795 0.470056 0.235028 0.971989i \(-0.424482\pi\)
0.235028 + 0.971989i \(0.424482\pi\)
\(212\) −3.16875 3.16875i −0.217631 0.217631i
\(213\) 9.49720 0.687207i 0.650738 0.0470867i
\(214\) −7.52567 −0.514444
\(215\) −4.65324 3.17683i −0.317348 0.216658i
\(216\) −7.08114 4.52580i −0.481811 0.307942i
\(217\) 6.45682 6.45682i 0.438317 0.438317i
\(218\) −5.14609 + 5.14609i −0.348537 + 0.348537i
\(219\) 2.16512 2.50289i 0.146305 0.169130i
\(220\) −1.34513 7.13385i −0.0906885 0.480964i
\(221\) 16.5663 1.42364i 1.11437 0.0957645i
\(222\) 5.39128 0.390107i 0.361839 0.0261823i
\(223\) −7.05618 + 7.05618i −0.472516 + 0.472516i −0.902728 0.430212i \(-0.858439\pi\)
0.430212 + 0.902728i \(0.358439\pi\)
\(224\) −6.19258 −0.413759
\(225\) 13.0381 7.41674i 0.869206 0.494450i
\(226\) 2.21796i 0.147537i
\(227\) 9.96306 9.96306i 0.661272 0.661272i −0.294408 0.955680i \(-0.595122\pi\)
0.955680 + 0.294408i \(0.0951225\pi\)
\(228\) 1.40872 + 19.4686i 0.0932950 + 1.28934i
\(229\) 6.60624 0.436552 0.218276 0.975887i \(-0.429957\pi\)
0.218276 + 0.975887i \(0.429957\pi\)
\(230\) 0.172757 + 0.916212i 0.0113913 + 0.0604132i
\(231\) 3.22394 + 2.78886i 0.212120 + 0.183494i
\(232\) 8.38341 + 8.38341i 0.550398 + 0.550398i
\(233\) 0.851914 0.851914i 0.0558108 0.0558108i −0.678651 0.734461i \(-0.737435\pi\)
0.734461 + 0.678651i \(0.237435\pi\)
\(234\) −1.04468 4.45785i −0.0682927 0.291419i
\(235\) 10.1527 14.8711i 0.662291 0.970085i
\(236\) −16.6607 −1.08452
\(237\) 1.28614 + 17.7745i 0.0835439 + 1.15458i
\(238\) −1.90527 1.90527i −0.123500 0.123500i
\(239\) 1.35859i 0.0878799i −0.999034 0.0439399i \(-0.986009\pi\)
0.999034 0.0439399i \(-0.0139910\pi\)
\(240\) −11.0717 + 2.92874i −0.714678 + 0.189049i
\(241\) 3.74390i 0.241166i −0.992703 0.120583i \(-0.961524\pi\)
0.992703 0.120583i \(-0.0384764\pi\)
\(242\) 2.34088 2.34088i 0.150478 0.150478i
\(243\) 14.5828 5.50840i 0.935486 0.353364i
\(244\) 1.84819i 0.118318i
\(245\) −2.11086 11.1949i −0.134858 0.715216i
\(246\) 3.09710 3.58027i 0.197464 0.228270i
\(247\) −14.3706 + 17.0727i −0.914380 + 1.08631i
\(248\) 7.56553 7.56553i 0.480412 0.480412i
\(249\) −14.7039 12.7196i −0.931821 0.806069i
\(250\) −1.06184 + 4.61191i −0.0671566 + 0.291683i
\(251\) 7.63465i 0.481895i −0.970538 0.240947i \(-0.922542\pi\)
0.970538 0.240947i \(-0.0774581\pi\)
\(252\) 4.50844 6.04354i 0.284005 0.380707i
\(253\) −1.24193 + 1.24193i −0.0780795 + 0.0780795i
\(254\) 1.16362i 0.0730120i
\(255\) −15.4391 8.97974i −0.966834 0.562333i
\(256\) 3.51256 0.219535
\(257\) −16.8456 16.8456i −1.05080 1.05080i −0.998639 0.0521601i \(-0.983389\pi\)
−0.0521601 0.998639i \(-0.516611\pi\)
\(258\) 1.84256 0.133325i 0.114712 0.00830047i
\(259\) 10.1766i 0.632341i
\(260\) −12.7881 7.20871i −0.793083 0.447065i
\(261\) −21.7626 + 3.16601i −1.34707 + 0.195971i
\(262\) 0.692018 + 0.692018i 0.0427530 + 0.0427530i
\(263\) 3.24560 3.24560i 0.200132 0.200132i −0.599925 0.800057i \(-0.704803\pi\)
0.800057 + 0.599925i \(0.204803\pi\)
\(264\) 3.77753 + 3.26774i 0.232491 + 0.201116i
\(265\) −3.10297 + 4.54505i −0.190614 + 0.279200i
\(266\) 3.61626 0.221727
\(267\) 0.468859 + 6.47963i 0.0286937 + 0.396547i
\(268\) 6.79027 6.79027i 0.414782 0.414782i
\(269\) 13.0130 0.793415 0.396707 0.917945i \(-0.370153\pi\)
0.396707 + 0.917945i \(0.370153\pi\)
\(270\) −1.83492 + 4.56312i −0.111669 + 0.277703i
\(271\) 12.1798i 0.739873i −0.929057 0.369936i \(-0.879379\pi\)
0.929057 0.369936i \(-0.120621\pi\)
\(272\) 9.64257 + 9.64257i 0.584667 + 0.584667i
\(273\) 8.51274 1.35596i 0.515215 0.0820662i
\(274\) 5.55572i 0.335633i
\(275\) −8.30296 + 3.24657i −0.500688 + 0.195776i
\(276\) 2.34949 + 2.03242i 0.141423 + 0.122338i
\(277\) 0.122666 0.122666i 0.00737030 0.00737030i −0.703412 0.710782i \(-0.748341\pi\)
0.710782 + 0.703412i \(0.248341\pi\)
\(278\) 1.92270 + 1.92270i 0.115316 + 0.115316i
\(279\) 2.85713 + 19.6394i 0.171052 + 1.17578i
\(280\) 0.924944 + 4.90541i 0.0552760 + 0.293154i
\(281\) 28.1225 1.67765 0.838824 0.544403i \(-0.183244\pi\)
0.838824 + 0.544403i \(0.183244\pi\)
\(282\) 0.426089 + 5.88856i 0.0253733 + 0.350658i
\(283\) 4.47421 + 4.47421i 0.265964 + 0.265964i 0.827472 0.561507i \(-0.189778\pi\)
−0.561507 + 0.827472i \(0.689778\pi\)
\(284\) 10.0101i 0.593988i
\(285\) 23.1739 6.13005i 1.37270 0.363113i
\(286\) 0.232996 + 2.71127i 0.0137774 + 0.160321i
\(287\) 6.30209 + 6.30209i 0.372001 + 0.372001i
\(288\) 8.04776 10.7880i 0.474219 0.635687i
\(289\) 4.26678i 0.250987i
\(290\) 3.91220 5.73037i 0.229733 0.336499i
\(291\) 12.8255 + 11.0947i 0.751846 + 0.650382i
\(292\) 2.46004 + 2.46004i 0.143963 + 0.143963i
\(293\) −3.58558 3.58558i −0.209472 0.209472i 0.594571 0.804043i \(-0.297322\pi\)
−0.804043 + 0.594571i \(0.797322\pi\)
\(294\) 2.82498 + 2.44374i 0.164756 + 0.142522i
\(295\) 3.79109 + 20.1059i 0.220726 + 1.17061i
\(296\) 11.9240i 0.693069i
\(297\) −9.04819 + 1.99201i −0.525029 + 0.115588i
\(298\) 5.50543 + 5.50543i 0.318921 + 0.318921i
\(299\) 0.304092 + 3.53858i 0.0175861 + 0.204641i
\(300\) 6.78735 + 14.2333i 0.391868 + 0.821759i
\(301\) 3.47800i 0.200469i
\(302\) −1.85254 1.85254i −0.106602 0.106602i
\(303\) 1.13231 + 15.6485i 0.0650494 + 0.898983i
\(304\) −18.3019 −1.04969
\(305\) 2.23037 0.420550i 0.127711 0.0240806i
\(306\) 5.79517 0.843079i 0.331288 0.0481956i
\(307\) −12.9376 12.9376i −0.738389 0.738389i 0.233877 0.972266i \(-0.424859\pi\)
−0.972266 + 0.233877i \(0.924859\pi\)
\(308\) −3.16875 + 3.16875i −0.180556 + 0.180556i
\(309\) 14.7958 + 12.7991i 0.841703 + 0.728113i
\(310\) −5.17131 3.53053i −0.293711 0.200521i
\(311\) 33.1865i 1.88183i −0.338639 0.940916i \(-0.609967\pi\)
0.338639 0.940916i \(-0.390033\pi\)
\(312\) 9.97448 1.58879i 0.564694 0.0899476i
\(313\) 10.6131 + 10.6131i 0.599890 + 0.599890i 0.940283 0.340393i \(-0.110560\pi\)
−0.340393 + 0.940283i \(0.610560\pi\)
\(314\) 0.369496i 0.0208519i
\(315\) −8.31915 4.06555i −0.468731 0.229068i
\(316\) −18.7343 −1.05389
\(317\) −19.8856 + 19.8856i −1.11688 + 1.11688i −0.124688 + 0.992196i \(0.539793\pi\)
−0.992196 + 0.124688i \(0.960207\pi\)
\(318\) −0.130225 1.79972i −0.00730268 0.100923i
\(319\) 13.0706 0.731811
\(320\) −1.66352 8.82241i −0.0929935 0.493188i
\(321\) 23.2892 + 20.1463i 1.29988 + 1.12446i
\(322\) 0.406968 0.406968i 0.0226794 0.0226794i
\(323\) −20.1825 20.1825i −1.12299 1.12299i
\(324\) 4.66924 + 15.7081i 0.259402 + 0.872673i
\(325\) −5.78950 + 17.0728i −0.321144 + 0.947030i
\(326\) 0.839363i 0.0464880i
\(327\) 29.7014 2.14916i 1.64249 0.118849i
\(328\) 7.38424 + 7.38424i 0.407727 + 0.407727i
\(329\) −11.1152 −0.612802
\(330\) 1.46964 2.52680i 0.0809013 0.139096i
\(331\) 10.7854i 0.592820i −0.955061 0.296410i \(-0.904211\pi\)
0.955061 0.296410i \(-0.0957894\pi\)
\(332\) 14.4522 14.4522i 0.793165 0.793165i
\(333\) −17.7284 13.2253i −0.971509 0.724740i
\(334\) 3.48983i 0.190955i
\(335\) −9.73953 6.64932i −0.532127 0.363291i
\(336\) 5.34671 + 4.62516i 0.291687 + 0.252323i
\(337\) 10.0688 10.0688i 0.548485 0.548485i −0.377517 0.926002i \(-0.623222\pi\)
0.926002 + 0.377517i \(0.123222\pi\)
\(338\) 4.49790 + 3.17017i 0.244653 + 0.172434i
\(339\) 5.93750 6.86378i 0.322481 0.372790i
\(340\) 10.5867 15.5068i 0.574145 0.840974i
\(341\) 11.7954i 0.638757i
\(342\) −4.69962 + 6.29981i −0.254126 + 0.340655i
\(343\) −11.8048 + 11.8048i −0.637400 + 0.637400i
\(344\) 4.07522i 0.219721i
\(345\) 1.91809 3.29782i 0.103266 0.177548i
\(346\) 9.25031i 0.497300i
\(347\) −10.4666 10.4666i −0.561879 0.561879i 0.367962 0.929841i \(-0.380056\pi\)
−0.929841 + 0.367962i \(0.880056\pi\)
\(348\) −1.66849 23.0585i −0.0894403 1.23607i
\(349\) −6.87214 −0.367857 −0.183929 0.982940i \(-0.558882\pi\)
−0.183929 + 0.982940i \(0.558882\pi\)
\(350\) 2.72079 1.06387i 0.145433 0.0568661i
\(351\) −8.70081 + 16.5920i −0.464415 + 0.885618i
\(352\) −5.65635 + 5.65635i −0.301484 + 0.301484i
\(353\) 6.26593 + 6.26593i 0.333502 + 0.333502i 0.853915 0.520413i \(-0.174222\pi\)
−0.520413 + 0.853915i \(0.674222\pi\)
\(354\) −5.07363 4.38893i −0.269660 0.233269i
\(355\) 12.0800 2.27776i 0.641141 0.120891i
\(356\) −6.82954 −0.361965
\(357\) 0.795696 + 10.9965i 0.0421127 + 0.581998i
\(358\) −3.75306 + 3.75306i −0.198355 + 0.198355i
\(359\) 17.4323i 0.920040i 0.887909 + 0.460020i \(0.152158\pi\)
−0.887909 + 0.460020i \(0.847842\pi\)
\(360\) −9.74766 4.76365i −0.513747 0.251066i
\(361\) 19.3071 1.01616
\(362\) 4.68159 4.68159i 0.246059 0.246059i
\(363\) −13.5107 + 0.977622i −0.709130 + 0.0513118i
\(364\) 0.775881 + 9.02858i 0.0406672 + 0.473226i
\(365\) 2.40897 3.52852i 0.126091 0.184691i
\(366\) −0.486869 + 0.562823i −0.0254490 + 0.0294193i
\(367\) 20.1562 20.1562i 1.05215 1.05215i 0.0535819 0.998563i \(-0.482936\pi\)
0.998563 0.0535819i \(-0.0170638\pi\)
\(368\) −2.05967 + 2.05967i −0.107368 + 0.107368i
\(369\) −19.1688 + 2.78867i −0.997889 + 0.145172i
\(370\) 6.85747 1.29302i 0.356503 0.0672207i
\(371\) 3.39714 0.176371
\(372\) −20.8089 + 1.50571i −1.07889 + 0.0780675i
\(373\) −26.0312 26.0312i −1.34784 1.34784i −0.888001 0.459842i \(-0.847906\pi\)
−0.459842 0.888001i \(-0.652094\pi\)
\(374\) −3.48057 −0.179976
\(375\) 15.6321 11.4296i 0.807240 0.590224i
\(376\) −13.0238 −0.671653
\(377\) 17.0205 20.2209i 0.876601 1.04143i
\(378\) 2.96500 0.652761i 0.152503 0.0335744i
\(379\) 28.6521 1.47176 0.735879 0.677113i \(-0.236769\pi\)
0.735879 + 0.677113i \(0.236769\pi\)
\(380\) 4.66924 + 24.7632i 0.239527 + 1.27032i
\(381\) −3.11502 + 3.60098i −0.159587 + 0.184484i
\(382\) −6.38798 6.38798i −0.326837 0.326837i
\(383\) −2.84747 2.84747i −0.145499 0.145499i 0.630605 0.776104i \(-0.282807\pi\)
−0.776104 + 0.630605i \(0.782807\pi\)
\(384\) 13.9800 + 12.0934i 0.713415 + 0.617138i
\(385\) 4.54505 + 3.10297i 0.231637 + 0.158142i
\(386\) 6.68095i 0.340052i
\(387\) −6.05895 4.51994i −0.307994 0.229762i
\(388\) −12.6060 + 12.6060i −0.639971 + 0.639971i
\(389\) −19.7341 −1.00056 −0.500281 0.865863i \(-0.666770\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(390\) −1.99532 5.56402i −0.101037 0.281745i
\(391\) −4.54262 −0.229730
\(392\) −5.82647 + 5.82647i −0.294281 + 0.294281i
\(393\) −0.289007 3.99408i −0.0145785 0.201475i
\(394\) 7.82520i 0.394228i
\(395\) 4.26294 + 22.6084i 0.214492 + 1.13755i
\(396\) −1.40217 9.63825i −0.0704616 0.484341i
\(397\) 5.15520 + 5.15520i 0.258732 + 0.258732i 0.824538 0.565806i \(-0.191435\pi\)
−0.565806 + 0.824538i \(0.691435\pi\)
\(398\) −3.54825 3.54825i −0.177858 0.177858i
\(399\) −11.1910 9.68076i −0.560252 0.484644i
\(400\) −13.7700 + 5.38424i −0.688498 + 0.269212i
\(401\) −21.4787 −1.07260 −0.536298 0.844029i \(-0.680178\pi\)
−0.536298 + 0.844029i \(0.680178\pi\)
\(402\) 3.85659 0.279058i 0.192349 0.0139182i
\(403\) −18.2481 15.3600i −0.909005 0.765136i
\(404\) −16.4935 −0.820584
\(405\) 17.8939 9.20912i 0.889156 0.457605i
\(406\) −4.28309 −0.212566
\(407\) 9.29535 + 9.29535i 0.460753 + 0.460753i
\(408\) 0.932327 + 12.8848i 0.0461571 + 0.637891i
\(409\) 12.7208 0.629003 0.314502 0.949257i \(-0.398163\pi\)
0.314502 + 0.949257i \(0.398163\pi\)
\(410\) 3.44593 5.04740i 0.170182 0.249273i
\(411\) −14.8727 + 17.1929i −0.733617 + 0.848065i
\(412\) −14.5425 + 14.5425i −0.716457 + 0.716457i
\(413\) 8.93075 8.93075i 0.439453 0.439453i
\(414\) 0.180083 + 1.23786i 0.00885059 + 0.0608374i
\(415\) −20.7292 14.1522i −1.01756 0.694702i
\(416\) 1.38498 + 16.1164i 0.0679043 + 0.790171i
\(417\) −0.802975 11.0971i −0.0393219 0.543428i
\(418\) 3.30312 3.30312i 0.161561 0.161561i
\(419\) 17.7329 0.866309 0.433155 0.901320i \(-0.357400\pi\)
0.433155 + 0.901320i \(0.357400\pi\)
\(420\) 4.89394 8.41428i 0.238800 0.410575i
\(421\) 17.8269i 0.868831i −0.900713 0.434415i \(-0.856955\pi\)
0.900713 0.434415i \(-0.143045\pi\)
\(422\) −2.04370 + 2.04370i −0.0994858 + 0.0994858i
\(423\) 14.4451 19.3636i 0.702346 0.941490i
\(424\) 3.98047 0.193309
\(425\) −21.1224 9.24739i −1.02459 0.448564i
\(426\) −2.63696 + 3.04834i −0.127761 + 0.147692i
\(427\) −0.990698 0.990698i −0.0479432 0.0479432i
\(428\) −22.8905 + 22.8905i −1.10645 + 1.10645i
\(429\) 6.53706 9.01414i 0.315612 0.435207i
\(430\) 2.34365 0.441909i 0.113021 0.0213107i
\(431\) −0.0512892 −0.00247051 −0.00123526 0.999999i \(-0.500393\pi\)
−0.00123526 + 0.999999i \(0.500393\pi\)
\(432\) −15.0059 + 3.30363i −0.721970 + 0.158946i
\(433\) 5.73907 + 5.73907i 0.275802 + 0.275802i 0.831431 0.555629i \(-0.187522\pi\)
−0.555629 + 0.831431i \(0.687522\pi\)
\(434\) 3.86523i 0.185537i
\(435\) −27.4471 + 7.26041i −1.31599 + 0.348110i
\(436\) 31.3053i 1.49925i
\(437\) 4.31102 4.31102i 0.206224 0.206224i
\(438\) 0.101100 + 1.39720i 0.00483073 + 0.0667608i
\(439\) 35.7022i 1.70397i −0.523563 0.851987i \(-0.675397\pi\)
0.523563 0.851987i \(-0.324603\pi\)
\(440\) 5.32549 + 3.63579i 0.253883 + 0.173329i
\(441\) −2.20037 15.1250i −0.104780 0.720237i
\(442\) −4.53240 + 5.38463i −0.215584 + 0.256121i
\(443\) −15.3403 + 15.3403i −0.728838 + 0.728838i −0.970388 0.241550i \(-0.922344\pi\)
0.241550 + 0.970388i \(0.422344\pi\)
\(444\) 15.2119 17.5850i 0.721923 0.834548i
\(445\) 1.55404 + 8.24181i 0.0736686 + 0.390699i
\(446\) 4.22402i 0.200013i
\(447\) −2.29923 31.7754i −0.108750 1.50292i
\(448\) −3.91879 + 3.91879i −0.185145 + 0.185145i
\(449\) 31.6433i 1.49334i −0.665195 0.746669i \(-0.731652\pi\)
0.665195 0.746669i \(-0.268348\pi\)
\(450\) −1.68255 + 6.12242i −0.0793161 + 0.288614i
\(451\) 11.5128 0.542115
\(452\) 6.74628 + 6.74628i 0.317318 + 0.317318i
\(453\) 0.773675 + 10.6922i 0.0363504 + 0.502363i
\(454\) 5.96417i 0.279912i
\(455\) 10.7190 2.99075i 0.502516 0.140209i
\(456\) −13.1126 11.3431i −0.614056 0.531188i
\(457\) 5.45533 + 5.45533i 0.255189 + 0.255189i 0.823094 0.567905i \(-0.192246\pi\)
−0.567905 + 0.823094i \(0.692246\pi\)
\(458\) −1.97734 + 1.97734i −0.0923950 + 0.0923950i
\(459\) −20.1909 12.9047i −0.942430 0.602340i
\(460\) 3.31227 + 2.26134i 0.154435 + 0.105435i
\(461\) −13.0161 −0.606218 −0.303109 0.952956i \(-0.598025\pi\)
−0.303109 + 0.952956i \(0.598025\pi\)
\(462\) −1.79972 + 0.130225i −0.0837304 + 0.00605864i
\(463\) −21.9129 + 21.9129i −1.01838 + 1.01838i −0.0185498 + 0.999828i \(0.505905\pi\)
−0.999828 + 0.0185498i \(0.994095\pi\)
\(464\) 21.6767 1.00632
\(465\) 6.55209 + 24.7694i 0.303846 + 1.14865i
\(466\) 0.509980i 0.0236244i
\(467\) 9.26751 + 9.26751i 0.428849 + 0.428849i 0.888236 0.459387i \(-0.151931\pi\)
−0.459387 + 0.888236i \(0.651931\pi\)
\(468\) −16.7368 10.3817i −0.773660 0.479895i
\(469\) 7.27969i 0.336145i
\(470\) 1.41228 + 7.48998i 0.0651436 + 0.345487i
\(471\) −0.989143 + 1.14346i −0.0455773 + 0.0526876i
\(472\) 10.4643 10.4643i 0.481657 0.481657i
\(473\) 3.17683 + 3.17683i 0.146071 + 0.146071i
\(474\) −5.70512 4.93519i −0.262045 0.226681i
\(475\) 28.8214 11.2696i 1.32242 0.517083i
\(476\) −11.5903 −0.531243
\(477\) −4.41485 + 5.91808i −0.202142 + 0.270970i
\(478\) 0.406645 + 0.406645i 0.0185995 + 0.0185995i
\(479\) 9.43309i 0.431009i −0.976503 0.215505i \(-0.930860\pi\)
0.976503 0.215505i \(-0.0691396\pi\)
\(480\) 8.73588 15.0198i 0.398737 0.685559i
\(481\) 26.4848 2.27600i 1.20760 0.103777i
\(482\) 1.12060 + 1.12060i 0.0510421 + 0.0510421i
\(483\) −2.34887 + 0.169962i −0.106877 + 0.00773353i
\(484\) 14.2403i 0.647288i
\(485\) 18.0812 + 12.3443i 0.821024 + 0.560525i
\(486\) −2.71609 + 6.01357i −0.123204 + 0.272781i
\(487\) −25.8933 25.8933i −1.17334 1.17334i −0.981408 0.191931i \(-0.938525\pi\)
−0.191931 0.981408i \(-0.561475\pi\)
\(488\) −1.16081 1.16081i −0.0525475 0.0525475i
\(489\) 2.24698 2.59753i 0.101612 0.117464i
\(490\) 3.98260 + 2.71898i 0.179916 + 0.122831i
\(491\) 16.5241i 0.745723i 0.927887 + 0.372862i \(0.121623\pi\)
−0.927887 + 0.372862i \(0.878377\pi\)
\(492\) −1.46963 20.3103i −0.0662560 0.915659i
\(493\) 23.9041 + 23.9041i 1.07659 + 1.07659i
\(494\) −0.808782 9.41143i −0.0363888 0.423440i
\(495\) −11.3123 + 3.88528i −0.508449 + 0.174630i
\(496\) 19.5620i 0.878358i
\(497\) −5.36577 5.36577i −0.240688 0.240688i
\(498\) 8.20822 0.593937i 0.367819 0.0266150i
\(499\) −32.5487 −1.45708 −0.728539 0.685004i \(-0.759800\pi\)
−0.728539 + 0.685004i \(0.759800\pi\)
\(500\) 10.7981 + 17.2576i 0.482906 + 0.771784i
\(501\) −9.34231 + 10.7998i −0.417383 + 0.482498i
\(502\) 2.28516 + 2.28516i 0.101992 + 0.101992i
\(503\) 18.6730 18.6730i 0.832589 0.832589i −0.155281 0.987870i \(-0.549628\pi\)
0.987870 + 0.155281i \(0.0496284\pi\)
\(504\) 0.964166 + 6.62751i 0.0429474 + 0.295213i
\(505\) 3.75306 + 19.9042i 0.167009 + 0.885726i
\(506\) 0.743455i 0.0330506i
\(507\) −5.43281 21.8514i −0.241279 0.970456i
\(508\) −3.53933 3.53933i −0.157033 0.157033i
\(509\) 17.1048i 0.758157i 0.925364 + 0.379079i \(0.123759\pi\)
−0.925364 + 0.379079i \(0.876241\pi\)
\(510\) 7.30890 1.93338i 0.323644 0.0856114i
\(511\) −2.63735 −0.116669
\(512\) −16.1442 + 16.1442i −0.713480 + 0.713480i
\(513\) 31.4083 6.91471i 1.38671 0.305292i
\(514\) 10.0842 0.444797
\(515\) 20.8588 + 14.2406i 0.919149 + 0.627516i
\(516\) 5.19890 6.00996i 0.228869 0.264574i
\(517\) −10.1527 + 10.1527i −0.446516 + 0.446516i
\(518\) −3.04599 3.04599i −0.133833 0.133833i
\(519\) −24.7632 + 28.6264i −1.08698 + 1.25656i
\(520\) 12.5596 3.50430i 0.550776 0.153674i
\(521\) 31.7138i 1.38941i −0.719296 0.694704i \(-0.755535\pi\)
0.719296 0.694704i \(-0.244465\pi\)
\(522\) 5.56622 7.46148i 0.243627 0.326580i
\(523\) −1.96609 1.96609i −0.0859713 0.0859713i 0.662813 0.748785i \(-0.269362\pi\)
−0.748785 + 0.662813i \(0.769362\pi\)
\(524\) 4.20976 0.183904
\(525\) −11.2679 3.99130i −0.491769 0.174195i
\(526\) 1.94291i 0.0847147i
\(527\) 21.5720 21.5720i 0.939693 0.939693i
\(528\) 9.10838 0.659072i 0.396391 0.0286824i
\(529\) 22.0297i 0.957813i
\(530\) −0.431634 2.28916i −0.0187490 0.0994347i
\(531\) 3.95185 + 27.1643i 0.171496 + 1.17883i
\(532\) 10.9994 10.9994i 0.476886 0.476886i
\(533\) 14.9919 17.8109i 0.649372 0.771475i
\(534\) −2.07978 1.79911i −0.0900009 0.0778550i
\(535\) 32.8327 + 22.4153i 1.41948 + 0.969100i
\(536\) 8.52970i 0.368427i
\(537\) 21.6613 1.56739i 0.934755 0.0676378i
\(538\) −3.89496 + 3.89496i −0.167924 + 0.167924i
\(539\) 9.08404i 0.391277i
\(540\) 8.29827 + 19.4606i 0.357101 + 0.837453i
\(541\) 2.13410i 0.0917520i 0.998947 + 0.0458760i \(0.0146079\pi\)
−0.998947 + 0.0458760i \(0.985392\pi\)
\(542\) 3.64560 + 3.64560i 0.156592 + 0.156592i
\(543\) −27.0205 + 1.95517i −1.15956 + 0.0839045i
\(544\) −20.6893 −0.887044
\(545\) 37.7789 7.12343i 1.61827 0.305134i
\(546\) −2.14213 + 2.95384i −0.0916745 + 0.126413i
\(547\) −16.7725 + 16.7725i −0.717142 + 0.717142i −0.968019 0.250877i \(-0.919281\pi\)
0.250877 + 0.968019i \(0.419281\pi\)
\(548\) −16.8986 16.8986i −0.721873 0.721873i
\(549\) 3.01337 0.438383i 0.128607 0.0187097i
\(550\) 1.51345 3.45694i 0.0645337 0.147404i
\(551\) −45.3708 −1.93286
\(552\) −2.75220 + 0.199146i −0.117142 + 0.00847623i
\(553\) 10.0423 10.0423i 0.427042 0.427042i
\(554\) 0.0734314i 0.00311980i
\(555\) −24.6828 14.3561i −1.04773 0.609382i
\(556\) 11.6964 0.496037
\(557\) −1.09774 + 1.09774i −0.0465129 + 0.0465129i −0.729981 0.683468i \(-0.760471\pi\)
0.683468 + 0.729981i \(0.260471\pi\)
\(558\) −6.73354 5.02318i −0.285053 0.212648i
\(559\) 9.05161 0.777861i 0.382842 0.0329000i
\(560\) 7.53769 + 5.14609i 0.318525 + 0.217462i
\(561\) 10.7711 + 9.31751i 0.454756 + 0.393386i
\(562\) −8.41746 + 8.41746i −0.355069 + 0.355069i
\(563\) 6.40952 6.40952i 0.270129 0.270129i −0.559023 0.829152i \(-0.688824\pi\)
0.829152 + 0.559023i \(0.188824\pi\)
\(564\) 19.2070 + 16.6150i 0.808761 + 0.699616i
\(565\) 6.60624 9.67643i 0.277927 0.407090i
\(566\) −2.67839 −0.112581
\(567\) −10.9230 5.91726i −0.458724 0.248501i
\(568\) −6.28714 6.28714i −0.263802 0.263802i
\(569\) 22.1203 0.927330 0.463665 0.886011i \(-0.346534\pi\)
0.463665 + 0.886011i \(0.346534\pi\)
\(570\) −5.10146 + 8.77108i −0.213677 + 0.367380i
\(571\) −27.4675 −1.14948 −0.574741 0.818336i \(-0.694897\pi\)
−0.574741 + 0.818336i \(0.694897\pi\)
\(572\) 8.95547 + 7.53807i 0.374447 + 0.315183i
\(573\) 2.66781 + 36.8692i 0.111449 + 1.54023i
\(574\) −3.77261 −0.157466
\(575\) 1.97526 4.51177i 0.0823739 0.188154i
\(576\) −1.73406 11.9196i −0.0722524 0.496650i
\(577\) −27.1625 27.1625i −1.13079 1.13079i −0.990046 0.140745i \(-0.955050\pi\)
−0.140745 0.990046i \(-0.544950\pi\)
\(578\) −1.27711 1.27711i −0.0531207 0.0531207i
\(579\) 17.8850 20.6751i 0.743274 0.859229i
\(580\) −5.53023 29.3294i −0.229630 1.21784i
\(581\) 15.4938i 0.642791i
\(582\) −7.15965 + 0.518065i −0.296777 + 0.0214745i
\(583\) 3.10297 3.10297i 0.128512 0.128512i
\(584\) −3.09021 −0.127874
\(585\) −8.72012 + 22.5601i −0.360533 + 0.932747i
\(586\) 2.14643 0.0886681
\(587\) 18.4092 18.4092i 0.759827 0.759827i −0.216464 0.976291i \(-0.569452\pi\)
0.976291 + 0.216464i \(0.0694522\pi\)
\(588\) 16.0257 1.15960i 0.660887 0.0478210i
\(589\) 40.9445i 1.68709i
\(590\) −7.15271 4.88326i −0.294472 0.201040i
\(591\) −20.9481 + 24.2161i −0.861690 + 0.996119i
\(592\) 15.4158 + 15.4158i 0.633584 + 0.633584i
\(593\) 26.8585 + 26.8585i 1.10294 + 1.10294i 0.994054 + 0.108891i \(0.0347300\pi\)
0.108891 + 0.994054i \(0.465270\pi\)
\(594\) 2.11201 3.30449i 0.0866569 0.135585i
\(595\) 2.63735 + 13.9871i 0.108121 + 0.573415i
\(596\) 33.4913 1.37186
\(597\) 1.48185 + 20.4792i 0.0606483 + 0.838159i
\(598\) −1.15017 0.968128i −0.0470338 0.0395897i
\(599\) 36.5079 1.49167 0.745836 0.666130i \(-0.232050\pi\)
0.745836 + 0.666130i \(0.232050\pi\)
\(600\) −13.2027 4.67666i −0.538997 0.190924i
\(601\) −19.6210 −0.800359 −0.400180 0.916437i \(-0.631052\pi\)
−0.400180 + 0.916437i \(0.631052\pi\)
\(602\) −1.04101 1.04101i −0.0424286 0.0424286i
\(603\) −12.6818 9.46053i −0.516442 0.385263i
\(604\) −11.2696 −0.458552
\(605\) −17.1851 + 3.24034i −0.698672 + 0.131739i
\(606\) −5.02273 4.34490i −0.204035 0.176500i
\(607\) 14.2907 14.2907i 0.580043 0.580043i −0.354872 0.934915i \(-0.615475\pi\)
0.934915 + 0.354872i \(0.115475\pi\)
\(608\) 19.6344 19.6344i 0.796282 0.796282i
\(609\) 13.2546 + 11.4659i 0.537104 + 0.464620i
\(610\) −0.541705 + 0.793458i −0.0219330 + 0.0321262i
\(611\) 2.48594 + 28.9277i 0.100570 + 1.17029i
\(612\) 15.0626 20.1913i 0.608869 0.816185i
\(613\) −18.2600 + 18.2600i −0.737514 + 0.737514i −0.972096 0.234582i \(-0.924628\pi\)
0.234582 + 0.972096i \(0.424628\pi\)
\(614\) 7.74482 0.312555
\(615\) −24.1758 + 6.39508i −0.974863 + 0.257875i
\(616\) 3.98047i 0.160378i
\(617\) −6.13543 + 6.13543i −0.247003 + 0.247003i −0.819740 0.572737i \(-0.805882\pi\)
0.572737 + 0.819740i \(0.305882\pi\)
\(618\) −8.25952 + 0.597650i −0.332247 + 0.0240410i
\(619\) −34.5846 −1.39007 −0.695036 0.718975i \(-0.744612\pi\)
−0.695036 + 0.718975i \(0.744612\pi\)
\(620\) −26.4680 + 4.99070i −1.06298 + 0.200432i
\(621\) 2.75646 4.31280i 0.110613 0.173067i
\(622\) 9.93318 + 9.93318i 0.398284 + 0.398284i
\(623\) 3.66089 3.66089i 0.146670 0.146670i
\(624\) 10.8413 14.9494i 0.434000 0.598455i
\(625\) 18.3692 16.9579i 0.734768 0.678318i
\(626\) −6.35332 −0.253930
\(627\) −19.0644 + 1.37948i −0.761360 + 0.0550912i
\(628\) −1.12388 1.12388i −0.0448477 0.0448477i
\(629\) 33.9996i 1.35565i
\(630\) 3.70691 1.27316i 0.147687 0.0507241i
\(631\) 34.2929i 1.36518i −0.730803 0.682589i \(-0.760854\pi\)
0.730803 0.682589i \(-0.239146\pi\)
\(632\) 11.7667 11.7667i 0.468054 0.468054i
\(633\) 11.7955 0.853511i 0.468830 0.0339240i
\(634\) 11.9041i 0.472770i
\(635\) −3.46586 + 5.07659i −0.137539 + 0.201459i
\(636\) −5.87022 5.07802i −0.232770 0.201357i
\(637\) 14.0535 + 11.8292i 0.556820 + 0.468692i
\(638\) −3.91220 + 3.91220i −0.154886 + 0.154886i
\(639\) 16.3208 2.37435i 0.645643 0.0939277i
\(640\) 19.7088 + 13.4555i 0.779057 + 0.531874i
\(641\) 42.5250i 1.67964i −0.542869 0.839818i \(-0.682662\pi\)
0.542869 0.839818i \(-0.317338\pi\)
\(642\) −13.0008 + 0.940727i −0.513102 + 0.0371275i
\(643\) −18.9190 + 18.9190i −0.746094 + 0.746094i −0.973743 0.227649i \(-0.926896\pi\)
0.227649 + 0.973743i \(0.426896\pi\)
\(644\) 2.47571i 0.0975568i
\(645\) −8.43574 4.90642i −0.332157 0.193190i
\(646\) 12.0818 0.475353
\(647\) 12.3644 + 12.3644i 0.486095 + 0.486095i 0.907071 0.420977i \(-0.138313\pi\)
−0.420977 + 0.907071i \(0.638313\pi\)
\(648\) −12.7987 6.93332i −0.502779 0.272367i
\(649\) 16.3148i 0.640413i
\(650\) −3.37726 6.84302i −0.132467 0.268405i
\(651\) 10.3473 11.9615i 0.405541 0.468808i
\(652\) 2.55306 + 2.55306i 0.0999854 + 0.0999854i
\(653\) −15.7250 + 15.7250i −0.615366 + 0.615366i −0.944339 0.328973i \(-0.893297\pi\)
0.328973 + 0.944339i \(0.393297\pi\)
\(654\) −8.24677 + 9.53332i −0.322474 + 0.372782i
\(655\) −0.957919 5.08029i −0.0374290 0.198504i
\(656\) 19.0932 0.745465
\(657\) 3.42745 4.59447i 0.133717 0.179247i
\(658\) 3.32694 3.32694i 0.129698 0.129698i
\(659\) −9.53240 −0.371330 −0.185665 0.982613i \(-0.559444\pi\)
−0.185665 + 0.982613i \(0.559444\pi\)
\(660\) −3.21550 12.1558i −0.125163 0.473165i
\(661\) 1.70798i 0.0664328i 0.999448 + 0.0332164i \(0.0105750\pi\)
−0.999448 + 0.0332164i \(0.989425\pi\)
\(662\) 3.22822 + 3.22822i 0.125468 + 0.125468i
\(663\) 28.4408 4.53021i 1.10455 0.175939i
\(664\) 18.1543i 0.704523i
\(665\) −15.7769 10.7711i −0.611801 0.417685i
\(666\) 9.26486 1.34785i 0.359006 0.0522280i
\(667\) −5.10596 + 5.10596i −0.197703 + 0.197703i
\(668\) −10.6149 10.6149i −0.410702 0.410702i
\(669\) −11.3077 + 13.0718i −0.437183 + 0.505386i
\(670\) 4.90541 0.924944i 0.189513 0.0357337i
\(671\) −1.80982 −0.0698674
\(672\) −10.6979 + 0.774088i −0.412680 + 0.0298611i
\(673\) 21.7199 + 21.7199i 0.837239 + 0.837239i 0.988495 0.151255i \(-0.0483315\pi\)
−0.151255 + 0.988495i \(0.548332\pi\)
\(674\) 6.02749i 0.232170i
\(675\) 21.5966 14.4425i 0.831255 0.555891i
\(676\) 23.3236 4.03851i 0.897063 0.155327i
\(677\) 2.10006 + 2.10006i 0.0807118 + 0.0807118i 0.746310 0.665598i \(-0.231824\pi\)
−0.665598 + 0.746310i \(0.731824\pi\)
\(678\) 0.277250 + 3.83160i 0.0106477 + 0.147152i
\(679\) 13.5145i 0.518641i
\(680\) 3.09021 + 16.3889i 0.118504 + 0.628484i
\(681\) 15.9661 18.4569i 0.611823 0.707271i
\(682\) 3.53053 + 3.53053i 0.135191 + 0.135191i
\(683\) −13.0377 13.0377i −0.498875 0.498875i 0.412212 0.911088i \(-0.364756\pi\)
−0.911088 + 0.412212i \(0.864756\pi\)
\(684\) 4.86724 + 33.4565i 0.186103 + 1.27924i
\(685\) −16.5478 + 24.2383i −0.632260 + 0.926097i
\(686\) 7.06669i 0.269808i
\(687\) 11.4125 0.825796i 0.435414 0.0315061i
\(688\) 5.26858 + 5.26858i 0.200863 + 0.200863i
\(689\) −0.759775 8.84116i −0.0289451 0.336821i
\(690\) 0.412973 + 1.56119i 0.0157216 + 0.0594336i
\(691\) 18.1095i 0.688917i 0.938801 + 0.344459i \(0.111938\pi\)
−0.938801 + 0.344459i \(0.888062\pi\)
\(692\) −28.1363 28.1363i −1.06958 1.06958i
\(693\) 5.91808 + 4.41485i 0.224809 + 0.167706i
\(694\) 6.26563 0.237840
\(695\) −2.66148 14.1151i −0.100956 0.535414i
\(696\) 15.5306 + 13.4347i 0.588685 + 0.509240i
\(697\) 21.0551 + 21.0551i 0.797520 + 0.797520i
\(698\) 2.05693 2.05693i 0.0778559 0.0778559i
\(699\) 1.36522 1.57820i 0.0516373 0.0596931i
\(700\) 5.03981 11.5117i 0.190487 0.435099i
\(701\) 30.8016i 1.16336i 0.813418 + 0.581679i \(0.197604\pi\)
−0.813418 + 0.581679i \(0.802396\pi\)
\(702\) −2.36196 7.57050i −0.0891464 0.285730i
\(703\) −32.2662 32.2662i −1.21694 1.21694i
\(704\) 7.15890i 0.269811i
\(705\) 15.6803 26.9595i 0.590552 1.01535i
\(706\) −3.75096 −0.141169
\(707\) 8.84116 8.84116i 0.332506 0.332506i
\(708\) −28.7819 + 2.08263i −1.08169 + 0.0782698i
\(709\) −2.35235 −0.0883445 −0.0441723 0.999024i \(-0.514065\pi\)
−0.0441723 + 0.999024i \(0.514065\pi\)
\(710\) −2.93396 + 4.29749i −0.110109 + 0.161282i
\(711\) 4.44371 + 30.5453i 0.166652 + 1.14554i
\(712\) 4.28951 4.28951i 0.160756 0.160756i
\(713\) 4.60782 + 4.60782i 0.172564 + 0.172564i
\(714\) −3.52958 3.05325i −0.132091 0.114265i
\(715\) 7.05907 12.5226i 0.263994 0.468319i
\(716\) 22.8310i 0.853236i
\(717\) −0.169827 2.34701i −0.00634231 0.0876507i
\(718\) −5.21772 5.21772i −0.194724 0.194724i
\(719\) −38.5954 −1.43936 −0.719682 0.694303i \(-0.755713\pi\)
−0.719682 + 0.694303i \(0.755713\pi\)
\(720\) −18.7607 + 6.44350i −0.699171 + 0.240135i
\(721\) 15.5907i 0.580626i
\(722\) −5.77889 + 5.77889i −0.215068 + 0.215068i
\(723\) −0.467997 6.46772i −0.0174050 0.240537i
\(724\) 28.4796i 1.05844i
\(725\) −34.1360 + 13.3476i −1.26778 + 0.495719i
\(726\) 3.75134 4.33657i 0.139225 0.160945i
\(727\) 23.0427 23.0427i 0.854607 0.854607i −0.136090 0.990697i \(-0.543453\pi\)
0.990697 + 0.136090i \(0.0434535\pi\)
\(728\) −6.15800 5.18337i −0.228231 0.192108i
\(729\) 24.5037 11.3388i 0.907544 0.419957i
\(730\) 0.335097 + 1.77718i 0.0124025 + 0.0657762i
\(731\) 11.6199i 0.429778i
\(732\) 0.231028 + 3.19281i 0.00853904 + 0.118010i
\(733\) 13.9647 13.9647i 0.515799 0.515799i −0.400498 0.916297i \(-0.631163\pi\)
0.916297 + 0.400498i \(0.131163\pi\)
\(734\) 12.0661i 0.445367i
\(735\) −5.04598 19.0757i −0.186124 0.703618i
\(736\) 4.41925i 0.162896i
\(737\) 6.64932 + 6.64932i 0.244931 + 0.244931i
\(738\) 4.90281 6.57219i 0.180475 0.241925i
\(739\) 38.8310 1.42842 0.714210 0.699931i \(-0.246786\pi\)
0.714210 + 0.699931i \(0.246786\pi\)
\(740\) 16.9252 24.7910i 0.622182 0.911335i
\(741\) −22.6916 + 31.2901i −0.833596 + 1.14947i
\(742\) −1.01681 + 1.01681i −0.0373283 + 0.0373283i
\(743\) 3.86986 + 3.86986i 0.141971 + 0.141971i 0.774520 0.632549i \(-0.217991\pi\)
−0.632549 + 0.774520i \(0.717991\pi\)
\(744\) 12.1240 14.0154i 0.444487 0.513830i
\(745\) −7.62084 40.4169i −0.279206 1.48076i
\(746\) 15.5830 0.570534
\(747\) −26.9914 20.1354i −0.987565 0.736717i
\(748\) −10.5867 + 10.5867i −0.387088 + 0.387088i
\(749\) 24.5404i 0.896685i
\(750\) −1.25786 + 8.09996i −0.0459307 + 0.295769i
\(751\) −23.4223 −0.854693 −0.427347 0.904088i \(-0.640552\pi\)
−0.427347 + 0.904088i \(0.640552\pi\)
\(752\) −16.8377 + 16.8377i −0.614007 + 0.614007i
\(753\) −0.954350 13.1891i −0.0347784 0.480638i
\(754\) 0.957919 + 11.1469i 0.0348854 + 0.405945i
\(755\) 2.56436 + 13.6000i 0.0933265 + 0.494954i
\(756\) 7.03303 11.0040i 0.255789 0.400211i
\(757\) −20.8912 + 20.8912i −0.759305 + 0.759305i −0.976196 0.216891i \(-0.930408\pi\)
0.216891 + 0.976196i \(0.430408\pi\)
\(758\) −8.57596 + 8.57596i −0.311493 + 0.311493i
\(759\) −1.99023 + 2.30072i −0.0722409 + 0.0835109i
\(760\) −18.4860 12.6206i −0.670556 0.457798i
\(761\) 15.8155 0.573310 0.286655 0.958034i \(-0.407457\pi\)
0.286655 + 0.958034i \(0.407457\pi\)
\(762\) −0.145455 2.01019i −0.00526929 0.0728216i
\(763\) −16.7808 16.7808i −0.607506 0.607506i
\(764\) −38.8601 −1.40591
\(765\) −27.7941 13.5829i −1.00490 0.491090i
\(766\) 1.70458 0.0615888
\(767\) −25.2399 21.2452i −0.911361 0.767119i
\(768\) 6.06806 0.439078i 0.218962 0.0158439i
\(769\) −45.2098 −1.63031 −0.815153 0.579245i \(-0.803347\pi\)
−0.815153 + 0.579245i \(0.803347\pi\)
\(770\) −2.28916 + 0.431634i −0.0824956 + 0.0155550i
\(771\) −31.2071 26.9956i −1.12390 0.972222i
\(772\) 20.3212 + 20.3212i 0.731375 + 0.731375i
\(773\) 7.73848 + 7.73848i 0.278334 + 0.278334i 0.832444 0.554110i \(-0.186941\pi\)
−0.554110 + 0.832444i \(0.686941\pi\)
\(774\) 3.16641 0.460648i 0.113814 0.0165576i
\(775\) 12.0455 + 30.8057i 0.432685 + 1.10657i
\(776\) 15.8352i 0.568449i
\(777\) 1.27210 + 17.5804i 0.0456362 + 0.630692i
\(778\) 5.90671 5.90671i 0.211766 0.211766i
\(779\) −39.9633 −1.43184
\(780\) −22.9930 10.8548i −0.823280 0.388663i
\(781\) −9.80227 −0.350753
\(782\) 1.35967 1.35967i 0.0486216 0.0486216i
\(783\) −37.1999 + 8.18977i −1.32941 + 0.292678i
\(784\) 15.0653i 0.538047i
\(785\) −1.10055 + 1.61202i −0.0392803 + 0.0575355i
\(786\) 1.28199 + 1.10898i 0.0457270 + 0.0395560i
\(787\) 5.17131 + 5.17131i 0.184337 + 0.184337i 0.793243 0.608905i \(-0.208391\pi\)
−0.608905 + 0.793243i \(0.708391\pi\)
\(788\) −23.8016 23.8016i −0.847896 0.847896i
\(789\) 5.20117 6.01259i 0.185167 0.214054i
\(790\) −8.04296 5.49105i −0.286156 0.195363i
\(791\) −7.23252 −0.257159
\(792\) 6.93429 + 5.17294i 0.246399 + 0.183812i
\(793\) −2.35675 + 2.79989i −0.0836907 + 0.0994271i
\(794\) −3.08605 −0.109520
\(795\) −4.79235 + 8.23961i −0.169967 + 0.292229i
\(796\) −21.5851 −0.765065
\(797\) 16.4636 + 16.4636i 0.583171 + 0.583171i 0.935773 0.352602i \(-0.114703\pi\)
−0.352602 + 0.935773i \(0.614703\pi\)
\(798\) 6.24721 0.452041i 0.221149 0.0160021i
\(799\) −37.1357 −1.31376
\(800\) 8.99627 20.5488i 0.318066 0.726509i
\(801\) 1.61994 + 11.1352i 0.0572377 + 0.393442i
\(802\) 6.42888 6.42888i 0.227012 0.227012i
\(803\) −2.40897 + 2.40897i −0.0850108 + 0.0850108i
\(804\) 10.8816 12.5792i 0.383765 0.443635i
\(805\) −2.98766 + 0.563342i −0.105301 + 0.0198552i
\(806\) 10.0594 0.864465i 0.354327 0.0304495i
\(807\) 22.4804 1.62665i 0.791346 0.0572609i
\(808\) 10.3593 10.3593i 0.364439 0.364439i
\(809\) 21.0782 0.741070 0.370535 0.928818i \(-0.379174\pi\)
0.370535 + 0.928818i \(0.379174\pi\)
\(810\) −2.59948 + 8.11232i −0.0913364 + 0.285038i
\(811\) 14.9877i 0.526288i −0.964757 0.263144i \(-0.915241\pi\)
0.964757 0.263144i \(-0.0847594\pi\)
\(812\) −13.0277 + 13.0277i −0.457182 + 0.457182i
\(813\) −1.52251 21.0411i −0.0533968 0.737944i
\(814\) −5.56445 −0.195034
\(815\) 2.50006 3.66194i 0.0875733 0.128272i
\(816\) 17.8632 + 15.4525i 0.625338 + 0.540947i
\(817\) −11.0275 11.0275i −0.385803 0.385803i
\(818\) −3.80751 + 3.80751i −0.133127 + 0.133127i
\(819\) 14.5366 3.40657i 0.507948 0.119035i
\(820\) −4.87111 25.8338i −0.170107 0.902156i
\(821\) 14.4263 0.503480 0.251740 0.967795i \(-0.418997\pi\)
0.251740 + 0.967795i \(0.418997\pi\)
\(822\) −0.694479 9.59770i −0.0242227 0.334758i
\(823\) 1.29844 + 1.29844i 0.0452607 + 0.0452607i 0.729375 0.684114i \(-0.239811\pi\)
−0.684114 + 0.729375i \(0.739811\pi\)
\(824\) 18.2678i 0.636387i
\(825\) −13.9378 + 6.64645i −0.485253 + 0.231400i
\(826\) 5.34620i 0.186018i
\(827\) −18.9853 + 18.9853i −0.660182 + 0.660182i −0.955423 0.295241i \(-0.904600\pi\)
0.295241 + 0.955423i \(0.404600\pi\)
\(828\) 4.31289 + 3.21739i 0.149883 + 0.111812i
\(829\) 38.1543i 1.32515i −0.748994 0.662576i \(-0.769463\pi\)
0.748994 0.662576i \(-0.230537\pi\)
\(830\) 10.4405 1.96862i 0.362395 0.0683317i
\(831\) 0.196576 0.227244i 0.00681916 0.00788299i
\(832\) 11.0752 + 9.32232i 0.383964 + 0.323193i
\(833\) −16.6134 + 16.6134i −0.575619 + 0.575619i
\(834\) 3.56187 + 3.08118i 0.123337 + 0.106693i
\(835\) −10.3945 + 15.2253i −0.359718 + 0.526893i
\(836\) 20.0939i 0.694963i
\(837\) 7.39077 + 33.5706i 0.255463 + 1.16037i
\(838\) −5.30771 + 5.30771i −0.183352 + 0.183352i
\(839\) 46.7269i 1.61319i 0.591104 + 0.806595i \(0.298692\pi\)
−0.591104 + 0.806595i \(0.701308\pi\)
\(840\) 2.21106 + 8.35865i 0.0762889 + 0.288401i
\(841\) 24.7371 0.853003
\(842\) 5.33585 + 5.33585i 0.183885 + 0.183885i
\(843\) 48.5826 3.51538i 1.67327 0.121076i
\(844\) 12.4325i 0.427944i
\(845\) −10.1809 27.2277i −0.350232 0.936663i
\(846\) 1.47217 + 10.1194i 0.0506142 + 0.347913i
\(847\) 7.63335 + 7.63335i 0.262285 + 0.262285i
\(848\) 5.14609 5.14609i 0.176717 0.176717i
\(849\) 8.28865 + 7.17007i 0.284466 + 0.246076i
\(850\) 9.09010 3.55435i 0.311788 0.121913i
\(851\) −7.26237 −0.248951
\(852\) 1.25128 + 17.2927i 0.0428682 + 0.592439i
\(853\) 16.6339 16.6339i 0.569533 0.569533i −0.362464 0.931998i \(-0.618065\pi\)
0.931998 + 0.362464i \(0.118065\pi\)
\(854\) 0.593059 0.0202941
\(855\) 39.2674 13.4867i 1.34292 0.461234i
\(856\) 28.7542i 0.982800i
\(857\) −22.0097 22.0097i −0.751837 0.751837i 0.222985 0.974822i \(-0.428420\pi\)
−0.974822 + 0.222985i \(0.928420\pi\)
\(858\) 0.741425 + 4.65469i 0.0253118 + 0.158909i
\(859\) 0.648432i 0.0221242i 0.999939 + 0.0110621i \(0.00352125\pi\)
−0.999939 + 0.0110621i \(0.996479\pi\)
\(860\) 5.78445 8.47272i 0.197248 0.288917i
\(861\) 11.6749 + 10.0993i 0.397878 + 0.344183i
\(862\) 0.0153516 0.0153516i 0.000522877 0.000522877i
\(863\) 32.6225 + 32.6225i 1.11048 + 1.11048i 0.993085 + 0.117397i \(0.0374549\pi\)
0.117397 + 0.993085i \(0.462545\pi\)
\(864\) 12.5543 19.6426i 0.427104 0.668254i
\(865\) −27.5522 + 40.3569i −0.936804 + 1.37218i
\(866\) −3.43557 −0.116745
\(867\) 0.533358 + 7.37101i 0.0181138 + 0.250333i
\(868\) 11.7567 + 11.7567i 0.399049 + 0.399049i
\(869\) 18.3454i 0.622326i
\(870\) 6.04216 10.3884i 0.204848 0.352201i
\(871\) 18.9456 1.62811i 0.641948 0.0551665i
\(872\) −19.6623 19.6623i −0.665849 0.665849i
\(873\) 23.5434 + 17.5632i 0.796823 + 0.594425i
\(874\) 2.58070i 0.0872934i
\(875\) −15.0389 3.46254i −0.508408 0.117055i
\(876\) 4.55731 + 3.94229i 0.153977 + 0.133198i
\(877\) 12.0455 + 12.0455i 0.406746 + 0.406746i 0.880602 0.473856i \(-0.157138\pi\)
−0.473856 + 0.880602i \(0.657138\pi\)
\(878\) 10.6862 + 10.6862i 0.360641 + 0.360641i
\(879\) −6.64241 5.74600i −0.224043 0.193808i
\(880\) 11.5855 2.18451i 0.390546 0.0736397i
\(881\) 17.6186i 0.593585i −0.954942 0.296792i \(-0.904083\pi\)
0.954942 0.296792i \(-0.0959169\pi\)
\(882\) 5.18572 + 3.86852i 0.174612 + 0.130260i
\(883\) 31.1721 + 31.1721i 1.04902 + 1.04902i 0.998735 + 0.0502889i \(0.0160142\pi\)
0.0502889 + 0.998735i \(0.483986\pi\)
\(884\) 2.59220 + 30.1642i 0.0871851 + 1.01453i
\(885\) 9.06252 + 34.2598i 0.304633 + 1.15163i
\(886\) 9.18312i 0.308513i
\(887\) −12.6195 12.6195i −0.423721 0.423721i 0.462762 0.886483i \(-0.346858\pi\)
−0.886483 + 0.462762i \(0.846858\pi\)
\(888\) 1.49053 + 20.5991i 0.0500189 + 0.691261i
\(889\) 3.79443 0.127261
\(890\) −2.93203 2.00174i −0.0982820 0.0670985i
\(891\) −15.3820 + 4.57231i −0.515318 + 0.153178i
\(892\) −12.8480 12.8480i −0.430184 0.430184i
\(893\) 35.2424 35.2424i 1.17934 1.17934i
\(894\) 10.1990 + 8.82262i 0.341106 + 0.295073i
\(895\) 27.5522 5.19514i 0.920970 0.173654i
\(896\) 14.7311i 0.492130i
\(897\) 0.967660 + 6.07501i 0.0323092 + 0.202839i
\(898\) 9.47128 + 9.47128i 0.316061 + 0.316061i
\(899\) 48.4945i 1.61738i
\(900\) 13.5046 + 23.7401i 0.450152 + 0.791335i
\(901\) 11.3497 0.378115
\(902\) −3.44593 + 3.44593i −0.114737 + 0.114737i
\(903\) 0.434759 + 6.00837i 0.0144679 + 0.199946i
\(904\) −8.47443 −0.281855
\(905\) −34.3689 + 6.48045i −1.14246 + 0.215418i
\(906\) −3.43189 2.96875i −0.114017 0.0986301i
\(907\) −15.3949 + 15.3949i −0.511178 + 0.511178i −0.914887 0.403710i \(-0.867721\pi\)
0.403710 + 0.914887i \(0.367721\pi\)
\(908\) 18.1410 + 18.1410i 0.602029 + 0.602029i
\(909\) 3.91220 + 26.8918i 0.129760 + 0.891945i
\(910\) −2.31318 + 4.10353i −0.0766813 + 0.136031i
\(911\) 26.3116i 0.871742i −0.900009 0.435871i \(-0.856440\pi\)
0.900009 0.435871i \(-0.143560\pi\)
\(912\) −31.6172 + 2.28779i −1.04695 + 0.0757561i
\(913\) 14.1522 + 14.1522i 0.468368 + 0.468368i
\(914\) −3.26571 −0.108020
\(915\) 3.80047 1.00532i 0.125640 0.0332347i
\(916\) 12.0288i 0.397442i
\(917\) −2.25659 + 2.25659i −0.0745192 + 0.0745192i
\(918\) 9.90597 2.18086i 0.326946 0.0719790i
\(919\) 7.78633i 0.256847i 0.991719 + 0.128424i \(0.0409917\pi\)
−0.991719 + 0.128424i \(0.959008\pi\)
\(920\) −3.50068 + 0.660074i −0.115414 + 0.0217620i
\(921\) −23.9674 20.7329i −0.789753 0.683174i
\(922\) 3.89589 3.89589i 0.128304 0.128304i
\(923\) −12.7645 + 15.1646i −0.420149 + 0.499151i
\(924\) −5.07802 + 5.87022i −0.167055 + 0.193116i
\(925\) −33.7688 14.7840i −1.11031 0.486095i
\(926\) 13.1177i 0.431073i
\(927\) 27.1601 + 20.2613i 0.892056 + 0.665468i
\(928\) −23.2550 + 23.2550i −0.763382 + 0.763382i
\(929\) 39.7057i 1.30270i −0.758777 0.651350i \(-0.774203\pi\)
0.758777 0.651350i \(-0.225797\pi\)
\(930\) −9.37495 5.45268i −0.307417 0.178801i
\(931\) 31.5327i 1.03344i
\(932\) 1.55118 + 1.55118i 0.0508107 + 0.0508107i
\(933\) −4.14839 57.3308i −0.135812 1.87693i
\(934\) −5.54779 −0.181529
\(935\) 15.1849 + 10.3669i 0.496599 + 0.339035i
\(936\) 17.0327 3.99153i 0.556730 0.130467i
\(937\) −10.9400 + 10.9400i −0.357393 + 0.357393i −0.862851 0.505458i \(-0.831324\pi\)
0.505458 + 0.862851i \(0.331324\pi\)
\(938\) −2.17891 2.17891i −0.0711440 0.0711440i
\(939\) 19.6612 + 17.0079i 0.641620 + 0.555032i
\(940\) 27.0777 + 18.4863i 0.883176 + 0.602957i
\(941\) 17.6417 0.575103 0.287552 0.957765i \(-0.407159\pi\)
0.287552 + 0.957765i \(0.407159\pi\)
\(942\) −0.0461879 0.638317i −0.00150488 0.0207975i
\(943\) −4.49741 + 4.49741i −0.146456 + 0.146456i
\(944\) 27.0571i 0.880635i
\(945\) −14.8798 5.98346i −0.484041 0.194642i
\(946\) −1.90174 −0.0618309
\(947\) 4.36211 4.36211i 0.141750 0.141750i −0.632671 0.774421i \(-0.718041\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(948\) −32.3642 + 2.34184i −1.05114 + 0.0760593i
\(949\) 0.589847 + 6.86378i 0.0191473 + 0.222808i
\(950\) −5.25352 + 11.9998i −0.170447 + 0.389325i
\(951\) −31.8672 + 36.8387i −1.03337 + 1.19458i
\(952\) 7.27969 7.27969i 0.235936 0.235936i
\(953\) 3.66862 3.66862i 0.118838 0.118838i −0.645187 0.764025i \(-0.723220\pi\)
0.764025 + 0.645187i \(0.223220\pi\)
\(954\) −0.449938 3.09279i −0.0145673 0.100133i
\(955\) 8.84250 + 46.8959i 0.286137 + 1.51752i
\(956\) 2.47375 0.0800068
\(957\) 22.5799 1.63385i 0.729903 0.0528150i
\(958\) 2.82346 + 2.82346i 0.0912218 + 0.0912218i
\(959\) 18.1166 0.585015
\(960\) −3.97661 15.0331i −0.128344 0.485191i
\(961\) −12.7634 −0.411723
\(962\) −7.24604 + 8.60852i −0.233622 + 0.277550i
\(963\) 42.7512 + 31.8922i 1.37764 + 1.02771i
\(964\) 6.81698 0.219560
\(965\) 19.8993 29.1474i 0.640583 0.938288i
\(966\) 0.652179 0.753923i 0.0209835 0.0242571i
\(967\) 20.9698 + 20.9698i 0.674344 + 0.674344i 0.958714 0.284370i \(-0.0917846\pi\)
−0.284370 + 0.958714i \(0.591785\pi\)
\(968\) 8.94409 + 8.94409i 0.287474 + 0.287474i
\(969\) −37.3889 32.3432i −1.20110 1.03901i
\(970\) −9.10677 + 1.71713i −0.292401 + 0.0551339i
\(971\) 47.6286i 1.52847i 0.644936 + 0.764237i \(0.276884\pi\)
−0.644936 + 0.764237i \(0.723116\pi\)
\(972\) 10.0298 + 26.5527i 0.321707 + 0.851677i
\(973\) −6.26970 + 6.26970i −0.200997 + 0.200997i
\(974\) 15.5005 0.496667
\(975\) −7.86742 + 30.2176i −0.251959 + 0.967738i
\(976\) −3.00148 −0.0960750
\(977\) −23.4308 + 23.4308i −0.749619 + 0.749619i −0.974408 0.224789i \(-0.927831\pi\)
0.224789 + 0.974408i \(0.427831\pi\)
\(978\) 0.104922 + 1.45003i 0.00335505 + 0.0463668i
\(979\) 6.68777i 0.213742i
\(980\) 20.3839 3.84351i 0.651141 0.122776i
\(981\) 51.0415 7.42549i 1.62963 0.237078i
\(982\) −4.94590 4.94590i −0.157830 0.157830i
\(983\) 6.58757 + 6.58757i 0.210111 + 0.210111i 0.804315 0.594204i \(-0.202533\pi\)
−0.594204 + 0.804315i \(0.702533\pi\)
\(984\) 13.6796 + 11.8335i 0.436089 + 0.377238i
\(985\) −23.3075 + 34.1395i −0.742639 + 1.08777i
\(986\) −14.3097 −0.455713
\(987\) −19.2019 + 1.38943i −0.611204 + 0.0442260i
\(988\) −31.0864 26.1663i −0.988990 0.832462i
\(989\) −2.48203 −0.0789240
\(990\) 2.22301 4.54884i 0.0706517 0.144572i
\(991\) 18.9007 0.600401 0.300201 0.953876i \(-0.402946\pi\)
0.300201 + 0.953876i \(0.402946\pi\)
\(992\) 20.9862 + 20.9862i 0.666313 + 0.666313i
\(993\) −1.34820 18.6322i −0.0427839 0.591274i
\(994\) 3.21210 0.101882
\(995\) 4.91163 + 26.0487i 0.155709 + 0.825799i
\(996\) 23.1600 26.7732i 0.733854 0.848340i
\(997\) −13.8173 + 13.8173i −0.437598 + 0.437598i −0.891203 0.453605i \(-0.850138\pi\)
0.453605 + 0.891203i \(0.350138\pi\)
\(998\) 9.74227 9.74227i 0.308386 0.308386i
\(999\) −32.2796 20.6310i −1.02128 0.652736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.s.b.38.8 yes 32
3.2 odd 2 inner 195.2.s.b.38.9 yes 32
5.2 odd 4 inner 195.2.s.b.77.7 yes 32
5.3 odd 4 975.2.s.e.857.10 32
5.4 even 2 975.2.s.e.818.9 32
13.12 even 2 inner 195.2.s.b.38.10 yes 32
15.2 even 4 inner 195.2.s.b.77.10 yes 32
15.8 even 4 975.2.s.e.857.7 32
15.14 odd 2 975.2.s.e.818.8 32
39.38 odd 2 inner 195.2.s.b.38.7 32
65.12 odd 4 inner 195.2.s.b.77.9 yes 32
65.38 odd 4 975.2.s.e.857.8 32
65.64 even 2 975.2.s.e.818.7 32
195.38 even 4 975.2.s.e.857.9 32
195.77 even 4 inner 195.2.s.b.77.8 yes 32
195.194 odd 2 975.2.s.e.818.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.s.b.38.7 32 39.38 odd 2 inner
195.2.s.b.38.8 yes 32 1.1 even 1 trivial
195.2.s.b.38.9 yes 32 3.2 odd 2 inner
195.2.s.b.38.10 yes 32 13.12 even 2 inner
195.2.s.b.77.7 yes 32 5.2 odd 4 inner
195.2.s.b.77.8 yes 32 195.77 even 4 inner
195.2.s.b.77.9 yes 32 65.12 odd 4 inner
195.2.s.b.77.10 yes 32 15.2 even 4 inner
975.2.s.e.818.7 32 65.64 even 2
975.2.s.e.818.8 32 15.14 odd 2
975.2.s.e.818.9 32 5.4 even 2
975.2.s.e.818.10 32 195.194 odd 2
975.2.s.e.857.7 32 15.8 even 4
975.2.s.e.857.8 32 65.38 odd 4
975.2.s.e.857.9 32 195.38 even 4
975.2.s.e.857.10 32 5.3 odd 4