Properties

Label 195.2.s.b.77.4
Level $195$
Weight $2$
Character 195.77
Analytic conductor $1.557$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [195,2,Mod(38,195)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(195, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("195.38");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.4
Character \(\chi\) \(=\) 195.77
Dual form 195.2.s.b.38.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25684 - 1.25684i) q^{2} +(1.36721 + 1.06336i) q^{3} +1.15927i q^{4} +(-0.261006 + 2.22078i) q^{5} +(-0.381882 - 3.05483i) q^{6} +(1.60133 - 1.60133i) q^{7} +(-1.05665 + 1.05665i) q^{8} +(0.738515 + 2.90768i) q^{9} +(3.11920 - 2.46312i) q^{10} +2.48179 q^{11} +(-1.23273 + 1.58497i) q^{12} +(0.624771 + 3.55101i) q^{13} -4.02523 q^{14} +(-2.71835 + 2.75873i) q^{15} +4.97463 q^{16} +(1.27410 - 1.27410i) q^{17} +(2.72628 - 4.58267i) q^{18} +1.93388 q^{19} +(-2.57450 - 0.302577i) q^{20} +(3.89216 - 0.486556i) q^{21} +(-3.11920 - 3.11920i) q^{22} +(-5.56883 - 5.56883i) q^{23} +(-2.56827 + 0.321058i) q^{24} +(-4.86375 - 1.15927i) q^{25} +(3.67780 - 5.24827i) q^{26} +(-2.08222 + 4.76071i) q^{27} +(1.85639 + 1.85639i) q^{28} +9.66063 q^{29} +(6.88379 - 0.0507495i) q^{30} -6.61976i q^{31} +(-4.13899 - 4.13899i) q^{32} +(3.39312 + 2.63904i) q^{33} -3.20267 q^{34} +(3.13826 + 3.97417i) q^{35} +(-3.37080 + 0.856142i) q^{36} +(-3.53521 + 3.53521i) q^{37} +(-2.43057 - 2.43057i) q^{38} +(-2.92182 + 5.51933i) q^{39} +(-2.07081 - 2.62239i) q^{40} -7.35052 q^{41} +(-5.50332 - 4.28028i) q^{42} +(-3.46312 + 3.46312i) q^{43} +2.87707i q^{44} +(-6.65008 + 0.881161i) q^{45} +13.9982i q^{46} +(-4.55353 - 4.55353i) q^{47} +(6.80136 + 5.28984i) q^{48} +1.87146i q^{49} +(4.65592 + 7.56996i) q^{50} +(3.09679 - 0.387128i) q^{51} +(-4.11659 + 0.724281i) q^{52} +(-3.97417 - 3.97417i) q^{53} +(8.60044 - 3.36643i) q^{54} +(-0.647761 + 5.51151i) q^{55} +3.38411i q^{56} +(2.64402 + 2.05642i) q^{57} +(-12.1418 - 12.1418i) q^{58} +2.79393i q^{59} +(-3.19812 - 3.15131i) q^{60} -2.54520 q^{61} +(-8.31996 + 8.31996i) q^{62} +(5.83877 + 3.47355i) q^{63} +0.454797i q^{64} +(-8.04909 + 0.460648i) q^{65} +(-0.947751 - 7.58144i) q^{66} +(1.34628 - 1.34628i) q^{67} +(1.47703 + 1.47703i) q^{68} +(-1.69206 - 13.5354i) q^{69} +(1.05061 - 8.93916i) q^{70} +6.58676 q^{71} +(-3.85277 - 2.29206i) q^{72} +(-2.82950 - 2.82950i) q^{73} +8.88637 q^{74} +(-5.41703 - 6.75691i) q^{75} +2.24190i q^{76} +(3.97417 - 3.97417i) q^{77} +(10.6091 - 3.26464i) q^{78} -6.48553i q^{79} +(-1.29841 + 11.0476i) q^{80} +(-7.90919 + 4.29473i) q^{81} +(9.23840 + 9.23840i) q^{82} +(3.17953 - 3.17953i) q^{83} +(0.564052 + 4.51208i) q^{84} +(2.49695 + 3.16204i) q^{85} +8.70515 q^{86} +(13.2081 + 10.2728i) q^{87} +(-2.62239 + 2.62239i) q^{88} -7.47217i q^{89} +(9.46554 + 7.25059i) q^{90} +(6.68682 + 4.68588i) q^{91} +(6.45580 - 6.45580i) q^{92} +(7.03922 - 9.05059i) q^{93} +11.4461i q^{94} +(-0.504754 + 4.29473i) q^{95} +(-1.25761 - 10.0601i) q^{96} +(9.27171 - 9.27171i) q^{97} +(2.35212 - 2.35212i) q^{98} +(1.83284 + 7.21624i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{3} - 24 q^{10} - 24 q^{12} + 24 q^{16} + 24 q^{22} - 8 q^{25} - 16 q^{27} + 36 q^{30} - 8 q^{36} + 16 q^{40} + 12 q^{42} - 64 q^{43} - 20 q^{48} + 16 q^{51} - 72 q^{52} - 80 q^{55} + 8 q^{61}+ \cdots - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25684 1.25684i −0.888717 0.888717i 0.105683 0.994400i \(-0.466297\pi\)
−0.994400 + 0.105683i \(0.966297\pi\)
\(3\) 1.36721 + 1.06336i 0.789358 + 0.613933i
\(4\) 1.15927i 0.579637i
\(5\) −0.261006 + 2.22078i −0.116725 + 0.993164i
\(6\) −0.381882 3.05483i −0.155903 1.24713i
\(7\) 1.60133 1.60133i 0.605247 0.605247i −0.336453 0.941700i \(-0.609227\pi\)
0.941700 + 0.336453i \(0.109227\pi\)
\(8\) −1.05665 + 1.05665i −0.373584 + 0.373584i
\(9\) 0.738515 + 2.90768i 0.246172 + 0.969226i
\(10\) 3.11920 2.46312i 0.986378 0.778906i
\(11\) 2.48179 0.748287 0.374144 0.927371i \(-0.377937\pi\)
0.374144 + 0.927371i \(0.377937\pi\)
\(12\) −1.23273 + 1.58497i −0.355859 + 0.457541i
\(13\) 0.624771 + 3.55101i 0.173280 + 0.984873i
\(14\) −4.02523 −1.07579
\(15\) −2.71835 + 2.75873i −0.701875 + 0.712300i
\(16\) 4.97463 1.24366
\(17\) 1.27410 1.27410i 0.309014 0.309014i −0.535513 0.844527i \(-0.679882\pi\)
0.844527 + 0.535513i \(0.179882\pi\)
\(18\) 2.72628 4.58267i 0.642591 1.08015i
\(19\) 1.93388 0.443663 0.221831 0.975085i \(-0.428797\pi\)
0.221831 + 0.975085i \(0.428797\pi\)
\(20\) −2.57450 0.302577i −0.575675 0.0676583i
\(21\) 3.89216 0.486556i 0.849338 0.106175i
\(22\) −3.11920 3.11920i −0.665016 0.665016i
\(23\) −5.56883 5.56883i −1.16118 1.16118i −0.984217 0.176964i \(-0.943372\pi\)
−0.176964 0.984217i \(-0.556628\pi\)
\(24\) −2.56827 + 0.321058i −0.524247 + 0.0655358i
\(25\) −4.86375 1.15927i −0.972750 0.231855i
\(26\) 3.67780 5.24827i 0.721276 1.02927i
\(27\) −2.08222 + 4.76071i −0.400723 + 0.916199i
\(28\) 1.85639 + 1.85639i 0.350824 + 0.350824i
\(29\) 9.66063 1.79393 0.896967 0.442098i \(-0.145766\pi\)
0.896967 + 0.442098i \(0.145766\pi\)
\(30\) 6.88379 0.0507495i 1.25680 0.00926554i
\(31\) 6.61976i 1.18894i −0.804116 0.594472i \(-0.797361\pi\)
0.804116 0.594472i \(-0.202639\pi\)
\(32\) −4.13899 4.13899i −0.731677 0.731677i
\(33\) 3.39312 + 2.63904i 0.590667 + 0.459399i
\(34\) −3.20267 −0.549253
\(35\) 3.13826 + 3.97417i 0.530462 + 0.671758i
\(36\) −3.37080 + 0.856142i −0.561800 + 0.142690i
\(37\) −3.53521 + 3.53521i −0.581186 + 0.581186i −0.935229 0.354043i \(-0.884807\pi\)
0.354043 + 0.935229i \(0.384807\pi\)
\(38\) −2.43057 2.43057i −0.394291 0.394291i
\(39\) −2.92182 + 5.51933i −0.467866 + 0.883800i
\(40\) −2.07081 2.62239i −0.327423 0.414637i
\(41\) −7.35052 −1.14796 −0.573979 0.818870i \(-0.694601\pi\)
−0.573979 + 0.818870i \(0.694601\pi\)
\(42\) −5.50332 4.28028i −0.849181 0.660462i
\(43\) −3.46312 + 3.46312i −0.528121 + 0.528121i −0.920012 0.391891i \(-0.871821\pi\)
0.391891 + 0.920012i \(0.371821\pi\)
\(44\) 2.87707i 0.433735i
\(45\) −6.65008 + 0.881161i −0.991335 + 0.131356i
\(46\) 13.9982i 2.06392i
\(47\) −4.55353 4.55353i −0.664200 0.664200i 0.292167 0.956367i \(-0.405624\pi\)
−0.956367 + 0.292167i \(0.905624\pi\)
\(48\) 6.80136 + 5.28984i 0.981691 + 0.763523i
\(49\) 1.87146i 0.267351i
\(50\) 4.65592 + 7.56996i 0.658447 + 1.07055i
\(51\) 3.09679 0.387128i 0.433637 0.0542087i
\(52\) −4.11659 + 0.724281i −0.570869 + 0.100440i
\(53\) −3.97417 3.97417i −0.545894 0.545894i 0.379356 0.925251i \(-0.376145\pi\)
−0.925251 + 0.379356i \(0.876145\pi\)
\(54\) 8.60044 3.36643i 1.17037 0.458113i
\(55\) −0.647761 + 5.51151i −0.0873441 + 0.743172i
\(56\) 3.38411i 0.452221i
\(57\) 2.64402 + 2.05642i 0.350209 + 0.272379i
\(58\) −12.1418 12.1418i −1.59430 1.59430i
\(59\) 2.79393i 0.363739i 0.983323 + 0.181869i \(0.0582148\pi\)
−0.983323 + 0.181869i \(0.941785\pi\)
\(60\) −3.19812 3.15131i −0.412876 0.406833i
\(61\) −2.54520 −0.325880 −0.162940 0.986636i \(-0.552098\pi\)
−0.162940 + 0.986636i \(0.552098\pi\)
\(62\) −8.31996 + 8.31996i −1.05664 + 1.05664i
\(63\) 5.83877 + 3.47355i 0.735616 + 0.437627i
\(64\) 0.454797i 0.0568496i
\(65\) −8.04909 + 0.460648i −0.998366 + 0.0571363i
\(66\) −0.947751 7.58144i −0.116660 0.933211i
\(67\) 1.34628 1.34628i 0.164475 0.164475i −0.620071 0.784546i \(-0.712896\pi\)
0.784546 + 0.620071i \(0.212896\pi\)
\(68\) 1.47703 + 1.47703i 0.179116 + 0.179116i
\(69\) −1.69206 13.5354i −0.203700 1.62948i
\(70\) 1.05061 8.93916i 0.125572 1.06843i
\(71\) 6.58676 0.781704 0.390852 0.920453i \(-0.372180\pi\)
0.390852 + 0.920453i \(0.372180\pi\)
\(72\) −3.85277 2.29206i −0.454053 0.270121i
\(73\) −2.82950 2.82950i −0.331168 0.331168i 0.521862 0.853030i \(-0.325238\pi\)
−0.853030 + 0.521862i \(0.825238\pi\)
\(74\) 8.88637 1.03302
\(75\) −5.41703 6.75691i −0.625505 0.780220i
\(76\) 2.24190i 0.257163i
\(77\) 3.97417 3.97417i 0.452899 0.452899i
\(78\) 10.6091 3.26464i 1.20125 0.369647i
\(79\) 6.48553i 0.729679i −0.931070 0.364840i \(-0.881124\pi\)
0.931070 0.364840i \(-0.118876\pi\)
\(80\) −1.29841 + 11.0476i −0.145166 + 1.23516i
\(81\) −7.90919 + 4.29473i −0.878799 + 0.477192i
\(82\) 9.23840 + 9.23840i 1.02021 + 1.02021i
\(83\) 3.17953 3.17953i 0.348999 0.348999i −0.510738 0.859736i \(-0.670628\pi\)
0.859736 + 0.510738i \(0.170628\pi\)
\(84\) 0.564052 + 4.51208i 0.0615431 + 0.492308i
\(85\) 2.49695 + 3.16204i 0.270832 + 0.342972i
\(86\) 8.70515 0.938700
\(87\) 13.2081 + 10.2728i 1.41606 + 1.10136i
\(88\) −2.62239 + 2.62239i −0.279548 + 0.279548i
\(89\) 7.47217i 0.792049i −0.918240 0.396024i \(-0.870390\pi\)
0.918240 0.396024i \(-0.129610\pi\)
\(90\) 9.46554 + 7.25059i 0.997755 + 0.764279i
\(91\) 6.68682 + 4.68588i 0.700969 + 0.491214i
\(92\) 6.45580 6.45580i 0.673064 0.673064i
\(93\) 7.03922 9.05059i 0.729933 0.938503i
\(94\) 11.4461i 1.18057i
\(95\) −0.504754 + 4.29473i −0.0517867 + 0.440630i
\(96\) −1.25761 10.0601i −0.128354 1.02676i
\(97\) 9.27171 9.27171i 0.941399 0.941399i −0.0569765 0.998376i \(-0.518146\pi\)
0.998376 + 0.0569765i \(0.0181460\pi\)
\(98\) 2.35212 2.35212i 0.237600 0.237600i
\(99\) 1.83284 + 7.21624i 0.184207 + 0.725260i
\(100\) 1.34392 5.63842i 0.134392 0.563842i
\(101\) 10.3634i 1.03120i −0.856830 0.515599i \(-0.827570\pi\)
0.856830 0.515599i \(-0.172430\pi\)
\(102\) −4.37871 3.40560i −0.433557 0.337205i
\(103\) 7.07081 7.07081i 0.696707 0.696707i −0.266992 0.963699i \(-0.586030\pi\)
0.963699 + 0.266992i \(0.0860296\pi\)
\(104\) −4.41236 3.09202i −0.432667 0.303198i
\(105\) 0.0646598 + 8.77063i 0.00631015 + 0.855926i
\(106\) 9.98977i 0.970292i
\(107\) −2.61477 + 2.61477i −0.252779 + 0.252779i −0.822109 0.569330i \(-0.807203\pi\)
0.569330 + 0.822109i \(0.307203\pi\)
\(108\) −5.51897 2.41386i −0.531063 0.232274i
\(109\) −15.7300 −1.50666 −0.753331 0.657642i \(-0.771554\pi\)
−0.753331 + 0.657642i \(0.771554\pi\)
\(110\) 7.74120 6.11294i 0.738094 0.582846i
\(111\) −8.59259 + 1.07415i −0.815573 + 0.101954i
\(112\) 7.96605 7.96605i 0.752721 0.752721i
\(113\) 4.86114 + 4.86114i 0.457298 + 0.457298i 0.897768 0.440470i \(-0.145188\pi\)
−0.440470 + 0.897768i \(0.645188\pi\)
\(114\) −0.738515 5.90768i −0.0691683 0.553305i
\(115\) 13.8207 10.9137i 1.28878 1.01770i
\(116\) 11.1993i 1.03983i
\(117\) −9.86379 + 4.43911i −0.911908 + 0.410396i
\(118\) 3.51151 3.51151i 0.323261 0.323261i
\(119\) 4.08052i 0.374060i
\(120\) −0.0426664 5.78738i −0.00389489 0.528313i
\(121\) −4.84073 −0.440066
\(122\) 3.19890 + 3.19890i 0.289615 + 0.289615i
\(123\) −10.0497 7.81628i −0.906150 0.704770i
\(124\) 7.67412 0.689156
\(125\) 3.84396 10.4988i 0.343815 0.939038i
\(126\) −2.97269 11.7041i −0.264828 1.04268i
\(127\) 6.90382 + 6.90382i 0.612615 + 0.612615i 0.943627 0.331011i \(-0.107390\pi\)
−0.331011 + 0.943627i \(0.607390\pi\)
\(128\) −7.70637 + 7.70637i −0.681153 + 0.681153i
\(129\) −8.41736 + 1.05225i −0.741107 + 0.0926453i
\(130\) 10.6953 + 9.53743i 0.938044 + 0.836488i
\(131\) 15.9988i 1.39782i 0.715209 + 0.698911i \(0.246332\pi\)
−0.715209 + 0.698911i \(0.753668\pi\)
\(132\) −3.05938 + 3.93356i −0.266284 + 0.342372i
\(133\) 3.09679 3.09679i 0.268526 0.268526i
\(134\) −3.38411 −0.292343
\(135\) −10.0290 5.86672i −0.863162 0.504927i
\(136\) 2.69256i 0.230886i
\(137\) 6.47173 + 6.47173i 0.552917 + 0.552917i 0.927282 0.374364i \(-0.122139\pi\)
−0.374364 + 0.927282i \(0.622139\pi\)
\(138\) −14.8852 + 19.1385i −1.26711 + 1.62917i
\(139\) 11.9913i 1.01709i −0.861036 0.508543i \(-0.830184\pi\)
0.861036 0.508543i \(-0.169816\pi\)
\(140\) −4.60716 + 3.63810i −0.389376 + 0.307476i
\(141\) −1.38356 11.0677i −0.116517 0.932066i
\(142\) −8.27848 8.27848i −0.694714 0.694714i
\(143\) 1.55055 + 8.81285i 0.129664 + 0.736968i
\(144\) 3.67384 + 14.4646i 0.306153 + 1.20539i
\(145\) −2.52148 + 21.4542i −0.209397 + 1.78167i
\(146\) 7.11243i 0.588629i
\(147\) −1.99004 + 2.55867i −0.164136 + 0.211036i
\(148\) −4.09828 4.09828i −0.336877 0.336877i
\(149\) 3.57788i 0.293111i 0.989202 + 0.146556i \(0.0468187\pi\)
−0.989202 + 0.146556i \(0.953181\pi\)
\(150\) −1.68401 + 15.3006i −0.137498 + 1.24929i
\(151\) 1.93388i 0.157377i −0.996899 0.0786885i \(-0.974927\pi\)
0.996899 0.0786885i \(-0.0250732\pi\)
\(152\) −2.04344 + 2.04344i −0.165745 + 0.165745i
\(153\) 4.64561 + 2.76373i 0.375575 + 0.223434i
\(154\) −9.98977 −0.804998
\(155\) 14.7011 + 1.72780i 1.18082 + 0.138780i
\(156\) −6.39841 3.38719i −0.512283 0.271192i
\(157\) −9.89449 9.89449i −0.789666 0.789666i 0.191773 0.981439i \(-0.438576\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(158\) −8.15125 + 8.15125i −0.648479 + 0.648479i
\(159\) −1.20753 9.65951i −0.0957633 0.766049i
\(160\) 10.2721 8.11149i 0.812080 0.641270i
\(161\) −17.8351 −1.40560
\(162\) 15.3383 + 4.54279i 1.20509 + 0.356915i
\(163\) 3.08455 + 3.08455i 0.241600 + 0.241600i 0.817512 0.575912i \(-0.195353\pi\)
−0.575912 + 0.817512i \(0.695353\pi\)
\(164\) 8.52127i 0.665400i
\(165\) −6.74637 + 6.84658i −0.525204 + 0.533005i
\(166\) −7.99229 −0.620322
\(167\) 0.544208 + 0.544208i 0.0421121 + 0.0421121i 0.727849 0.685737i \(-0.240520\pi\)
−0.685737 + 0.727849i \(0.740520\pi\)
\(168\) −3.59854 + 4.62679i −0.277634 + 0.356964i
\(169\) −12.2193 + 4.43714i −0.939948 + 0.341318i
\(170\) 0.835915 7.11243i 0.0641117 0.545498i
\(171\) 1.42820 + 5.62310i 0.109217 + 0.430010i
\(172\) −4.01470 4.01470i −0.306118 0.306118i
\(173\) −1.92582 1.92582i −0.146417 0.146417i 0.630098 0.776515i \(-0.283015\pi\)
−0.776515 + 0.630098i \(0.783015\pi\)
\(174\) −3.68922 29.5116i −0.279679 2.23727i
\(175\) −9.64488 + 5.93211i −0.729084 + 0.448425i
\(176\) 12.3460 0.930614
\(177\) −2.97096 + 3.81988i −0.223311 + 0.287120i
\(178\) −9.39129 + 9.39129i −0.703907 + 0.703907i
\(179\) 18.3117 1.36868 0.684342 0.729161i \(-0.260090\pi\)
0.684342 + 0.729161i \(0.260090\pi\)
\(180\) −1.02151 7.70927i −0.0761386 0.574615i
\(181\) −2.27148 −0.168838 −0.0844189 0.996430i \(-0.526903\pi\)
−0.0844189 + 0.996430i \(0.526903\pi\)
\(182\) −2.51485 14.2936i −0.186413 1.05951i
\(183\) −3.47982 2.70648i −0.257236 0.200069i
\(184\) 11.7687 0.867597
\(185\) −6.92823 8.77366i −0.509374 0.645052i
\(186\) −20.2223 + 2.52797i −1.48277 + 0.185360i
\(187\) 3.16204 3.16204i 0.231232 0.231232i
\(188\) 5.27879 5.27879i 0.384995 0.384995i
\(189\) 4.28917 + 10.9578i 0.311991 + 0.797064i
\(190\) 6.03216 4.76338i 0.437619 0.345572i
\(191\) 16.8964i 1.22258i −0.791407 0.611289i \(-0.790651\pi\)
0.791407 0.611289i \(-0.209349\pi\)
\(192\) −0.483614 + 0.621802i −0.0349019 + 0.0448747i
\(193\) 14.4083 + 14.4083i 1.03713 + 1.03713i 0.999284 + 0.0378452i \(0.0120494\pi\)
0.0378452 + 0.999284i \(0.487951\pi\)
\(194\) −23.3060 −1.67328
\(195\) −11.4946 7.92931i −0.823146 0.567829i
\(196\) −2.16954 −0.154967
\(197\) 17.1945 + 17.1945i 1.22506 + 1.22506i 0.965810 + 0.259249i \(0.0834752\pi\)
0.259249 + 0.965810i \(0.416525\pi\)
\(198\) 6.76606 11.3732i 0.480843 0.808259i
\(199\) 18.0401i 1.27883i 0.768861 + 0.639416i \(0.220824\pi\)
−0.768861 + 0.639416i \(0.779176\pi\)
\(200\) 6.36426 3.91435i 0.450021 0.276787i
\(201\) 3.27224 0.409060i 0.230806 0.0288529i
\(202\) −13.0251 + 13.0251i −0.916443 + 0.916443i
\(203\) 15.4699 15.4699i 1.08577 1.08577i
\(204\) 0.448787 + 3.59003i 0.0314214 + 0.251352i
\(205\) 1.91853 16.3239i 0.133996 1.14011i
\(206\) −17.7737 −1.23835
\(207\) 12.0797 20.3050i 0.839597 1.41130i
\(208\) 3.10801 + 17.6650i 0.215502 + 1.22484i
\(209\) 4.79948 0.331987
\(210\) 10.9420 11.1045i 0.755068 0.766284i
\(211\) 21.6248 1.48871 0.744356 0.667783i \(-0.232756\pi\)
0.744356 + 0.667783i \(0.232756\pi\)
\(212\) 4.60716 4.60716i 0.316421 0.316421i
\(213\) 9.00547 + 7.00412i 0.617045 + 0.479914i
\(214\) 6.57267 0.449298
\(215\) −6.78694 8.59473i −0.462865 0.586156i
\(216\) −2.83024 7.23061i −0.192574 0.491981i
\(217\) −10.6005 10.6005i −0.719606 0.719606i
\(218\) 19.7700 + 19.7700i 1.33900 + 1.33900i
\(219\) −0.859726 6.87730i −0.0580949 0.464725i
\(220\) −6.38936 0.750933i −0.430770 0.0506279i
\(221\) 5.32036 + 3.72832i 0.357886 + 0.250794i
\(222\) 12.1495 + 9.44945i 0.815422 + 0.634205i
\(223\) −16.9827 16.9827i −1.13725 1.13725i −0.988942 0.148304i \(-0.952619\pi\)
−0.148304 0.988942i \(-0.547381\pi\)
\(224\) −13.2558 −0.885691
\(225\) −0.221157 14.9984i −0.0147438 0.999891i
\(226\) 12.2193i 0.812817i
\(227\) 6.28938 + 6.28938i 0.417441 + 0.417441i 0.884321 0.466880i \(-0.154622\pi\)
−0.466880 + 0.884321i \(0.654622\pi\)
\(228\) −2.38395 + 3.06514i −0.157881 + 0.202994i
\(229\) −12.0643 −0.797233 −0.398617 0.917118i \(-0.630510\pi\)
−0.398617 + 0.917118i \(0.630510\pi\)
\(230\) −31.0870 3.65361i −2.04982 0.240912i
\(231\) 9.65951 1.20753i 0.635549 0.0794496i
\(232\) −10.2079 + 10.2079i −0.670184 + 0.670184i
\(233\) −8.29631 8.29631i −0.543510 0.543510i 0.381046 0.924556i \(-0.375564\pi\)
−0.924556 + 0.381046i \(0.875564\pi\)
\(234\) 17.9764 + 6.81793i 1.17515 + 0.445702i
\(235\) 11.3009 8.92390i 0.737189 0.582131i
\(236\) −3.23893 −0.210837
\(237\) 6.89648 8.86707i 0.447974 0.575978i
\(238\) −5.12854 + 5.12854i −0.332434 + 0.332434i
\(239\) 29.0823i 1.88118i 0.339550 + 0.940588i \(0.389725\pi\)
−0.339550 + 0.940588i \(0.610275\pi\)
\(240\) −13.5228 + 13.7237i −0.872892 + 0.885858i
\(241\) 4.33077i 0.278970i 0.990224 + 0.139485i \(0.0445446\pi\)
−0.990224 + 0.139485i \(0.955455\pi\)
\(242\) 6.08400 + 6.08400i 0.391094 + 0.391094i
\(243\) −15.3804 2.53856i −0.986651 0.162849i
\(244\) 2.95059i 0.188892i
\(245\) −4.15611 0.488462i −0.265524 0.0312067i
\(246\) 2.80704 + 22.4546i 0.178970 + 1.43165i
\(247\) 1.20823 + 6.86723i 0.0768781 + 0.436951i
\(248\) 6.99480 + 6.99480i 0.444170 + 0.444170i
\(249\) 7.72807 0.966081i 0.489747 0.0612229i
\(250\) −18.0265 + 8.36399i −1.14009 + 0.528985i
\(251\) 6.63509i 0.418803i 0.977830 + 0.209401i \(0.0671515\pi\)
−0.977830 + 0.209401i \(0.932848\pi\)
\(252\) −4.02680 + 6.76874i −0.253665 + 0.426391i
\(253\) −13.8207 13.8207i −0.868897 0.868897i
\(254\) 17.3540i 1.08888i
\(255\) 0.0514465 + 6.97834i 0.00322171 + 0.437001i
\(256\) 20.2809 1.26756
\(257\) 9.21184 9.21184i 0.574619 0.574619i −0.358797 0.933416i \(-0.616813\pi\)
0.933416 + 0.358797i \(0.116813\pi\)
\(258\) 11.9017 + 9.25674i 0.740970 + 0.576299i
\(259\) 11.3221i 0.703522i
\(260\) −0.534017 9.33110i −0.0331183 0.578690i
\(261\) 7.13452 + 28.0900i 0.441616 + 1.73873i
\(262\) 20.1079 20.1079i 1.24227 1.24227i
\(263\) −8.70709 8.70709i −0.536902 0.536902i 0.385716 0.922618i \(-0.373955\pi\)
−0.922618 + 0.385716i \(0.873955\pi\)
\(264\) −6.37391 + 0.796799i −0.392287 + 0.0490396i
\(265\) 9.86305 7.78849i 0.605883 0.478443i
\(266\) −7.78431 −0.477287
\(267\) 7.94564 10.2160i 0.486265 0.625210i
\(268\) 1.56071 + 1.56071i 0.0953356 + 0.0953356i
\(269\) −19.9624 −1.21713 −0.608564 0.793505i \(-0.708254\pi\)
−0.608564 + 0.793505i \(0.708254\pi\)
\(270\) 5.23135 + 19.9784i 0.318370 + 1.21584i
\(271\) 15.4343i 0.937569i −0.883313 0.468784i \(-0.844692\pi\)
0.883313 0.468784i \(-0.155308\pi\)
\(272\) 6.33817 6.33817i 0.384308 0.384308i
\(273\) 4.15947 + 13.5171i 0.251743 + 0.818092i
\(274\) 16.2678i 0.982774i
\(275\) −12.0708 2.87707i −0.727897 0.173494i
\(276\) 15.6913 1.96156i 0.944504 0.118072i
\(277\) 8.39129 + 8.39129i 0.504184 + 0.504184i 0.912735 0.408551i \(-0.133966\pi\)
−0.408551 + 0.912735i \(0.633966\pi\)
\(278\) −15.0711 + 15.0711i −0.903903 + 0.903903i
\(279\) 19.2481 4.88880i 1.15236 0.292685i
\(280\) −7.51538 0.883273i −0.449130 0.0527857i
\(281\) −20.3080 −1.21148 −0.605738 0.795664i \(-0.707122\pi\)
−0.605738 + 0.795664i \(0.707122\pi\)
\(282\) −12.1713 + 15.6492i −0.724793 + 0.931894i
\(283\) −13.2101 + 13.2101i −0.785258 + 0.785258i −0.980713 0.195455i \(-0.937382\pi\)
0.195455 + 0.980713i \(0.437382\pi\)
\(284\) 7.63586i 0.453105i
\(285\) −5.25696 + 5.33505i −0.311396 + 0.316021i
\(286\) 9.12752 13.0251i 0.539722 0.770190i
\(287\) −11.7706 + 11.7706i −0.694799 + 0.694799i
\(288\) 8.97814 15.0916i 0.529042 0.889278i
\(289\) 13.7533i 0.809020i
\(290\) 30.1334 23.7953i 1.76950 1.39731i
\(291\) 22.5355 2.81715i 1.32106 0.165145i
\(292\) 3.28016 3.28016i 0.191957 0.191957i
\(293\) −9.32896 + 9.32896i −0.545004 + 0.545004i −0.924992 0.379988i \(-0.875928\pi\)
0.379988 + 0.924992i \(0.375928\pi\)
\(294\) 5.71699 0.714678i 0.333422 0.0416808i
\(295\) −6.20471 0.729232i −0.361252 0.0424575i
\(296\) 7.47100i 0.434243i
\(297\) −5.16762 + 11.8151i −0.299856 + 0.685580i
\(298\) 4.49681 4.49681i 0.260493 0.260493i
\(299\) 16.2957 23.2542i 0.942405 1.34483i
\(300\) 7.83311 6.27982i 0.452245 0.362566i
\(301\) 11.0912i 0.639287i
\(302\) −2.43057 + 2.43057i −0.139864 + 0.139864i
\(303\) 11.0201 14.1689i 0.633086 0.813984i
\(304\) 9.62035 0.551765
\(305\) 0.664313 5.65234i 0.0380384 0.323652i
\(306\) −2.36522 9.31233i −0.135211 0.532350i
\(307\) −16.2646 + 16.2646i −0.928272 + 0.928272i −0.997594 0.0693223i \(-0.977916\pi\)
0.0693223 + 0.997594i \(0.477916\pi\)
\(308\) 4.60716 + 4.60716i 0.262517 + 0.262517i
\(309\) 17.1861 2.14842i 0.977683 0.122220i
\(310\) −16.3053 20.6484i −0.926077 1.17275i
\(311\) 4.98446i 0.282643i 0.989964 + 0.141321i \(0.0451351\pi\)
−0.989964 + 0.141321i \(0.954865\pi\)
\(312\) −2.74467 8.91938i −0.155386 0.504960i
\(313\) −14.2484 + 14.2484i −0.805365 + 0.805365i −0.983928 0.178564i \(-0.942855\pi\)
0.178564 + 0.983928i \(0.442855\pi\)
\(314\) 24.8715i 1.40358i
\(315\) −9.23796 + 12.0600i −0.520500 + 0.679506i
\(316\) 7.51851 0.422949
\(317\) −14.3178 14.3178i −0.804168 0.804168i 0.179576 0.983744i \(-0.442527\pi\)
−0.983744 + 0.179576i \(0.942527\pi\)
\(318\) −10.6228 + 13.6581i −0.595695 + 0.765908i
\(319\) 23.9756 1.34238
\(320\) −1.01000 0.118705i −0.0564610 0.00663579i
\(321\) −6.35538 + 0.794482i −0.354723 + 0.0443437i
\(322\) 22.4158 + 22.4158i 1.24918 + 1.24918i
\(323\) 2.46396 2.46396i 0.137098 0.137098i
\(324\) −4.97877 9.16892i −0.276598 0.509385i
\(325\) 1.07786 17.9955i 0.0597889 0.998211i
\(326\) 7.75354i 0.429429i
\(327\) −21.5062 16.7267i −1.18930 0.924990i
\(328\) 7.76696 7.76696i 0.428859 0.428859i
\(329\) −14.5834 −0.804011
\(330\) 17.0841 0.125949i 0.940449 0.00693329i
\(331\) 15.6364i 0.859455i 0.902959 + 0.429728i \(0.141390\pi\)
−0.902959 + 0.429728i \(0.858610\pi\)
\(332\) 3.68595 + 3.68595i 0.202293 + 0.202293i
\(333\) −12.8901 7.66846i −0.706372 0.420229i
\(334\) 1.36796i 0.0748514i
\(335\) 2.63841 + 3.34119i 0.144152 + 0.182549i
\(336\) 19.3620 2.42044i 1.05629 0.132046i
\(337\) 12.4230 + 12.4230i 0.676726 + 0.676726i 0.959258 0.282532i \(-0.0911742\pi\)
−0.282532 + 0.959258i \(0.591174\pi\)
\(338\) 20.9344 + 9.78093i 1.13868 + 0.532013i
\(339\) 1.47703 + 11.8154i 0.0802213 + 0.641722i
\(340\) −3.66568 + 2.89465i −0.198799 + 0.156984i
\(341\) 16.4289i 0.889672i
\(342\) 5.27231 8.86234i 0.285094 0.479220i
\(343\) 14.2062 + 14.2062i 0.767061 + 0.767061i
\(344\) 7.31864i 0.394595i
\(345\) 30.5009 0.224862i 1.64211 0.0121062i
\(346\) 4.84087i 0.260247i
\(347\) −6.65873 + 6.65873i −0.357459 + 0.357459i −0.862876 0.505416i \(-0.831339\pi\)
0.505416 + 0.862876i \(0.331339\pi\)
\(348\) −11.9089 + 15.3118i −0.638387 + 0.820798i
\(349\) −3.35766 −0.179731 −0.0898657 0.995954i \(-0.528644\pi\)
−0.0898657 + 0.995954i \(0.528644\pi\)
\(350\) 19.5777 + 4.66634i 1.04647 + 0.249427i
\(351\) −18.2062 4.41961i −0.971777 0.235901i
\(352\) −10.2721 10.2721i −0.547504 0.547504i
\(353\) −10.8383 + 10.8383i −0.576864 + 0.576864i −0.934038 0.357174i \(-0.883740\pi\)
0.357174 + 0.934038i \(0.383740\pi\)
\(354\) 8.53498 1.06695i 0.453629 0.0567079i
\(355\) −1.71918 + 14.6278i −0.0912447 + 0.776361i
\(356\) 8.66230 0.459101
\(357\) 4.33907 5.57891i 0.229648 0.295267i
\(358\) −23.0149 23.0149i −1.21637 1.21637i
\(359\) 3.08162i 0.162642i 0.996688 + 0.0813208i \(0.0259138\pi\)
−0.996688 + 0.0813208i \(0.974086\pi\)
\(360\) 6.09575 7.95792i 0.321274 0.419419i
\(361\) −15.2601 −0.803163
\(362\) 2.85488 + 2.85488i 0.150049 + 0.150049i
\(363\) −6.61828 5.14745i −0.347370 0.270171i
\(364\) −5.43222 + 7.75186i −0.284726 + 0.406308i
\(365\) 7.02221 5.54518i 0.367559 0.290248i
\(366\) 0.971968 + 7.77516i 0.0508056 + 0.406414i
\(367\) −20.0354 20.0354i −1.04584 1.04584i −0.998898 0.0469411i \(-0.985053\pi\)
−0.0469411 0.998898i \(-0.514947\pi\)
\(368\) −27.7029 27.7029i −1.44411 1.44411i
\(369\) −5.42847 21.3730i −0.282595 1.11263i
\(370\) −2.31939 + 19.7347i −0.120580 + 1.02596i
\(371\) −12.7280 −0.660802
\(372\) 10.4921 + 8.16038i 0.543991 + 0.423096i
\(373\) 25.3623 25.3623i 1.31321 1.31321i 0.394171 0.919037i \(-0.371032\pi\)
0.919037 0.394171i \(-0.128968\pi\)
\(374\) −7.94834 −0.410999
\(375\) 16.4195 10.2665i 0.847899 0.530157i
\(376\) 9.62301 0.496269
\(377\) 6.03568 + 34.3050i 0.310853 + 1.76680i
\(378\) 8.38140 19.1630i 0.431092 0.985636i
\(379\) −17.3539 −0.891410 −0.445705 0.895180i \(-0.647047\pi\)
−0.445705 + 0.895180i \(0.647047\pi\)
\(380\) −4.97877 0.585149i −0.255406 0.0300175i
\(381\) 2.09769 + 16.7802i 0.107468 + 0.859678i
\(382\) −21.2360 + 21.2360i −1.08653 + 1.08653i
\(383\) 16.1283 16.1283i 0.824118 0.824118i −0.162577 0.986696i \(-0.551981\pi\)
0.986696 + 0.162577i \(0.0519807\pi\)
\(384\) −18.7309 + 2.34154i −0.955857 + 0.119491i
\(385\) 7.78849 + 9.86305i 0.396938 + 0.502668i
\(386\) 36.2176i 1.84343i
\(387\) −12.6272 7.51207i −0.641877 0.381860i
\(388\) 10.7484 + 10.7484i 0.545670 + 0.545670i
\(389\) −6.50195 −0.329662 −0.164831 0.986322i \(-0.552708\pi\)
−0.164831 + 0.986322i \(0.552708\pi\)
\(390\) 4.48101 + 24.4127i 0.226905 + 1.23618i
\(391\) −14.1905 −0.717643
\(392\) −1.97749 1.97749i −0.0998782 0.0998782i
\(393\) −17.0125 + 21.8737i −0.858169 + 1.10338i
\(394\) 43.2214i 2.17746i
\(395\) 14.4030 + 1.69276i 0.724691 + 0.0851721i
\(396\) −8.36561 + 2.12476i −0.420388 + 0.106773i
\(397\) 26.0994 26.0994i 1.30989 1.30989i 0.388402 0.921490i \(-0.373027\pi\)
0.921490 0.388402i \(-0.126973\pi\)
\(398\) 22.6735 22.6735i 1.13652 1.13652i
\(399\) 7.52697 0.940942i 0.376820 0.0471060i
\(400\) −24.1954 5.76696i −1.20977 0.288348i
\(401\) 17.6000 0.878901 0.439450 0.898267i \(-0.355173\pi\)
0.439450 + 0.898267i \(0.355173\pi\)
\(402\) −4.62679 3.59854i −0.230763 0.179479i
\(403\) 23.5068 4.13584i 1.17096 0.206021i
\(404\) 12.0140 0.597720
\(405\) −7.47332 18.6855i −0.371352 0.928492i
\(406\) −38.8862 −1.92989
\(407\) −8.77366 + 8.77366i −0.434894 + 0.434894i
\(408\) −2.86318 + 3.68130i −0.141748 + 0.182251i
\(409\) 34.0937 1.68583 0.842913 0.538049i \(-0.180839\pi\)
0.842913 + 0.538049i \(0.180839\pi\)
\(410\) −22.9278 + 18.1052i −1.13232 + 0.894153i
\(411\) 1.96640 + 15.7300i 0.0969953 + 0.775904i
\(412\) 8.19701 + 8.19701i 0.403837 + 0.403837i
\(413\) 4.47402 + 4.47402i 0.220152 + 0.220152i
\(414\) −40.7023 + 10.3379i −2.00041 + 0.508080i
\(415\) 6.23117 + 7.89092i 0.305876 + 0.387350i
\(416\) 12.1117 17.2835i 0.593823 0.847393i
\(417\) 12.7511 16.3946i 0.624423 0.802845i
\(418\) −6.03216 6.03216i −0.295043 0.295043i
\(419\) −14.9518 −0.730444 −0.365222 0.930920i \(-0.619007\pi\)
−0.365222 + 0.930920i \(0.619007\pi\)
\(420\) −10.1676 + 0.0749585i −0.496126 + 0.00365760i
\(421\) 26.9421i 1.31308i 0.754293 + 0.656538i \(0.227980\pi\)
−0.754293 + 0.656538i \(0.772020\pi\)
\(422\) −27.1788 27.1788i −1.32304 1.32304i
\(423\) 9.87734 16.6030i 0.480253 0.807267i
\(424\) 8.39865 0.407875
\(425\) −7.67393 + 4.71987i −0.372240 + 0.228947i
\(426\) −2.51537 20.1214i −0.121870 0.974886i
\(427\) −4.07572 + 4.07572i −0.197238 + 0.197238i
\(428\) −3.03123 3.03123i −0.146520 0.146520i
\(429\) −7.25134 + 13.6978i −0.350098 + 0.661336i
\(430\) −2.27209 + 19.3322i −0.109570 + 0.932283i
\(431\) 14.0679 0.677627 0.338814 0.940854i \(-0.389974\pi\)
0.338814 + 0.940854i \(0.389974\pi\)
\(432\) −10.3583 + 23.6828i −0.498362 + 1.13944i
\(433\) −14.6474 + 14.6474i −0.703907 + 0.703907i −0.965247 0.261340i \(-0.915836\pi\)
0.261340 + 0.965247i \(0.415836\pi\)
\(434\) 26.6461i 1.27905i
\(435\) −26.2610 + 26.6510i −1.25912 + 1.27782i
\(436\) 18.2354i 0.873317i
\(437\) −10.7695 10.7695i −0.515173 0.515173i
\(438\) −7.56310 + 9.72417i −0.361379 + 0.464639i
\(439\) 0.499524i 0.0238410i −0.999929 0.0119205i \(-0.996206\pi\)
0.999929 0.0119205i \(-0.00379450\pi\)
\(440\) −5.13931 6.50822i −0.245007 0.310267i
\(441\) −5.44160 + 1.38210i −0.259124 + 0.0658144i
\(442\) −2.00093 11.3727i −0.0951748 0.540944i
\(443\) −3.46942 3.46942i −0.164837 0.164837i 0.619869 0.784706i \(-0.287186\pi\)
−0.784706 + 0.619869i \(0.787186\pi\)
\(444\) −1.24524 9.96117i −0.0590965 0.472736i
\(445\) 16.5941 + 1.95028i 0.786634 + 0.0924521i
\(446\) 42.6889i 2.02138i
\(447\) −3.80459 + 4.89171i −0.179951 + 0.231370i
\(448\) 0.728281 + 0.728281i 0.0344081 + 0.0344081i
\(449\) 14.7638i 0.696745i −0.937356 0.348372i \(-0.886734\pi\)
0.937356 0.348372i \(-0.113266\pi\)
\(450\) −18.5725 + 19.1285i −0.875518 + 0.901724i
\(451\) −18.2424 −0.859003
\(452\) −5.63540 + 5.63540i −0.265067 + 0.265067i
\(453\) 2.05642 2.64402i 0.0966190 0.124227i
\(454\) 15.8094i 0.741974i
\(455\) −12.1516 + 13.6269i −0.569677 + 0.638840i
\(456\) −4.96674 + 0.620889i −0.232589 + 0.0290758i
\(457\) −5.40394 + 5.40394i −0.252786 + 0.252786i −0.822112 0.569326i \(-0.807204\pi\)
0.569326 + 0.822112i \(0.307204\pi\)
\(458\) 15.1629 + 15.1629i 0.708515 + 0.708515i
\(459\) 3.41267 + 8.71857i 0.159290 + 0.406948i
\(460\) 12.6519 + 16.0219i 0.589899 + 0.747026i
\(461\) −14.9553 −0.696538 −0.348269 0.937395i \(-0.613230\pi\)
−0.348269 + 0.937395i \(0.613230\pi\)
\(462\) −13.6581 10.6228i −0.635432 0.494215i
\(463\) 13.0006 + 13.0006i 0.604188 + 0.604188i 0.941421 0.337233i \(-0.109491\pi\)
−0.337233 + 0.941421i \(0.609491\pi\)
\(464\) 48.0581 2.23104
\(465\) 18.2621 + 17.9948i 0.846886 + 0.834490i
\(466\) 20.8542i 0.966053i
\(467\) −0.156785 + 0.156785i −0.00725515 + 0.00725515i −0.710725 0.703470i \(-0.751633\pi\)
0.703470 + 0.710725i \(0.251633\pi\)
\(468\) −5.14614 11.4348i −0.237881 0.528576i
\(469\) 4.31170i 0.199096i
\(470\) −25.4192 2.98749i −1.17250 0.137803i
\(471\) −3.00638 24.0493i −0.138527 1.10813i
\(472\) −2.95222 2.95222i −0.135887 0.135887i
\(473\) −8.59473 + 8.59473i −0.395186 + 0.395186i
\(474\) −19.8122 + 2.47671i −0.910004 + 0.113759i
\(475\) −9.40592 2.24190i −0.431573 0.102865i
\(476\) 4.73044 0.216819
\(477\) 8.62063 14.4906i 0.394711 0.663479i
\(478\) 36.5517 36.5517i 1.67183 1.67183i
\(479\) 26.4947i 1.21057i 0.796008 + 0.605286i \(0.206941\pi\)
−0.796008 + 0.605286i \(0.793059\pi\)
\(480\) 22.6696 0.167127i 1.03472 0.00762827i
\(481\) −14.7623 10.3449i −0.673102 0.471686i
\(482\) 5.44307 5.44307i 0.247925 0.247925i
\(483\) −24.3843 18.9652i −1.10952 0.862947i
\(484\) 5.61173i 0.255079i
\(485\) 18.1705 + 23.0104i 0.825079 + 1.04485i
\(486\) 16.1401 + 22.5212i 0.732128 + 1.02158i
\(487\) 4.60192 4.60192i 0.208533 0.208533i −0.595111 0.803644i \(-0.702892\pi\)
0.803644 + 0.595111i \(0.202892\pi\)
\(488\) 2.68940 2.68940i 0.121743 0.121743i
\(489\) 0.937222 + 7.49722i 0.0423827 + 0.339036i
\(490\) 4.60963 + 5.83746i 0.208242 + 0.263710i
\(491\) 2.85195i 0.128707i −0.997927 0.0643533i \(-0.979502\pi\)
0.997927 0.0643533i \(-0.0204985\pi\)
\(492\) 9.06121 11.6504i 0.408511 0.525238i
\(493\) 12.3086 12.3086i 0.554351 0.554351i
\(494\) 7.11243 10.1495i 0.320003 0.456649i
\(495\) −16.5041 + 2.18685i −0.741804 + 0.0982918i
\(496\) 32.9309i 1.47864i
\(497\) 10.5476 10.5476i 0.473124 0.473124i
\(498\) −10.9271 8.49871i −0.489656 0.380836i
\(499\) −16.5848 −0.742440 −0.371220 0.928545i \(-0.621060\pi\)
−0.371220 + 0.928545i \(0.621060\pi\)
\(500\) 12.1709 + 4.45621i 0.544301 + 0.199288i
\(501\) 0.165354 + 1.32274i 0.00738749 + 0.0590955i
\(502\) 8.33922 8.33922i 0.372197 0.372197i
\(503\) 25.3184 + 25.3184i 1.12889 + 1.12889i 0.990357 + 0.138536i \(0.0442398\pi\)
0.138536 + 0.990357i \(0.455760\pi\)
\(504\) −9.83991 + 2.49922i −0.438305 + 0.111324i
\(505\) 23.0149 + 2.70491i 1.02415 + 0.120367i
\(506\) 34.7406i 1.54441i
\(507\) −21.4246 6.92710i −0.951502 0.307643i
\(508\) −8.00343 + 8.00343i −0.355095 + 0.355095i
\(509\) 4.71947i 0.209187i 0.994515 + 0.104593i \(0.0333541\pi\)
−0.994515 + 0.104593i \(0.966646\pi\)
\(510\) 8.70597 8.83529i 0.385507 0.391233i
\(511\) −9.06194 −0.400877
\(512\) −10.0770 10.0770i −0.445345 0.445345i
\(513\) −4.02676 + 9.20665i −0.177786 + 0.406484i
\(514\) −23.1555 −1.02135
\(515\) 13.8572 + 17.5482i 0.610621 + 0.773268i
\(516\) −1.21984 9.75803i −0.0537007 0.429573i
\(517\) −11.3009 11.3009i −0.497013 0.497013i
\(518\) 14.2300 14.2300i 0.625232 0.625232i
\(519\) −0.585149 4.68084i −0.0256852 0.205466i
\(520\) 8.01836 8.99185i 0.351628 0.394319i
\(521\) 3.26079i 0.142858i −0.997446 0.0714290i \(-0.977244\pi\)
0.997446 0.0714290i \(-0.0227559\pi\)
\(522\) 26.3376 44.2715i 1.15277 1.93771i
\(523\) 3.50662 3.50662i 0.153334 0.153334i −0.626271 0.779605i \(-0.715420\pi\)
0.779605 + 0.626271i \(0.215420\pi\)
\(524\) −18.5470 −0.810229
\(525\) −19.4945 2.14559i −0.850811 0.0936412i
\(526\) 21.8868i 0.954308i
\(527\) −8.43423 8.43423i −0.367401 0.367401i
\(528\) 16.8795 + 13.1283i 0.734587 + 0.571335i
\(529\) 39.0237i 1.69668i
\(530\) −22.1851 2.60739i −0.963659 0.113258i
\(531\) −8.12385 + 2.06336i −0.352545 + 0.0895422i
\(532\) 3.59003 + 3.59003i 0.155647 + 0.155647i
\(533\) −4.59240 26.1018i −0.198919 1.13059i
\(534\) −22.8262 + 2.85349i −0.987787 + 0.123483i
\(535\) −5.12436 6.48930i −0.221545 0.280557i
\(536\) 2.84511i 0.122890i
\(537\) 25.0360 + 19.4720i 1.08038 + 0.840281i
\(538\) 25.0894 + 25.0894i 1.08168 + 1.08168i
\(539\) 4.64457i 0.200056i
\(540\) 6.80114 11.6264i 0.292675 0.500321i
\(541\) 37.7594i 1.62340i −0.584072 0.811702i \(-0.698541\pi\)
0.584072 0.811702i \(-0.301459\pi\)
\(542\) −19.3984 + 19.3984i −0.833234 + 0.833234i
\(543\) −3.10558 2.41541i −0.133273 0.103655i
\(544\) −10.5470 −0.452197
\(545\) 4.10562 34.9329i 0.175866 1.49636i
\(546\) 11.7610 22.2165i 0.503324 0.950781i
\(547\) 16.3924 + 16.3924i 0.700888 + 0.700888i 0.964601 0.263714i \(-0.0849474\pi\)
−0.263714 + 0.964601i \(0.584947\pi\)
\(548\) −7.50251 + 7.50251i −0.320491 + 0.320491i
\(549\) −1.87967 7.40063i −0.0802224 0.315851i
\(550\) 11.5550 + 18.7870i 0.492707 + 0.801082i
\(551\) 18.6825 0.795901
\(552\) 16.0902 + 12.5144i 0.684844 + 0.532647i
\(553\) −10.3855 10.3855i −0.441636 0.441636i
\(554\) 21.0930i 0.896154i
\(555\) −0.142747 19.3626i −0.00605929 0.821898i
\(556\) 13.9012 0.589541
\(557\) 9.89147 + 9.89147i 0.419115 + 0.419115i 0.884899 0.465784i \(-0.154227\pi\)
−0.465784 + 0.884899i \(0.654227\pi\)
\(558\) −30.3362 18.0473i −1.28423 0.764005i
\(559\) −14.4612 10.1339i −0.611644 0.428619i
\(560\) 15.6117 + 19.7700i 0.659714 + 0.835437i
\(561\) 7.68558 0.960769i 0.324485 0.0405637i
\(562\) 25.5239 + 25.5239i 1.07666 + 1.07666i
\(563\) −1.00460 1.00460i −0.0423388 0.0423388i 0.685620 0.727959i \(-0.259531\pi\)
−0.727959 + 0.685620i \(0.759531\pi\)
\(564\) 12.8305 1.60393i 0.540260 0.0675376i
\(565\) −12.0643 + 9.52676i −0.507550 + 0.400794i
\(566\) 33.2058 1.39574
\(567\) −5.78796 + 19.5426i −0.243071 + 0.820710i
\(568\) −6.95993 + 6.95993i −0.292032 + 0.292032i
\(569\) −5.08203 −0.213050 −0.106525 0.994310i \(-0.533972\pi\)
−0.106525 + 0.994310i \(0.533972\pi\)
\(570\) 13.3124 0.0981434i 0.557596 0.00411077i
\(571\) −19.2348 −0.804953 −0.402476 0.915430i \(-0.631850\pi\)
−0.402476 + 0.915430i \(0.631850\pi\)
\(572\) −10.2165 + 1.79751i −0.427174 + 0.0751578i
\(573\) 17.9670 23.1009i 0.750582 0.965052i
\(574\) 29.5875 1.23496
\(575\) 20.6296 + 33.5412i 0.860314 + 1.39876i
\(576\) −1.32240 + 0.335874i −0.0551001 + 0.0139948i
\(577\) 9.22836 9.22836i 0.384182 0.384182i −0.488424 0.872606i \(-0.662428\pi\)
0.872606 + 0.488424i \(0.162428\pi\)
\(578\) 17.2857 17.2857i 0.718990 0.718990i
\(579\) 4.37786 + 35.0203i 0.181938 + 1.45539i
\(580\) −24.8713 2.92309i −1.03272 0.121375i
\(581\) 10.1830i 0.422461i
\(582\) −31.8642 24.7828i −1.32081 1.02728i
\(583\) −9.86305 9.86305i −0.408486 0.408486i
\(584\) 5.97960 0.247438
\(585\) −7.28379 23.0640i −0.301148 0.953578i
\(586\) 23.4500 0.968709
\(587\) −1.06387 1.06387i −0.0439105 0.0439105i 0.684811 0.728721i \(-0.259885\pi\)
−0.728721 + 0.684811i \(0.759885\pi\)
\(588\) −2.96621 2.30701i −0.122324 0.0951393i
\(589\) 12.8018i 0.527490i
\(590\) 6.88178 + 8.71483i 0.283319 + 0.358784i
\(591\) 5.22446 + 41.7925i 0.214906 + 1.71912i
\(592\) −17.5864 + 17.5864i −0.722796 + 0.722796i
\(593\) 2.68739 2.68739i 0.110358 0.110358i −0.649772 0.760129i \(-0.725135\pi\)
0.760129 + 0.649772i \(0.225135\pi\)
\(594\) 21.3445 8.35477i 0.875774 0.342800i
\(595\) 9.06194 + 1.06504i 0.371503 + 0.0436623i
\(596\) −4.14774 −0.169898
\(597\) −19.1832 + 24.6646i −0.785117 + 1.00946i
\(598\) −49.7078 + 8.74568i −2.03270 + 0.357637i
\(599\) −25.8330 −1.05551 −0.527754 0.849397i \(-0.676966\pi\)
−0.527754 + 0.849397i \(0.676966\pi\)
\(600\) 12.8636 + 1.41579i 0.525156 + 0.0577992i
\(601\) 26.5776 1.08412 0.542062 0.840338i \(-0.317644\pi\)
0.542062 + 0.840338i \(0.317644\pi\)
\(602\) 13.9398 13.9398i 0.568146 0.568146i
\(603\) 4.90881 + 2.92031i 0.199902 + 0.118924i
\(604\) 2.24190 0.0912216
\(605\) 1.26346 10.7502i 0.0513668 0.437058i
\(606\) −31.6584 + 3.95760i −1.28604 + 0.160767i
\(607\) 6.01113 + 6.01113i 0.243984 + 0.243984i 0.818496 0.574512i \(-0.194808\pi\)
−0.574512 + 0.818496i \(0.694808\pi\)
\(608\) −8.00431 8.00431i −0.324618 0.324618i
\(609\) 37.6007 4.70044i 1.52366 0.190471i
\(610\) −7.93900 + 6.26914i −0.321441 + 0.253830i
\(611\) 13.3247 19.0145i 0.539060 0.769245i
\(612\) −3.20392 + 5.38554i −0.129511 + 0.217698i
\(613\) −3.14970 3.14970i −0.127215 0.127215i 0.640632 0.767848i \(-0.278672\pi\)
−0.767848 + 0.640632i \(0.778672\pi\)
\(614\) 40.8840 1.64994
\(615\) 19.9813 20.2781i 0.805723 0.817692i
\(616\) 8.39865i 0.338391i
\(617\) −2.15262 2.15262i −0.0866613 0.0866613i 0.662447 0.749109i \(-0.269518\pi\)
−0.749109 + 0.662447i \(0.769518\pi\)
\(618\) −24.3003 18.8999i −0.977503 0.760265i
\(619\) 12.1579 0.488668 0.244334 0.969691i \(-0.421431\pi\)
0.244334 + 0.969691i \(0.421431\pi\)
\(620\) −2.00299 + 17.0426i −0.0804420 + 0.684446i
\(621\) 38.1071 14.9161i 1.52918 0.598562i
\(622\) 6.26465 6.26465i 0.251190 0.251190i
\(623\) −11.9654 11.9654i −0.479385 0.479385i
\(624\) −14.5350 + 27.4566i −0.581865 + 1.09914i
\(625\) 22.3122 + 11.2768i 0.892487 + 0.451074i
\(626\) 35.8157 1.43148
\(627\) 6.56189 + 5.10360i 0.262057 + 0.203818i
\(628\) 11.4704 11.4704i 0.457720 0.457720i
\(629\) 9.00843i 0.359190i
\(630\) 26.7681 3.54687i 1.06647 0.141311i
\(631\) 24.6040i 0.979470i −0.871871 0.489735i \(-0.837093\pi\)
0.871871 0.489735i \(-0.162907\pi\)
\(632\) 6.85297 + 6.85297i 0.272596 + 0.272596i
\(633\) 29.5656 + 22.9950i 1.17513 + 0.913970i
\(634\) 35.9903i 1.42936i
\(635\) −17.1338 + 13.5300i −0.679935 + 0.536920i
\(636\) 11.1980 1.39986i 0.444030 0.0555080i
\(637\) −6.64557 + 1.16923i −0.263307 + 0.0463268i
\(638\) −30.1334 30.1334i −1.19299 1.19299i
\(639\) 4.86442 + 19.1522i 0.192434 + 0.757648i
\(640\) −15.1028 19.1256i −0.596989 0.756005i
\(641\) 4.97308i 0.196425i −0.995165 0.0982124i \(-0.968688\pi\)
0.995165 0.0982124i \(-0.0313124\pi\)
\(642\) 8.98621 + 6.98914i 0.354657 + 0.275839i
\(643\) 19.7877 + 19.7877i 0.780349 + 0.780349i 0.979890 0.199540i \(-0.0639448\pi\)
−0.199540 + 0.979890i \(0.563945\pi\)
\(644\) 20.6758i 0.814740i
\(645\) −0.139836 18.9678i −0.00550605 0.746855i
\(646\) −6.19358 −0.243683
\(647\) −27.8871 + 27.8871i −1.09635 + 1.09635i −0.101520 + 0.994833i \(0.532371\pi\)
−0.994833 + 0.101520i \(0.967629\pi\)
\(648\) 3.81924 12.8953i 0.150034 0.506576i
\(649\) 6.93395i 0.272181i
\(650\) −23.9721 + 21.2627i −0.940263 + 0.833992i
\(651\) −3.22089 25.7652i −0.126236 1.00982i
\(652\) −3.57584 + 3.57584i −0.140041 + 0.140041i
\(653\) 14.6549 + 14.6549i 0.573491 + 0.573491i 0.933102 0.359611i \(-0.117091\pi\)
−0.359611 + 0.933102i \(0.617091\pi\)
\(654\) 6.00701 + 48.0525i 0.234893 + 1.87900i
\(655\) −35.5299 4.17578i −1.38827 0.163161i
\(656\) −36.5661 −1.42767
\(657\) 6.13764 10.3169i 0.239452 0.402500i
\(658\) 18.3290 + 18.3290i 0.714538 + 0.714538i
\(659\) 27.9107 1.08725 0.543624 0.839329i \(-0.317052\pi\)
0.543624 + 0.839329i \(0.317052\pi\)
\(660\) −7.93706 7.82089i −0.308950 0.304428i
\(661\) 33.0735i 1.28641i −0.765693 0.643206i \(-0.777604\pi\)
0.765693 0.643206i \(-0.222396\pi\)
\(662\) 19.6524 19.6524i 0.763813 0.763813i
\(663\) 3.30948 + 10.7549i 0.128529 + 0.417684i
\(664\) 6.71933i 0.260760i
\(665\) 6.06902 + 7.68558i 0.235346 + 0.298034i
\(666\) 6.56272 + 25.8387i 0.254300 + 1.00123i
\(667\) −53.7984 53.7984i −2.08308 2.08308i
\(668\) −0.630886 + 0.630886i −0.0244097 + 0.0244097i
\(669\) −5.16010 41.2777i −0.199501 1.59589i
\(670\) 0.883273 7.51538i 0.0341238 0.290344i
\(671\) −6.31666 −0.243852
\(672\) −18.1234 14.0957i −0.699127 0.543755i
\(673\) 6.43667 6.43667i 0.248115 0.248115i −0.572082 0.820197i \(-0.693864\pi\)
0.820197 + 0.572082i \(0.193864\pi\)
\(674\) 31.2275i 1.20284i
\(675\) 15.6464 20.7411i 0.602228 0.798324i
\(676\) −5.14386 14.1655i −0.197841 0.544829i
\(677\) 3.03614 3.03614i 0.116688 0.116688i −0.646351 0.763040i \(-0.723706\pi\)
0.763040 + 0.646351i \(0.223706\pi\)
\(678\) 12.9936 16.7064i 0.499016 0.641604i
\(679\) 29.6942i 1.13956i
\(680\) −5.97960 0.702775i −0.229307 0.0269502i
\(681\) 1.91099 + 15.2868i 0.0732294 + 0.585791i
\(682\) −20.6484 + 20.6484i −0.790667 + 0.790667i
\(683\) −6.75351 + 6.75351i −0.258416 + 0.258416i −0.824410 0.565994i \(-0.808493\pi\)
0.565994 + 0.824410i \(0.308493\pi\)
\(684\) −6.51872 + 1.65568i −0.249250 + 0.0633064i
\(685\) −16.0615 + 12.6831i −0.613677 + 0.484598i
\(686\) 35.7097i 1.36340i
\(687\) −16.4944 12.8288i −0.629302 0.489448i
\(688\) −17.2277 + 17.2277i −0.656801 + 0.656801i
\(689\) 11.6294 16.5953i 0.443044 0.632229i
\(690\) −38.6173 38.0520i −1.47013 1.44862i
\(691\) 20.7041i 0.787620i −0.919192 0.393810i \(-0.871157\pi\)
0.919192 0.393810i \(-0.128843\pi\)
\(692\) 2.23255 2.23255i 0.0848688 0.0848688i
\(693\) 14.4906 + 8.62063i 0.550452 + 0.327471i
\(694\) 16.7379 0.635361
\(695\) 26.6300 + 3.12979i 1.01013 + 0.118720i
\(696\) −24.8111 + 3.10163i −0.940464 + 0.117567i
\(697\) −9.36529 + 9.36529i −0.354736 + 0.354736i
\(698\) 4.22003 + 4.22003i 0.159730 + 0.159730i
\(699\) −2.52079 20.1648i −0.0953449 0.762702i
\(700\) −6.87694 11.1811i −0.259924 0.422604i
\(701\) 52.1479i 1.96960i 0.173691 + 0.984800i \(0.444431\pi\)
−0.173691 + 0.984800i \(0.555569\pi\)
\(702\) 17.3275 + 28.4370i 0.653985 + 1.07328i
\(703\) −6.83669 + 6.83669i −0.257850 + 0.257850i
\(704\) 1.12871i 0.0425398i
\(705\) 24.9400 0.183866i 0.939295 0.00692478i
\(706\) 27.2439 1.02534
\(707\) −16.5953 16.5953i −0.624129 0.624129i
\(708\) −4.42829 3.44416i −0.166425 0.129440i
\(709\) −4.45911 −0.167465 −0.0837327 0.996488i \(-0.526684\pi\)
−0.0837327 + 0.996488i \(0.526684\pi\)
\(710\) 20.5454 16.2240i 0.771056 0.608875i
\(711\) 18.8578 4.78966i 0.707224 0.179626i
\(712\) 7.89550 + 7.89550i 0.295896 + 0.295896i
\(713\) −36.8643 + 36.8643i −1.38058 + 1.38058i
\(714\) −12.4653 + 1.55828i −0.466502 + 0.0583171i
\(715\) −19.9761 + 1.14323i −0.747065 + 0.0427544i
\(716\) 21.2283i 0.793340i
\(717\) −30.9250 + 39.7615i −1.15492 + 1.48492i
\(718\) 3.87309 3.87309i 0.144542 0.144542i
\(719\) 6.74702 0.251621 0.125811 0.992054i \(-0.459847\pi\)
0.125811 + 0.992054i \(0.459847\pi\)
\(720\) −33.0817 + 4.38345i −1.23288 + 0.163362i
\(721\) 22.6454i 0.843360i
\(722\) 19.1795 + 19.1795i 0.713785 + 0.713785i
\(723\) −4.60519 + 5.92107i −0.171269 + 0.220207i
\(724\) 2.63327i 0.0978646i
\(725\) −46.9869 11.1993i −1.74505 0.415932i
\(726\) 1.84859 + 14.7876i 0.0686075 + 0.548819i
\(727\) 9.42881 + 9.42881i 0.349695 + 0.349695i 0.859996 0.510301i \(-0.170466\pi\)
−0.510301 + 0.859996i \(0.670466\pi\)
\(728\) −12.0170 + 2.11430i −0.445380 + 0.0783611i
\(729\) −18.3288 19.8257i −0.678843 0.734284i
\(730\) −15.7952 1.85639i −0.584605 0.0687079i
\(731\) 8.82471i 0.326394i
\(732\) 3.13755 4.03407i 0.115967 0.149103i
\(733\) 20.5774 + 20.5774i 0.760042 + 0.760042i 0.976330 0.216288i \(-0.0693950\pi\)
−0.216288 + 0.976330i \(0.569395\pi\)
\(734\) 50.3624i 1.85891i
\(735\) −5.16285 5.08728i −0.190435 0.187647i
\(736\) 46.0986i 1.69922i
\(737\) 3.34119 3.34119i 0.123074 0.123074i
\(738\) −20.0396 + 33.6850i −0.737668 + 1.23996i
\(739\) 11.6627 0.429020 0.214510 0.976722i \(-0.431185\pi\)
0.214510 + 0.976722i \(0.431185\pi\)
\(740\) 10.1711 8.03172i 0.373896 0.295252i
\(741\) −5.65045 + 10.6737i −0.207575 + 0.392109i
\(742\) 15.9970 + 15.9970i 0.587267 + 0.587267i
\(743\) −8.16248 + 8.16248i −0.299452 + 0.299452i −0.840799 0.541347i \(-0.817915\pi\)
0.541347 + 0.840799i \(0.317915\pi\)
\(744\) 2.12533 + 17.0014i 0.0779184 + 0.623300i
\(745\) −7.94569 0.933847i −0.291108 0.0342135i
\(746\) −63.7524 −2.33414
\(747\) 11.5932 + 6.89692i 0.424172 + 0.252345i
\(748\) 3.66568 + 3.66568i 0.134030 + 0.134030i
\(749\) 8.37423i 0.305988i
\(750\) −33.5399 7.73337i −1.22470 0.282383i
\(751\) −36.7121 −1.33964 −0.669822 0.742522i \(-0.733630\pi\)
−0.669822 + 0.742522i \(0.733630\pi\)
\(752\) −22.6521 22.6521i −0.826038 0.826038i
\(753\) −7.05551 + 9.07154i −0.257117 + 0.330585i
\(754\) 35.5299 50.7016i 1.29392 1.84644i
\(755\) 4.29473 + 0.504754i 0.156301 + 0.0183699i
\(756\) −12.7031 + 4.97232i −0.462008 + 0.180842i
\(757\) 5.75644 + 5.75644i 0.209221 + 0.209221i 0.803937 0.594715i \(-0.202735\pi\)
−0.594715 + 0.803937i \(0.702735\pi\)
\(758\) 21.8110 + 21.8110i 0.792212 + 0.792212i
\(759\) −4.19933 33.5921i −0.152426 1.21932i
\(760\) −4.00469 5.07140i −0.145266 0.183959i
\(761\) 23.9994 0.869978 0.434989 0.900436i \(-0.356752\pi\)
0.434989 + 0.900436i \(0.356752\pi\)
\(762\) 18.4536 23.7265i 0.668502 0.859519i
\(763\) −25.1890 + 25.1890i −0.911903 + 0.911903i
\(764\) 19.5875 0.708652
\(765\) −7.35017 + 9.59555i −0.265746 + 0.346928i
\(766\) −40.5413 −1.46482
\(767\) −9.92127 + 1.74557i −0.358236 + 0.0630288i
\(768\) 27.7282 + 21.5660i 1.00055 + 0.778194i
\(769\) −14.2146 −0.512592 −0.256296 0.966598i \(-0.582502\pi\)
−0.256296 + 0.966598i \(0.582502\pi\)
\(770\) 2.60739 22.1851i 0.0939637 0.799496i
\(771\) 22.3900 2.79896i 0.806358 0.100802i
\(772\) −16.7031 + 16.7031i −0.601158 + 0.601158i
\(773\) −14.3909 + 14.3909i −0.517605 + 0.517605i −0.916846 0.399241i \(-0.869274\pi\)
0.399241 + 0.916846i \(0.369274\pi\)
\(774\) 6.42888 + 25.3118i 0.231081 + 0.909813i
\(775\) −7.67412 + 32.1969i −0.275663 + 1.15655i
\(776\) 19.5940i 0.703383i
\(777\) −12.0395 + 15.4797i −0.431916 + 0.555331i
\(778\) 8.17188 + 8.17188i 0.292976 + 0.292976i
\(779\) −14.2150 −0.509307
\(780\) 9.19224 13.3254i 0.329135 0.477126i
\(781\) 16.3469 0.584940
\(782\) 17.8351 + 17.8351i 0.637782 + 0.637782i
\(783\) −20.1155 + 45.9915i −0.718870 + 1.64360i
\(784\) 9.30982i 0.332494i
\(785\) 24.5560 19.3910i 0.876442 0.692094i
\(786\) 48.8736 6.10966i 1.74326 0.217924i
\(787\) 16.3053 16.3053i 0.581220 0.581220i −0.354019 0.935238i \(-0.615185\pi\)
0.935238 + 0.354019i \(0.115185\pi\)
\(788\) −19.9332 + 19.9332i −0.710090 + 0.710090i
\(789\) −2.64560 21.1632i −0.0941858 0.753430i
\(790\) −15.9746 20.2297i −0.568352 0.719740i
\(791\) 15.5686 0.553557
\(792\) −9.56175 5.68840i −0.339762 0.202128i
\(793\) −1.59017 9.03804i −0.0564686 0.320950i
\(794\) −65.6054 −2.32825
\(795\) 21.7668 0.160472i 0.771990 0.00569136i
\(796\) −20.9135 −0.741258
\(797\) 32.3953 32.3953i 1.14750 1.14750i 0.160459 0.987042i \(-0.448703\pi\)
0.987042 0.160459i \(-0.0512975\pi\)
\(798\) −10.6428 8.27756i −0.376750 0.293022i
\(799\) −11.6033 −0.410495
\(800\) 15.3328 + 24.9292i 0.542096 + 0.881382i
\(801\) 21.7267 5.51831i 0.767674 0.194980i
\(802\) −22.1203 22.1203i −0.781094 0.781094i
\(803\) −7.02221 7.02221i −0.247809 0.247809i
\(804\) 0.474213 + 3.79342i 0.0167242 + 0.133784i
\(805\) 4.65507 39.6079i 0.164070 1.39600i
\(806\) −34.7423 24.3462i −1.22375 0.857557i
\(807\) −27.2927 21.2273i −0.960749 0.747235i
\(808\) 10.9505 + 10.9505i 0.385238 + 0.385238i
\(809\) −9.15265 −0.321790 −0.160895 0.986972i \(-0.551438\pi\)
−0.160895 + 0.986972i \(0.551438\pi\)
\(810\) −14.0919 + 32.8774i −0.495140 + 1.15519i
\(811\) 5.06477i 0.177848i 0.996038 + 0.0889240i \(0.0283428\pi\)
−0.996038 + 0.0889240i \(0.971657\pi\)
\(812\) 17.9338 + 17.9338i 0.629355 + 0.629355i
\(813\) 16.4123 21.1019i 0.575605 0.740077i
\(814\) 22.0541 0.772996
\(815\) −7.65520 + 6.04503i −0.268150 + 0.211748i
\(816\) 15.4054 1.92582i 0.539296 0.0674171i
\(817\) −6.69726 + 6.69726i −0.234307 + 0.234307i
\(818\) −42.8502 42.8502i −1.49822 1.49822i
\(819\) −8.68672 + 22.9037i −0.303539 + 0.800320i
\(820\) 18.9239 + 2.22410i 0.660851 + 0.0776690i
\(821\) −25.6728 −0.895986 −0.447993 0.894037i \(-0.647861\pi\)
−0.447993 + 0.894037i \(0.647861\pi\)
\(822\) 17.2986 22.2415i 0.603358 0.775761i
\(823\) 18.2052 18.2052i 0.634593 0.634593i −0.314624 0.949216i \(-0.601878\pi\)
0.949216 + 0.314624i \(0.101878\pi\)
\(824\) 14.9428i 0.520557i
\(825\) −13.4439 16.7692i −0.468057 0.583829i
\(826\) 11.2462i 0.391306i
\(827\) −37.3547 37.3547i −1.29895 1.29895i −0.929086 0.369865i \(-0.879404\pi\)
−0.369865 0.929086i \(-0.620596\pi\)
\(828\) 23.5391 + 14.0037i 0.818040 + 0.486662i
\(829\) 13.2807i 0.461257i 0.973042 + 0.230628i \(0.0740782\pi\)
−0.973042 + 0.230628i \(0.925922\pi\)
\(830\) 2.08603 17.7491i 0.0724073 0.616082i
\(831\) 2.54965 + 20.3956i 0.0884463 + 0.707517i
\(832\) −1.61499 + 0.284144i −0.0559896 + 0.00985092i
\(833\) 2.38443 + 2.38443i 0.0826154 + 0.0826154i
\(834\) −36.6313 + 4.57926i −1.26844 + 0.158567i
\(835\) −1.35061 + 1.06653i −0.0467397 + 0.0369086i
\(836\) 5.56392i 0.192432i
\(837\) 31.5148 + 13.7838i 1.08931 + 0.476437i
\(838\) 18.7920 + 18.7920i 0.649159 + 0.649159i
\(839\) 41.5203i 1.43344i −0.697362 0.716719i \(-0.745643\pi\)
0.697362 0.716719i \(-0.254357\pi\)
\(840\) −9.33585 9.19920i −0.322117 0.317403i
\(841\) 64.3277 2.21820
\(842\) 33.8618 33.8618i 1.16695 1.16695i
\(843\) −27.7653 21.5948i −0.956288 0.743765i
\(844\) 25.0691i 0.862913i
\(845\) −6.66460 28.2946i −0.229269 0.973363i
\(846\) −33.2815 + 8.45310i −1.14424 + 0.290623i
\(847\) −7.75162 + 7.75162i −0.266349 + 0.266349i
\(848\) −19.7700 19.7700i −0.678906 0.678906i
\(849\) −32.1080 + 4.01381i −1.10195 + 0.137753i
\(850\) 15.5770 + 3.71277i 0.534286 + 0.127347i
\(851\) 39.3740 1.34972
\(852\) −8.11970 + 10.4398i −0.278176 + 0.357662i
\(853\) −28.1269 28.1269i −0.963046 0.963046i 0.0362950 0.999341i \(-0.488444\pi\)
−0.999341 + 0.0362950i \(0.988444\pi\)
\(854\) 10.2450 0.350578
\(855\) −12.8605 + 1.70406i −0.439819 + 0.0582776i
\(856\) 5.52581i 0.188868i
\(857\) −1.93395 + 1.93395i −0.0660625 + 0.0660625i −0.739366 0.673304i \(-0.764875\pi\)
0.673304 + 0.739366i \(0.264875\pi\)
\(858\) 26.3296 8.10214i 0.898879 0.276603i
\(859\) 17.6240i 0.601324i −0.953731 0.300662i \(-0.902792\pi\)
0.953731 0.300662i \(-0.0972076\pi\)
\(860\) 9.96365 7.86793i 0.339758 0.268294i
\(861\) −28.6094 + 3.57644i −0.975005 + 0.121885i
\(862\) −17.6810 17.6810i −0.602219 0.602219i
\(863\) 18.9188 18.9188i 0.644003 0.644003i −0.307534 0.951537i \(-0.599504\pi\)
0.951537 + 0.307534i \(0.0995038\pi\)
\(864\) 28.3228 11.0863i 0.963561 0.377162i
\(865\) 4.77947 3.77417i 0.162507 0.128326i
\(866\) 36.8187 1.25115
\(867\) −14.6248 + 18.8037i −0.496684 + 0.638606i
\(868\) 12.2888 12.2888i 0.417110 0.417110i
\(869\) 16.0957i 0.546010i
\(870\) 66.5017 0.490272i 2.25462 0.0166218i
\(871\) 5.62178 + 3.93954i 0.190487 + 0.133486i
\(872\) 16.6212 16.6212i 0.562864 0.562864i
\(873\) 33.8064 + 20.1118i 1.14417 + 0.680683i
\(874\) 27.0709i 0.915686i
\(875\) −10.6565 22.9675i −0.360257 0.776443i
\(876\) 7.97267 0.996659i 0.269372 0.0336740i
\(877\) −7.67412 + 7.67412i −0.259137 + 0.259137i −0.824703 0.565566i \(-0.808658\pi\)
0.565566 + 0.824703i \(0.308658\pi\)
\(878\) −0.627820 + 0.627820i −0.0211879 + 0.0211879i
\(879\) −22.6747 + 2.83455i −0.764799 + 0.0956070i
\(880\) −3.22237 + 27.4177i −0.108626 + 0.924252i
\(881\) 22.3843i 0.754145i 0.926184 + 0.377073i \(0.123069\pi\)
−0.926184 + 0.377073i \(0.876931\pi\)
\(882\) 8.57628 + 5.10213i 0.288778 + 0.171798i
\(883\) 25.3525 25.3525i 0.853181 0.853181i −0.137342 0.990524i \(-0.543856\pi\)
0.990524 + 0.137342i \(0.0438561\pi\)
\(884\) −4.32214 + 6.16775i −0.145369 + 0.207444i
\(885\) −7.70769 7.59488i −0.259091 0.255299i
\(886\) 8.72098i 0.292987i
\(887\) 16.1083 16.1083i 0.540864 0.540864i −0.382919 0.923782i \(-0.625081\pi\)
0.923782 + 0.382919i \(0.125081\pi\)
\(888\) 7.94439 10.2144i 0.266596 0.342773i
\(889\) 22.1107 0.741568
\(890\) −18.4048 23.3072i −0.616932 0.781259i
\(891\) −19.6289 + 10.6586i −0.657594 + 0.357077i
\(892\) 19.6876 19.6876i 0.659190 0.659190i
\(893\) −8.80598 8.80598i −0.294681 0.294681i
\(894\) 10.9298 1.36633i 0.365548 0.0456969i
\(895\) −4.77947 + 40.6664i −0.159760 + 1.35933i
\(896\) 24.6809i 0.824533i
\(897\) 47.0073 14.4651i 1.56953 0.482974i
\(898\) −18.5556 + 18.5556i −0.619209 + 0.619209i
\(899\) 63.9511i 2.13289i
\(900\) 17.3872 0.256382i 0.579574 0.00854607i
\(901\) −10.1270 −0.337379
\(902\) 22.9278 + 22.9278i 0.763411 + 0.763411i
\(903\) −11.7940 + 15.1640i −0.392480 + 0.504626i
\(904\) −10.2731 −0.341678
\(905\) 0.592869 5.04446i 0.0197076 0.167684i
\(906\) −5.90768 + 0.738515i −0.196269 + 0.0245355i
\(907\) 7.78524 + 7.78524i 0.258505 + 0.258505i 0.824446 0.565941i \(-0.191487\pi\)
−0.565941 + 0.824446i \(0.691487\pi\)
\(908\) −7.29112 + 7.29112i −0.241964 + 0.241964i
\(909\) 30.1334 7.65353i 0.999463 0.253852i
\(910\) 32.3994 1.85421i 1.07403 0.0614665i
\(911\) 13.2800i 0.439986i −0.975501 0.219993i \(-0.929397\pi\)
0.975501 0.219993i \(-0.0706034\pi\)
\(912\) 13.1530 + 10.2299i 0.435540 + 0.338747i
\(913\) 7.89092 7.89092i 0.261151 0.261151i
\(914\) 13.5837 0.449310
\(915\) 6.91875 7.02152i 0.228727 0.232124i
\(916\) 13.9859i 0.462106i
\(917\) 25.6194 + 25.6194i 0.846028 + 0.846028i
\(918\) 6.66865 15.2470i 0.220098 0.503225i
\(919\) 17.0532i 0.562534i 0.959630 + 0.281267i \(0.0907546\pi\)
−0.959630 + 0.281267i \(0.909245\pi\)
\(920\) −3.07169 + 26.1356i −0.101271 + 0.861666i
\(921\) −39.5324 + 4.94192i −1.30264 + 0.162842i
\(922\) 18.7964 + 18.7964i 0.619026 + 0.619026i
\(923\) 4.11522 + 23.3896i 0.135454 + 0.769879i
\(924\) 1.39986 + 11.1980i 0.0460519 + 0.368388i
\(925\) 21.2927 13.0961i 0.700099 0.430598i
\(926\) 32.6792i 1.07390i
\(927\) 25.7815 + 15.3377i 0.846777 + 0.503757i
\(928\) −39.9852 39.9852i −1.31258 1.31258i
\(929\) 17.0211i 0.558445i 0.960226 + 0.279223i \(0.0900768\pi\)
−0.960226 + 0.279223i \(0.909923\pi\)
\(930\) −0.335949 45.5690i −0.0110162 1.49427i
\(931\) 3.61918i 0.118614i
\(932\) 9.61770 9.61770i 0.315038 0.315038i
\(933\) −5.30030 + 6.81480i −0.173524 + 0.223106i
\(934\) 0.394106 0.0128955
\(935\) 6.19690 + 7.84753i 0.202660 + 0.256642i
\(936\) 5.73201 15.1132i 0.187357 0.493991i
\(937\) 10.5008 + 10.5008i 0.343048 + 0.343048i 0.857512 0.514464i \(-0.172009\pi\)
−0.514464 + 0.857512i \(0.672009\pi\)
\(938\) −5.41909 + 5.41909i −0.176940 + 0.176940i
\(939\) −34.6316 + 4.32928i −1.13016 + 0.141281i
\(940\) 10.3452 + 13.1008i 0.337425 + 0.427302i
\(941\) −49.0451 −1.59882 −0.799412 0.600783i \(-0.794856\pi\)
−0.799412 + 0.600783i \(0.794856\pi\)
\(942\) −26.4474 + 34.0045i −0.861704 + 1.10793i
\(943\) 40.9338 + 40.9338i 1.33299 + 1.33299i
\(944\) 13.8988i 0.452367i
\(945\) −25.4544 + 6.66525i −0.828032 + 0.216821i
\(946\) 21.6043 0.702417
\(947\) 10.6955 + 10.6955i 0.347558 + 0.347558i 0.859199 0.511641i \(-0.170962\pi\)
−0.511641 + 0.859199i \(0.670962\pi\)
\(948\) 10.2794 + 7.99491i 0.333858 + 0.259663i
\(949\) 8.27978 11.8154i 0.268773 0.383543i
\(950\) 9.00400 + 14.6394i 0.292128 + 0.474965i
\(951\) −4.35038 34.8004i −0.141071 1.12848i
\(952\) 4.31170 + 4.31170i 0.139743 + 0.139743i
\(953\) −15.7057 15.7057i −0.508756 0.508756i 0.405388 0.914145i \(-0.367136\pi\)
−0.914145 + 0.405388i \(0.867136\pi\)
\(954\) −29.0470 + 7.37759i −0.940432 + 0.238858i
\(955\) 37.5232 + 4.41005i 1.21422 + 0.142706i
\(956\) −33.7143 −1.09040
\(957\) 32.7797 + 25.4948i 1.05962 + 0.824130i
\(958\) 33.2995 33.2995i 1.07586 1.07586i
\(959\) 20.7268 0.669303
\(960\) −1.25466 1.23630i −0.0404940 0.0399013i
\(961\) −12.8213 −0.413589
\(962\) 5.55195 + 31.5556i 0.179002 + 1.01739i
\(963\) −9.53395 5.67186i −0.307227 0.182773i
\(964\) −5.02055 −0.161701
\(965\) −35.7582 + 28.2370i −1.15110 + 0.908980i
\(966\) 6.81091 + 54.4832i 0.219138 + 1.75297i
\(967\) 31.6460 31.6460i 1.01767 1.01767i 0.0178258 0.999841i \(-0.494326\pi\)
0.999841 0.0178258i \(-0.00567443\pi\)
\(968\) 5.11497 5.11497i 0.164402 0.164402i
\(969\) 5.98882 0.748659i 0.192389 0.0240504i
\(970\) 6.08301 51.7576i 0.195314 1.66184i
\(971\) 35.7161i 1.14618i −0.819491 0.573092i \(-0.805744\pi\)
0.819491 0.573092i \(-0.194256\pi\)
\(972\) 2.94288 17.8301i 0.0943931 0.571900i
\(973\) −19.2020 19.2020i −0.615589 0.615589i
\(974\) −11.5677 −0.370653
\(975\) 20.6094 23.4574i 0.660030 0.751239i
\(976\) −12.6614 −0.405283
\(977\) 3.00427 + 3.00427i 0.0961151 + 0.0961151i 0.753529 0.657414i \(-0.228350\pi\)
−0.657414 + 0.753529i \(0.728350\pi\)
\(978\) 8.24484 10.6007i 0.263641 0.338973i
\(979\) 18.5443i 0.592680i
\(980\) 0.566261 4.81807i 0.0180886 0.153908i
\(981\) −11.6168 45.7378i −0.370897 1.46030i
\(982\) −3.58443 + 3.58443i −0.114384 + 0.114384i
\(983\) −41.1733 + 41.1733i −1.31322 + 1.31322i −0.394198 + 0.919025i \(0.628978\pi\)
−0.919025 + 0.394198i \(0.871022\pi\)
\(984\) 18.8782 2.35995i 0.601814 0.0752324i
\(985\) −42.6732 + 33.6975i −1.35968 + 1.07369i
\(986\) −30.9398 −0.985323
\(987\) −19.9386 15.5075i −0.634652 0.493609i
\(988\) −7.96100 + 1.40067i −0.253273 + 0.0445614i
\(989\) 38.5710 1.22649
\(990\) 23.4915 + 17.9944i 0.746607 + 0.571900i
\(991\) −30.2659 −0.961429 −0.480715 0.876877i \(-0.659623\pi\)
−0.480715 + 0.876877i \(0.659623\pi\)
\(992\) −27.3991 + 27.3991i −0.869923 + 0.869923i
\(993\) −16.6272 + 21.3782i −0.527648 + 0.678418i
\(994\) −26.5132 −0.840948
\(995\) −40.0632 4.70858i −1.27009 0.149272i
\(996\) 1.11995 + 8.95895i 0.0354871 + 0.283875i
\(997\) 15.8921 + 15.8921i 0.503309 + 0.503309i 0.912465 0.409155i \(-0.134177\pi\)
−0.409155 + 0.912465i \(0.634177\pi\)
\(998\) 20.8444 + 20.8444i 0.659819 + 0.659819i
\(999\) −9.46906 24.1912i −0.299588 0.765376i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.s.b.77.4 yes 32
3.2 odd 2 inner 195.2.s.b.77.13 yes 32
5.2 odd 4 975.2.s.e.818.14 32
5.3 odd 4 inner 195.2.s.b.38.3 32
5.4 even 2 975.2.s.e.857.13 32
13.12 even 2 inner 195.2.s.b.77.14 yes 32
15.2 even 4 975.2.s.e.818.3 32
15.8 even 4 inner 195.2.s.b.38.14 yes 32
15.14 odd 2 975.2.s.e.857.4 32
39.38 odd 2 inner 195.2.s.b.77.3 yes 32
65.12 odd 4 975.2.s.e.818.4 32
65.38 odd 4 inner 195.2.s.b.38.13 yes 32
65.64 even 2 975.2.s.e.857.3 32
195.38 even 4 inner 195.2.s.b.38.4 yes 32
195.77 even 4 975.2.s.e.818.13 32
195.194 odd 2 975.2.s.e.857.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.s.b.38.3 32 5.3 odd 4 inner
195.2.s.b.38.4 yes 32 195.38 even 4 inner
195.2.s.b.38.13 yes 32 65.38 odd 4 inner
195.2.s.b.38.14 yes 32 15.8 even 4 inner
195.2.s.b.77.3 yes 32 39.38 odd 2 inner
195.2.s.b.77.4 yes 32 1.1 even 1 trivial
195.2.s.b.77.13 yes 32 3.2 odd 2 inner
195.2.s.b.77.14 yes 32 13.12 even 2 inner
975.2.s.e.818.3 32 15.2 even 4
975.2.s.e.818.4 32 65.12 odd 4
975.2.s.e.818.13 32 195.77 even 4
975.2.s.e.818.14 32 5.2 odd 4
975.2.s.e.857.3 32 65.64 even 2
975.2.s.e.857.4 32 15.14 odd 2
975.2.s.e.857.13 32 5.4 even 2
975.2.s.e.857.14 32 195.194 odd 2