Properties

Label 975.2.s.e.818.13
Level $975$
Weight $2$
Character 975.818
Analytic conductor $7.785$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(818,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.818");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 818.13
Character \(\chi\) \(=\) 975.818
Dual form 975.2.s.e.857.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25684 - 1.25684i) q^{2} +(-1.36721 + 1.06336i) q^{3} -1.15927i q^{4} +(-0.381882 + 3.05483i) q^{6} +(-1.60133 - 1.60133i) q^{7} +(1.05665 + 1.05665i) q^{8} +(0.738515 - 2.90768i) q^{9} +2.48179 q^{11} +(1.23273 + 1.58497i) q^{12} +(-0.624771 + 3.55101i) q^{13} -4.02523 q^{14} +4.97463 q^{16} +(-1.27410 - 1.27410i) q^{17} +(-2.72628 - 4.58267i) q^{18} +1.93388 q^{19} +(3.89216 + 0.486556i) q^{21} +(3.11920 - 3.11920i) q^{22} +(5.56883 - 5.56883i) q^{23} +(-2.56827 - 0.321058i) q^{24} +(3.67780 + 5.24827i) q^{26} +(2.08222 + 4.76071i) q^{27} +(-1.85639 + 1.85639i) q^{28} +9.66063 q^{29} +6.61976i q^{31} +(4.13899 - 4.13899i) q^{32} +(-3.39312 + 2.63904i) q^{33} -3.20267 q^{34} +(-3.37080 - 0.856142i) q^{36} +(3.53521 + 3.53521i) q^{37} +(2.43057 - 2.43057i) q^{38} +(-2.92182 - 5.51933i) q^{39} -7.35052 q^{41} +(5.50332 - 4.28028i) q^{42} +(3.46312 + 3.46312i) q^{43} -2.87707i q^{44} -13.9982i q^{46} +(4.55353 - 4.55353i) q^{47} +(-6.80136 + 5.28984i) q^{48} -1.87146i q^{49} +(3.09679 + 0.387128i) q^{51} +(4.11659 + 0.724281i) q^{52} +(3.97417 - 3.97417i) q^{53} +(8.60044 + 3.36643i) q^{54} -3.38411i q^{56} +(-2.64402 + 2.05642i) q^{57} +(12.1418 - 12.1418i) q^{58} -2.79393i q^{59} -2.54520 q^{61} +(8.31996 + 8.31996i) q^{62} +(-5.83877 + 3.47355i) q^{63} -0.454797i q^{64} +(-0.947751 + 7.58144i) q^{66} +(-1.34628 - 1.34628i) q^{67} +(-1.47703 + 1.47703i) q^{68} +(-1.69206 + 13.5354i) q^{69} +6.58676 q^{71} +(3.85277 - 2.29206i) q^{72} +(2.82950 - 2.82950i) q^{73} +8.88637 q^{74} -2.24190i q^{76} +(-3.97417 - 3.97417i) q^{77} +(-10.6091 - 3.26464i) q^{78} +6.48553i q^{79} +(-7.90919 - 4.29473i) q^{81} +(-9.23840 + 9.23840i) q^{82} +(-3.17953 - 3.17953i) q^{83} +(0.564052 - 4.51208i) q^{84} +8.70515 q^{86} +(-13.2081 + 10.2728i) q^{87} +(2.62239 + 2.62239i) q^{88} +7.47217i q^{89} +(6.68682 - 4.68588i) q^{91} +(-6.45580 - 6.45580i) q^{92} +(-7.03922 - 9.05059i) q^{93} -11.4461i q^{94} +(-1.25761 + 10.0601i) q^{96} +(-9.27171 - 9.27171i) q^{97} +(-2.35212 - 2.35212i) q^{98} +(1.83284 - 7.21624i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} + 24 q^{12} + 24 q^{16} - 24 q^{22} + 16 q^{27} - 8 q^{36} - 12 q^{42} + 64 q^{43} + 20 q^{48} + 16 q^{51} + 72 q^{52} + 8 q^{61} - 72 q^{66} - 84 q^{78} + 112 q^{81} - 48 q^{82} - 20 q^{87}+ \cdots - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25684 1.25684i 0.888717 0.888717i −0.105683 0.994400i \(-0.533703\pi\)
0.994400 + 0.105683i \(0.0337027\pi\)
\(3\) −1.36721 + 1.06336i −0.789358 + 0.613933i
\(4\) 1.15927i 0.579637i
\(5\) 0 0
\(6\) −0.381882 + 3.05483i −0.155903 + 1.24713i
\(7\) −1.60133 1.60133i −0.605247 0.605247i 0.336453 0.941700i \(-0.390773\pi\)
−0.941700 + 0.336453i \(0.890773\pi\)
\(8\) 1.05665 + 1.05665i 0.373584 + 0.373584i
\(9\) 0.738515 2.90768i 0.246172 0.969226i
\(10\) 0 0
\(11\) 2.48179 0.748287 0.374144 0.927371i \(-0.377937\pi\)
0.374144 + 0.927371i \(0.377937\pi\)
\(12\) 1.23273 + 1.58497i 0.355859 + 0.457541i
\(13\) −0.624771 + 3.55101i −0.173280 + 0.984873i
\(14\) −4.02523 −1.07579
\(15\) 0 0
\(16\) 4.97463 1.24366
\(17\) −1.27410 1.27410i −0.309014 0.309014i 0.535513 0.844527i \(-0.320118\pi\)
−0.844527 + 0.535513i \(0.820118\pi\)
\(18\) −2.72628 4.58267i −0.642591 1.08015i
\(19\) 1.93388 0.443663 0.221831 0.975085i \(-0.428797\pi\)
0.221831 + 0.975085i \(0.428797\pi\)
\(20\) 0 0
\(21\) 3.89216 + 0.486556i 0.849338 + 0.106175i
\(22\) 3.11920 3.11920i 0.665016 0.665016i
\(23\) 5.56883 5.56883i 1.16118 1.16118i 0.176964 0.984217i \(-0.443372\pi\)
0.984217 0.176964i \(-0.0566275\pi\)
\(24\) −2.56827 0.321058i −0.524247 0.0655358i
\(25\) 0 0
\(26\) 3.67780 + 5.24827i 0.721276 + 1.02927i
\(27\) 2.08222 + 4.76071i 0.400723 + 0.916199i
\(28\) −1.85639 + 1.85639i −0.350824 + 0.350824i
\(29\) 9.66063 1.79393 0.896967 0.442098i \(-0.145766\pi\)
0.896967 + 0.442098i \(0.145766\pi\)
\(30\) 0 0
\(31\) 6.61976i 1.18894i 0.804116 + 0.594472i \(0.202639\pi\)
−0.804116 + 0.594472i \(0.797361\pi\)
\(32\) 4.13899 4.13899i 0.731677 0.731677i
\(33\) −3.39312 + 2.63904i −0.590667 + 0.459399i
\(34\) −3.20267 −0.549253
\(35\) 0 0
\(36\) −3.37080 0.856142i −0.561800 0.142690i
\(37\) 3.53521 + 3.53521i 0.581186 + 0.581186i 0.935229 0.354043i \(-0.115193\pi\)
−0.354043 + 0.935229i \(0.615193\pi\)
\(38\) 2.43057 2.43057i 0.394291 0.394291i
\(39\) −2.92182 5.51933i −0.467866 0.883800i
\(40\) 0 0
\(41\) −7.35052 −1.14796 −0.573979 0.818870i \(-0.694601\pi\)
−0.573979 + 0.818870i \(0.694601\pi\)
\(42\) 5.50332 4.28028i 0.849181 0.660462i
\(43\) 3.46312 + 3.46312i 0.528121 + 0.528121i 0.920012 0.391891i \(-0.128179\pi\)
−0.391891 + 0.920012i \(0.628179\pi\)
\(44\) 2.87707i 0.433735i
\(45\) 0 0
\(46\) 13.9982i 2.06392i
\(47\) 4.55353 4.55353i 0.664200 0.664200i −0.292167 0.956367i \(-0.594376\pi\)
0.956367 + 0.292167i \(0.0943764\pi\)
\(48\) −6.80136 + 5.28984i −0.981691 + 0.763523i
\(49\) 1.87146i 0.267351i
\(50\) 0 0
\(51\) 3.09679 + 0.387128i 0.433637 + 0.0542087i
\(52\) 4.11659 + 0.724281i 0.570869 + 0.100440i
\(53\) 3.97417 3.97417i 0.545894 0.545894i −0.379356 0.925251i \(-0.623855\pi\)
0.925251 + 0.379356i \(0.123855\pi\)
\(54\) 8.60044 + 3.36643i 1.17037 + 0.458113i
\(55\) 0 0
\(56\) 3.38411i 0.452221i
\(57\) −2.64402 + 2.05642i −0.350209 + 0.272379i
\(58\) 12.1418 12.1418i 1.59430 1.59430i
\(59\) 2.79393i 0.363739i −0.983323 0.181869i \(-0.941785\pi\)
0.983323 0.181869i \(-0.0582148\pi\)
\(60\) 0 0
\(61\) −2.54520 −0.325880 −0.162940 0.986636i \(-0.552098\pi\)
−0.162940 + 0.986636i \(0.552098\pi\)
\(62\) 8.31996 + 8.31996i 1.05664 + 1.05664i
\(63\) −5.83877 + 3.47355i −0.735616 + 0.437627i
\(64\) 0.454797i 0.0568496i
\(65\) 0 0
\(66\) −0.947751 + 7.58144i −0.116660 + 0.933211i
\(67\) −1.34628 1.34628i −0.164475 0.164475i 0.620071 0.784546i \(-0.287104\pi\)
−0.784546 + 0.620071i \(0.787104\pi\)
\(68\) −1.47703 + 1.47703i −0.179116 + 0.179116i
\(69\) −1.69206 + 13.5354i −0.203700 + 1.62948i
\(70\) 0 0
\(71\) 6.58676 0.781704 0.390852 0.920453i \(-0.372180\pi\)
0.390852 + 0.920453i \(0.372180\pi\)
\(72\) 3.85277 2.29206i 0.454053 0.270121i
\(73\) 2.82950 2.82950i 0.331168 0.331168i −0.521862 0.853030i \(-0.674762\pi\)
0.853030 + 0.521862i \(0.174762\pi\)
\(74\) 8.88637 1.03302
\(75\) 0 0
\(76\) 2.24190i 0.257163i
\(77\) −3.97417 3.97417i −0.452899 0.452899i
\(78\) −10.6091 3.26464i −1.20125 0.369647i
\(79\) 6.48553i 0.729679i 0.931070 + 0.364840i \(0.118876\pi\)
−0.931070 + 0.364840i \(0.881124\pi\)
\(80\) 0 0
\(81\) −7.90919 4.29473i −0.878799 0.477192i
\(82\) −9.23840 + 9.23840i −1.02021 + 1.02021i
\(83\) −3.17953 3.17953i −0.348999 0.348999i 0.510738 0.859736i \(-0.329372\pi\)
−0.859736 + 0.510738i \(0.829372\pi\)
\(84\) 0.564052 4.51208i 0.0615431 0.492308i
\(85\) 0 0
\(86\) 8.70515 0.938700
\(87\) −13.2081 + 10.2728i −1.41606 + 1.10136i
\(88\) 2.62239 + 2.62239i 0.279548 + 0.279548i
\(89\) 7.47217i 0.792049i 0.918240 + 0.396024i \(0.129610\pi\)
−0.918240 + 0.396024i \(0.870390\pi\)
\(90\) 0 0
\(91\) 6.68682 4.68588i 0.700969 0.491214i
\(92\) −6.45580 6.45580i −0.673064 0.673064i
\(93\) −7.03922 9.05059i −0.729933 0.938503i
\(94\) 11.4461i 1.18057i
\(95\) 0 0
\(96\) −1.25761 + 10.0601i −0.128354 + 1.02676i
\(97\) −9.27171 9.27171i −0.941399 0.941399i 0.0569765 0.998376i \(-0.481854\pi\)
−0.998376 + 0.0569765i \(0.981854\pi\)
\(98\) −2.35212 2.35212i −0.237600 0.237600i
\(99\) 1.83284 7.21624i 0.184207 0.725260i
\(100\) 0 0
\(101\) 10.3634i 1.03120i 0.856830 + 0.515599i \(0.172430\pi\)
−0.856830 + 0.515599i \(0.827570\pi\)
\(102\) 4.37871 3.40560i 0.433557 0.337205i
\(103\) −7.07081 7.07081i −0.696707 0.696707i 0.266992 0.963699i \(-0.413970\pi\)
−0.963699 + 0.266992i \(0.913970\pi\)
\(104\) −4.41236 + 3.09202i −0.432667 + 0.303198i
\(105\) 0 0
\(106\) 9.98977i 0.970292i
\(107\) 2.61477 + 2.61477i 0.252779 + 0.252779i 0.822109 0.569330i \(-0.192797\pi\)
−0.569330 + 0.822109i \(0.692797\pi\)
\(108\) 5.51897 2.41386i 0.531063 0.232274i
\(109\) −15.7300 −1.50666 −0.753331 0.657642i \(-0.771554\pi\)
−0.753331 + 0.657642i \(0.771554\pi\)
\(110\) 0 0
\(111\) −8.59259 1.07415i −0.815573 0.101954i
\(112\) −7.96605 7.96605i −0.752721 0.752721i
\(113\) −4.86114 + 4.86114i −0.457298 + 0.457298i −0.897768 0.440470i \(-0.854812\pi\)
0.440470 + 0.897768i \(0.354812\pi\)
\(114\) −0.738515 + 5.90768i −0.0691683 + 0.553305i
\(115\) 0 0
\(116\) 11.1993i 1.03983i
\(117\) 9.86379 + 4.43911i 0.911908 + 0.410396i
\(118\) −3.51151 3.51151i −0.323261 0.323261i
\(119\) 4.08052i 0.374060i
\(120\) 0 0
\(121\) −4.84073 −0.440066
\(122\) −3.19890 + 3.19890i −0.289615 + 0.289615i
\(123\) 10.0497 7.81628i 0.906150 0.704770i
\(124\) 7.67412 0.689156
\(125\) 0 0
\(126\) −2.97269 + 11.7041i −0.264828 + 1.04268i
\(127\) −6.90382 + 6.90382i −0.612615 + 0.612615i −0.943627 0.331011i \(-0.892610\pi\)
0.331011 + 0.943627i \(0.392610\pi\)
\(128\) 7.70637 + 7.70637i 0.681153 + 0.681153i
\(129\) −8.41736 1.05225i −0.741107 0.0926453i
\(130\) 0 0
\(131\) 15.9988i 1.39782i −0.715209 0.698911i \(-0.753668\pi\)
0.715209 0.698911i \(-0.246332\pi\)
\(132\) 3.05938 + 3.93356i 0.266284 + 0.342372i
\(133\) −3.09679 3.09679i −0.268526 0.268526i
\(134\) −3.38411 −0.292343
\(135\) 0 0
\(136\) 2.69256i 0.230886i
\(137\) −6.47173 + 6.47173i −0.552917 + 0.552917i −0.927282 0.374364i \(-0.877861\pi\)
0.374364 + 0.927282i \(0.377861\pi\)
\(138\) 14.8852 + 19.1385i 1.26711 + 1.62917i
\(139\) 11.9913i 1.01709i 0.861036 + 0.508543i \(0.169816\pi\)
−0.861036 + 0.508543i \(0.830184\pi\)
\(140\) 0 0
\(141\) −1.38356 + 11.0677i −0.116517 + 0.932066i
\(142\) 8.27848 8.27848i 0.694714 0.694714i
\(143\) −1.55055 + 8.81285i −0.129664 + 0.736968i
\(144\) 3.67384 14.4646i 0.306153 1.20539i
\(145\) 0 0
\(146\) 7.11243i 0.588629i
\(147\) 1.99004 + 2.55867i 0.164136 + 0.211036i
\(148\) 4.09828 4.09828i 0.336877 0.336877i
\(149\) 3.57788i 0.293111i −0.989202 0.146556i \(-0.953181\pi\)
0.989202 0.146556i \(-0.0468187\pi\)
\(150\) 0 0
\(151\) 1.93388i 0.157377i 0.996899 + 0.0786885i \(0.0250732\pi\)
−0.996899 + 0.0786885i \(0.974927\pi\)
\(152\) 2.04344 + 2.04344i 0.165745 + 0.165745i
\(153\) −4.64561 + 2.76373i −0.375575 + 0.223434i
\(154\) −9.98977 −0.804998
\(155\) 0 0
\(156\) −6.39841 + 3.38719i −0.512283 + 0.271192i
\(157\) 9.89449 9.89449i 0.789666 0.789666i −0.191773 0.981439i \(-0.561424\pi\)
0.981439 + 0.191773i \(0.0614238\pi\)
\(158\) 8.15125 + 8.15125i 0.648479 + 0.648479i
\(159\) −1.20753 + 9.65951i −0.0957633 + 0.766049i
\(160\) 0 0
\(161\) −17.8351 −1.40560
\(162\) −15.3383 + 4.54279i −1.20509 + 0.356915i
\(163\) −3.08455 + 3.08455i −0.241600 + 0.241600i −0.817512 0.575912i \(-0.804647\pi\)
0.575912 + 0.817512i \(0.304647\pi\)
\(164\) 8.52127i 0.665400i
\(165\) 0 0
\(166\) −7.99229 −0.620322
\(167\) −0.544208 + 0.544208i −0.0421121 + 0.0421121i −0.727849 0.685737i \(-0.759480\pi\)
0.685737 + 0.727849i \(0.259480\pi\)
\(168\) 3.59854 + 4.62679i 0.277634 + 0.356964i
\(169\) −12.2193 4.43714i −0.939948 0.341318i
\(170\) 0 0
\(171\) 1.42820 5.62310i 0.109217 0.430010i
\(172\) 4.01470 4.01470i 0.306118 0.306118i
\(173\) 1.92582 1.92582i 0.146417 0.146417i −0.630098 0.776515i \(-0.716985\pi\)
0.776515 + 0.630098i \(0.216985\pi\)
\(174\) −3.68922 + 29.5116i −0.279679 + 2.23727i
\(175\) 0 0
\(176\) 12.3460 0.930614
\(177\) 2.97096 + 3.81988i 0.223311 + 0.287120i
\(178\) 9.39129 + 9.39129i 0.703907 + 0.703907i
\(179\) 18.3117 1.36868 0.684342 0.729161i \(-0.260090\pi\)
0.684342 + 0.729161i \(0.260090\pi\)
\(180\) 0 0
\(181\) −2.27148 −0.168838 −0.0844189 0.996430i \(-0.526903\pi\)
−0.0844189 + 0.996430i \(0.526903\pi\)
\(182\) 2.51485 14.2936i 0.186413 1.05951i
\(183\) 3.47982 2.70648i 0.257236 0.200069i
\(184\) 11.7687 0.867597
\(185\) 0 0
\(186\) −20.2223 2.52797i −1.48277 0.185360i
\(187\) −3.16204 3.16204i −0.231232 0.231232i
\(188\) −5.27879 5.27879i −0.384995 0.384995i
\(189\) 4.28917 10.9578i 0.311991 0.797064i
\(190\) 0 0
\(191\) 16.8964i 1.22258i 0.791407 + 0.611289i \(0.209349\pi\)
−0.791407 + 0.611289i \(0.790651\pi\)
\(192\) 0.483614 + 0.621802i 0.0349019 + 0.0448747i
\(193\) −14.4083 + 14.4083i −1.03713 + 1.03713i −0.0378452 + 0.999284i \(0.512049\pi\)
−0.999284 + 0.0378452i \(0.987951\pi\)
\(194\) −23.3060 −1.67328
\(195\) 0 0
\(196\) −2.16954 −0.154967
\(197\) −17.1945 + 17.1945i −1.22506 + 1.22506i −0.259249 + 0.965810i \(0.583475\pi\)
−0.965810 + 0.259249i \(0.916525\pi\)
\(198\) −6.76606 11.3732i −0.480843 0.808259i
\(199\) 18.0401i 1.27883i −0.768861 0.639416i \(-0.779176\pi\)
0.768861 0.639416i \(-0.220824\pi\)
\(200\) 0 0
\(201\) 3.27224 + 0.409060i 0.230806 + 0.0288529i
\(202\) 13.0251 + 13.0251i 0.916443 + 0.916443i
\(203\) −15.4699 15.4699i −1.08577 1.08577i
\(204\) 0.448787 3.59003i 0.0314214 0.251352i
\(205\) 0 0
\(206\) −17.7737 −1.23835
\(207\) −12.0797 20.3050i −0.839597 1.41130i
\(208\) −3.10801 + 17.6650i −0.215502 + 1.22484i
\(209\) 4.79948 0.331987
\(210\) 0 0
\(211\) 21.6248 1.48871 0.744356 0.667783i \(-0.232756\pi\)
0.744356 + 0.667783i \(0.232756\pi\)
\(212\) −4.60716 4.60716i −0.316421 0.316421i
\(213\) −9.00547 + 7.00412i −0.617045 + 0.479914i
\(214\) 6.57267 0.449298
\(215\) 0 0
\(216\) −2.83024 + 7.23061i −0.192574 + 0.491981i
\(217\) 10.6005 10.6005i 0.719606 0.719606i
\(218\) −19.7700 + 19.7700i −1.33900 + 1.33900i
\(219\) −0.859726 + 6.87730i −0.0580949 + 0.464725i
\(220\) 0 0
\(221\) 5.32036 3.72832i 0.357886 0.250794i
\(222\) −12.1495 + 9.44945i −0.815422 + 0.634205i
\(223\) 16.9827 16.9827i 1.13725 1.13725i 0.148304 0.988942i \(-0.452619\pi\)
0.988942 0.148304i \(-0.0473814\pi\)
\(224\) −13.2558 −0.885691
\(225\) 0 0
\(226\) 12.2193i 0.812817i
\(227\) −6.28938 + 6.28938i −0.417441 + 0.417441i −0.884321 0.466880i \(-0.845378\pi\)
0.466880 + 0.884321i \(0.345378\pi\)
\(228\) 2.38395 + 3.06514i 0.157881 + 0.202994i
\(229\) −12.0643 −0.797233 −0.398617 0.917118i \(-0.630510\pi\)
−0.398617 + 0.917118i \(0.630510\pi\)
\(230\) 0 0
\(231\) 9.65951 + 1.20753i 0.635549 + 0.0794496i
\(232\) 10.2079 + 10.2079i 0.670184 + 0.670184i
\(233\) 8.29631 8.29631i 0.543510 0.543510i −0.381046 0.924556i \(-0.624436\pi\)
0.924556 + 0.381046i \(0.124436\pi\)
\(234\) 17.9764 6.81793i 1.17515 0.445702i
\(235\) 0 0
\(236\) −3.23893 −0.210837
\(237\) −6.89648 8.86707i −0.447974 0.575978i
\(238\) 5.12854 + 5.12854i 0.332434 + 0.332434i
\(239\) 29.0823i 1.88118i −0.339550 0.940588i \(-0.610275\pi\)
0.339550 0.940588i \(-0.389725\pi\)
\(240\) 0 0
\(241\) 4.33077i 0.278970i −0.990224 0.139485i \(-0.955455\pi\)
0.990224 0.139485i \(-0.0445446\pi\)
\(242\) −6.08400 + 6.08400i −0.391094 + 0.391094i
\(243\) 15.3804 2.53856i 0.986651 0.162849i
\(244\) 2.95059i 0.188892i
\(245\) 0 0
\(246\) 2.80704 22.4546i 0.178970 1.43165i
\(247\) −1.20823 + 6.86723i −0.0768781 + 0.436951i
\(248\) −6.99480 + 6.99480i −0.444170 + 0.444170i
\(249\) 7.72807 + 0.966081i 0.489747 + 0.0612229i
\(250\) 0 0
\(251\) 6.63509i 0.418803i −0.977830 0.209401i \(-0.932848\pi\)
0.977830 0.209401i \(-0.0671515\pi\)
\(252\) 4.02680 + 6.76874i 0.253665 + 0.426391i
\(253\) 13.8207 13.8207i 0.868897 0.868897i
\(254\) 17.3540i 1.08888i
\(255\) 0 0
\(256\) 20.2809 1.26756
\(257\) −9.21184 9.21184i −0.574619 0.574619i 0.358797 0.933416i \(-0.383187\pi\)
−0.933416 + 0.358797i \(0.883187\pi\)
\(258\) −11.9017 + 9.25674i −0.740970 + 0.576299i
\(259\) 11.3221i 0.703522i
\(260\) 0 0
\(261\) 7.13452 28.0900i 0.441616 1.73873i
\(262\) −20.1079 20.1079i −1.24227 1.24227i
\(263\) 8.70709 8.70709i 0.536902 0.536902i −0.385716 0.922618i \(-0.626045\pi\)
0.922618 + 0.385716i \(0.126045\pi\)
\(264\) −6.37391 0.796799i −0.392287 0.0490396i
\(265\) 0 0
\(266\) −7.78431 −0.477287
\(267\) −7.94564 10.2160i −0.486265 0.625210i
\(268\) −1.56071 + 1.56071i −0.0953356 + 0.0953356i
\(269\) −19.9624 −1.21713 −0.608564 0.793505i \(-0.708254\pi\)
−0.608564 + 0.793505i \(0.708254\pi\)
\(270\) 0 0
\(271\) 15.4343i 0.937569i 0.883313 + 0.468784i \(0.155308\pi\)
−0.883313 + 0.468784i \(0.844692\pi\)
\(272\) −6.33817 6.33817i −0.384308 0.384308i
\(273\) −4.15947 + 13.5171i −0.251743 + 0.818092i
\(274\) 16.2678i 0.982774i
\(275\) 0 0
\(276\) 15.6913 + 1.96156i 0.944504 + 0.118072i
\(277\) −8.39129 + 8.39129i −0.504184 + 0.504184i −0.912735 0.408551i \(-0.866034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(278\) 15.0711 + 15.0711i 0.903903 + 0.903903i
\(279\) 19.2481 + 4.88880i 1.15236 + 0.292685i
\(280\) 0 0
\(281\) −20.3080 −1.21148 −0.605738 0.795664i \(-0.707122\pi\)
−0.605738 + 0.795664i \(0.707122\pi\)
\(282\) 12.1713 + 15.6492i 0.724793 + 0.931894i
\(283\) 13.2101 + 13.2101i 0.785258 + 0.785258i 0.980713 0.195455i \(-0.0626184\pi\)
−0.195455 + 0.980713i \(0.562618\pi\)
\(284\) 7.63586i 0.453105i
\(285\) 0 0
\(286\) 9.12752 + 13.0251i 0.539722 + 0.770190i
\(287\) 11.7706 + 11.7706i 0.694799 + 0.694799i
\(288\) −8.97814 15.0916i −0.529042 0.889278i
\(289\) 13.7533i 0.809020i
\(290\) 0 0
\(291\) 22.5355 + 2.81715i 1.32106 + 0.165145i
\(292\) −3.28016 3.28016i −0.191957 0.191957i
\(293\) 9.32896 + 9.32896i 0.545004 + 0.545004i 0.924992 0.379988i \(-0.124072\pi\)
−0.379988 + 0.924992i \(0.624072\pi\)
\(294\) 5.71699 + 0.714678i 0.333422 + 0.0416808i
\(295\) 0 0
\(296\) 7.47100i 0.434243i
\(297\) 5.16762 + 11.8151i 0.299856 + 0.685580i
\(298\) −4.49681 4.49681i −0.260493 0.260493i
\(299\) 16.2957 + 23.2542i 0.942405 + 1.34483i
\(300\) 0 0
\(301\) 11.0912i 0.639287i
\(302\) 2.43057 + 2.43057i 0.139864 + 0.139864i
\(303\) −11.0201 14.1689i −0.633086 0.813984i
\(304\) 9.62035 0.551765
\(305\) 0 0
\(306\) −2.36522 + 9.31233i −0.135211 + 0.532350i
\(307\) 16.2646 + 16.2646i 0.928272 + 0.928272i 0.997594 0.0693223i \(-0.0220837\pi\)
−0.0693223 + 0.997594i \(0.522084\pi\)
\(308\) −4.60716 + 4.60716i −0.262517 + 0.262517i
\(309\) 17.1861 + 2.14842i 0.977683 + 0.122220i
\(310\) 0 0
\(311\) 4.98446i 0.282643i −0.989964 0.141321i \(-0.954865\pi\)
0.989964 0.141321i \(-0.0451351\pi\)
\(312\) 2.74467 8.91938i 0.155386 0.504960i
\(313\) 14.2484 + 14.2484i 0.805365 + 0.805365i 0.983928 0.178564i \(-0.0571451\pi\)
−0.178564 + 0.983928i \(0.557145\pi\)
\(314\) 24.8715i 1.40358i
\(315\) 0 0
\(316\) 7.51851 0.422949
\(317\) 14.3178 14.3178i 0.804168 0.804168i −0.179576 0.983744i \(-0.557473\pi\)
0.983744 + 0.179576i \(0.0574727\pi\)
\(318\) 10.6228 + 13.6581i 0.595695 + 0.765908i
\(319\) 23.9756 1.34238
\(320\) 0 0
\(321\) −6.35538 0.794482i −0.354723 0.0443437i
\(322\) −22.4158 + 22.4158i −1.24918 + 1.24918i
\(323\) −2.46396 2.46396i −0.137098 0.137098i
\(324\) −4.97877 + 9.16892i −0.276598 + 0.509385i
\(325\) 0 0
\(326\) 7.75354i 0.429429i
\(327\) 21.5062 16.7267i 1.18930 0.924990i
\(328\) −7.76696 7.76696i −0.428859 0.428859i
\(329\) −14.5834 −0.804011
\(330\) 0 0
\(331\) 15.6364i 0.859455i −0.902959 0.429728i \(-0.858610\pi\)
0.902959 0.429728i \(-0.141390\pi\)
\(332\) −3.68595 + 3.68595i −0.202293 + 0.202293i
\(333\) 12.8901 7.66846i 0.706372 0.420229i
\(334\) 1.36796i 0.0748514i
\(335\) 0 0
\(336\) 19.3620 + 2.42044i 1.05629 + 0.132046i
\(337\) −12.4230 + 12.4230i −0.676726 + 0.676726i −0.959258 0.282532i \(-0.908826\pi\)
0.282532 + 0.959258i \(0.408826\pi\)
\(338\) −20.9344 + 9.78093i −1.13868 + 0.532013i
\(339\) 1.47703 11.8154i 0.0802213 0.641722i
\(340\) 0 0
\(341\) 16.4289i 0.889672i
\(342\) −5.27231 8.86234i −0.285094 0.479220i
\(343\) −14.2062 + 14.2062i −0.767061 + 0.767061i
\(344\) 7.31864i 0.394595i
\(345\) 0 0
\(346\) 4.84087i 0.260247i
\(347\) 6.65873 + 6.65873i 0.357459 + 0.357459i 0.862876 0.505416i \(-0.168661\pi\)
−0.505416 + 0.862876i \(0.668661\pi\)
\(348\) 11.9089 + 15.3118i 0.638387 + 0.820798i
\(349\) −3.35766 −0.179731 −0.0898657 0.995954i \(-0.528644\pi\)
−0.0898657 + 0.995954i \(0.528644\pi\)
\(350\) 0 0
\(351\) −18.2062 + 4.41961i −0.971777 + 0.235901i
\(352\) 10.2721 10.2721i 0.547504 0.547504i
\(353\) 10.8383 + 10.8383i 0.576864 + 0.576864i 0.934038 0.357174i \(-0.116260\pi\)
−0.357174 + 0.934038i \(0.616260\pi\)
\(354\) 8.53498 + 1.06695i 0.453629 + 0.0567079i
\(355\) 0 0
\(356\) 8.66230 0.459101
\(357\) −4.33907 5.57891i −0.229648 0.295267i
\(358\) 23.0149 23.0149i 1.21637 1.21637i
\(359\) 3.08162i 0.162642i −0.996688 0.0813208i \(-0.974086\pi\)
0.996688 0.0813208i \(-0.0259138\pi\)
\(360\) 0 0
\(361\) −15.2601 −0.803163
\(362\) −2.85488 + 2.85488i −0.150049 + 0.150049i
\(363\) 6.61828 5.14745i 0.347370 0.270171i
\(364\) −5.43222 7.75186i −0.284726 0.406308i
\(365\) 0 0
\(366\) 0.971968 7.77516i 0.0508056 0.406414i
\(367\) 20.0354 20.0354i 1.04584 1.04584i 0.0469411 0.998898i \(-0.485053\pi\)
0.998898 0.0469411i \(-0.0149473\pi\)
\(368\) 27.7029 27.7029i 1.44411 1.44411i
\(369\) −5.42847 + 21.3730i −0.282595 + 1.11263i
\(370\) 0 0
\(371\) −12.7280 −0.660802
\(372\) −10.4921 + 8.16038i −0.543991 + 0.423096i
\(373\) −25.3623 25.3623i −1.31321 1.31321i −0.919037 0.394171i \(-0.871032\pi\)
−0.394171 0.919037i \(-0.628968\pi\)
\(374\) −7.94834 −0.410999
\(375\) 0 0
\(376\) 9.62301 0.496269
\(377\) −6.03568 + 34.3050i −0.310853 + 1.76680i
\(378\) −8.38140 19.1630i −0.431092 0.985636i
\(379\) −17.3539 −0.891410 −0.445705 0.895180i \(-0.647047\pi\)
−0.445705 + 0.895180i \(0.647047\pi\)
\(380\) 0 0
\(381\) 2.09769 16.7802i 0.107468 0.859678i
\(382\) 21.2360 + 21.2360i 1.08653 + 1.08653i
\(383\) −16.1283 16.1283i −0.824118 0.824118i 0.162577 0.986696i \(-0.448019\pi\)
−0.986696 + 0.162577i \(0.948019\pi\)
\(384\) −18.7309 2.34154i −0.955857 0.119491i
\(385\) 0 0
\(386\) 36.2176i 1.84343i
\(387\) 12.6272 7.51207i 0.641877 0.381860i
\(388\) −10.7484 + 10.7484i −0.545670 + 0.545670i
\(389\) −6.50195 −0.329662 −0.164831 0.986322i \(-0.552708\pi\)
−0.164831 + 0.986322i \(0.552708\pi\)
\(390\) 0 0
\(391\) −14.1905 −0.717643
\(392\) 1.97749 1.97749i 0.0998782 0.0998782i
\(393\) 17.0125 + 21.8737i 0.858169 + 1.10338i
\(394\) 43.2214i 2.17746i
\(395\) 0 0
\(396\) −8.36561 2.12476i −0.420388 0.106773i
\(397\) −26.0994 26.0994i −1.30989 1.30989i −0.921490 0.388402i \(-0.873027\pi\)
−0.388402 0.921490i \(-0.626973\pi\)
\(398\) −22.6735 22.6735i −1.13652 1.13652i
\(399\) 7.52697 + 0.940942i 0.376820 + 0.0471060i
\(400\) 0 0
\(401\) 17.6000 0.878901 0.439450 0.898267i \(-0.355173\pi\)
0.439450 + 0.898267i \(0.355173\pi\)
\(402\) 4.62679 3.59854i 0.230763 0.179479i
\(403\) −23.5068 4.13584i −1.17096 0.206021i
\(404\) 12.0140 0.597720
\(405\) 0 0
\(406\) −38.8862 −1.92989
\(407\) 8.77366 + 8.77366i 0.434894 + 0.434894i
\(408\) 2.86318 + 3.68130i 0.141748 + 0.182251i
\(409\) 34.0937 1.68583 0.842913 0.538049i \(-0.180839\pi\)
0.842913 + 0.538049i \(0.180839\pi\)
\(410\) 0 0
\(411\) 1.96640 15.7300i 0.0969953 0.775904i
\(412\) −8.19701 + 8.19701i −0.403837 + 0.403837i
\(413\) −4.47402 + 4.47402i −0.220152 + 0.220152i
\(414\) −40.7023 10.3379i −2.00041 0.508080i
\(415\) 0 0
\(416\) 12.1117 + 17.2835i 0.593823 + 0.847393i
\(417\) −12.7511 16.3946i −0.624423 0.802845i
\(418\) 6.03216 6.03216i 0.295043 0.295043i
\(419\) −14.9518 −0.730444 −0.365222 0.930920i \(-0.619007\pi\)
−0.365222 + 0.930920i \(0.619007\pi\)
\(420\) 0 0
\(421\) 26.9421i 1.31308i −0.754293 0.656538i \(-0.772020\pi\)
0.754293 0.656538i \(-0.227980\pi\)
\(422\) 27.1788 27.1788i 1.32304 1.32304i
\(423\) −9.87734 16.6030i −0.480253 0.807267i
\(424\) 8.39865 0.407875
\(425\) 0 0
\(426\) −2.51537 + 20.1214i −0.121870 + 0.974886i
\(427\) 4.07572 + 4.07572i 0.197238 + 0.197238i
\(428\) 3.03123 3.03123i 0.146520 0.146520i
\(429\) −7.25134 13.6978i −0.350098 0.661336i
\(430\) 0 0
\(431\) 14.0679 0.677627 0.338814 0.940854i \(-0.389974\pi\)
0.338814 + 0.940854i \(0.389974\pi\)
\(432\) 10.3583 + 23.6828i 0.498362 + 1.13944i
\(433\) 14.6474 + 14.6474i 0.703907 + 0.703907i 0.965247 0.261340i \(-0.0841643\pi\)
−0.261340 + 0.965247i \(0.584164\pi\)
\(434\) 26.6461i 1.27905i
\(435\) 0 0
\(436\) 18.2354i 0.873317i
\(437\) 10.7695 10.7695i 0.515173 0.515173i
\(438\) 7.56310 + 9.72417i 0.361379 + 0.464639i
\(439\) 0.499524i 0.0238410i 0.999929 + 0.0119205i \(0.00379450\pi\)
−0.999929 + 0.0119205i \(0.996206\pi\)
\(440\) 0 0
\(441\) −5.44160 1.38210i −0.259124 0.0658144i
\(442\) 2.00093 11.3727i 0.0951748 0.540944i
\(443\) 3.46942 3.46942i 0.164837 0.164837i −0.619869 0.784706i \(-0.712814\pi\)
0.784706 + 0.619869i \(0.212814\pi\)
\(444\) −1.24524 + 9.96117i −0.0590965 + 0.472736i
\(445\) 0 0
\(446\) 42.6889i 2.02138i
\(447\) 3.80459 + 4.89171i 0.179951 + 0.231370i
\(448\) −0.728281 + 0.728281i −0.0344081 + 0.0344081i
\(449\) 14.7638i 0.696745i 0.937356 + 0.348372i \(0.113266\pi\)
−0.937356 + 0.348372i \(0.886734\pi\)
\(450\) 0 0
\(451\) −18.2424 −0.859003
\(452\) 5.63540 + 5.63540i 0.265067 + 0.265067i
\(453\) −2.05642 2.64402i −0.0966190 0.124227i
\(454\) 15.8094i 0.741974i
\(455\) 0 0
\(456\) −4.96674 0.620889i −0.232589 0.0290758i
\(457\) 5.40394 + 5.40394i 0.252786 + 0.252786i 0.822112 0.569326i \(-0.192796\pi\)
−0.569326 + 0.822112i \(0.692796\pi\)
\(458\) −15.1629 + 15.1629i −0.708515 + 0.708515i
\(459\) 3.41267 8.71857i 0.159290 0.406948i
\(460\) 0 0
\(461\) −14.9553 −0.696538 −0.348269 0.937395i \(-0.613230\pi\)
−0.348269 + 0.937395i \(0.613230\pi\)
\(462\) 13.6581 10.6228i 0.635432 0.494215i
\(463\) −13.0006 + 13.0006i −0.604188 + 0.604188i −0.941421 0.337233i \(-0.890509\pi\)
0.337233 + 0.941421i \(0.390509\pi\)
\(464\) 48.0581 2.23104
\(465\) 0 0
\(466\) 20.8542i 0.966053i
\(467\) 0.156785 + 0.156785i 0.00725515 + 0.00725515i 0.710725 0.703470i \(-0.248367\pi\)
−0.703470 + 0.710725i \(0.748367\pi\)
\(468\) 5.14614 11.4348i 0.237881 0.528576i
\(469\) 4.31170i 0.199096i
\(470\) 0 0
\(471\) −3.00638 + 24.0493i −0.138527 + 1.10813i
\(472\) 2.95222 2.95222i 0.135887 0.135887i
\(473\) 8.59473 + 8.59473i 0.395186 + 0.395186i
\(474\) −19.8122 2.47671i −0.910004 0.113759i
\(475\) 0 0
\(476\) 4.73044 0.216819
\(477\) −8.62063 14.4906i −0.394711 0.663479i
\(478\) −36.5517 36.5517i −1.67183 1.67183i
\(479\) 26.4947i 1.21057i −0.796008 0.605286i \(-0.793059\pi\)
0.796008 0.605286i \(-0.206941\pi\)
\(480\) 0 0
\(481\) −14.7623 + 10.3449i −0.673102 + 0.471686i
\(482\) −5.44307 5.44307i −0.247925 0.247925i
\(483\) 24.3843 18.9652i 1.10952 0.862947i
\(484\) 5.61173i 0.255079i
\(485\) 0 0
\(486\) 16.1401 22.5212i 0.732128 1.02158i
\(487\) −4.60192 4.60192i −0.208533 0.208533i 0.595111 0.803644i \(-0.297108\pi\)
−0.803644 + 0.595111i \(0.797108\pi\)
\(488\) −2.68940 2.68940i −0.121743 0.121743i
\(489\) 0.937222 7.49722i 0.0423827 0.339036i
\(490\) 0 0
\(491\) 2.85195i 0.128707i 0.997927 + 0.0643533i \(0.0204985\pi\)
−0.997927 + 0.0643533i \(0.979502\pi\)
\(492\) −9.06121 11.6504i −0.408511 0.525238i
\(493\) −12.3086 12.3086i −0.554351 0.554351i
\(494\) 7.11243 + 10.1495i 0.320003 + 0.456649i
\(495\) 0 0
\(496\) 32.9309i 1.47864i
\(497\) −10.5476 10.5476i −0.473124 0.473124i
\(498\) 10.9271 8.49871i 0.489656 0.380836i
\(499\) −16.5848 −0.742440 −0.371220 0.928545i \(-0.621060\pi\)
−0.371220 + 0.928545i \(0.621060\pi\)
\(500\) 0 0
\(501\) 0.165354 1.32274i 0.00738749 0.0590955i
\(502\) −8.33922 8.33922i −0.372197 0.372197i
\(503\) −25.3184 + 25.3184i −1.12889 + 1.12889i −0.138536 + 0.990357i \(0.544240\pi\)
−0.990357 + 0.138536i \(0.955760\pi\)
\(504\) −9.83991 2.49922i −0.438305 0.111324i
\(505\) 0 0
\(506\) 34.7406i 1.54441i
\(507\) 21.4246 6.92710i 0.951502 0.307643i
\(508\) 8.00343 + 8.00343i 0.355095 + 0.355095i
\(509\) 4.71947i 0.209187i −0.994515 0.104593i \(-0.966646\pi\)
0.994515 0.104593i \(-0.0333541\pi\)
\(510\) 0 0
\(511\) −9.06194 −0.400877
\(512\) 10.0770 10.0770i 0.445345 0.445345i
\(513\) 4.02676 + 9.20665i 0.177786 + 0.406484i
\(514\) −23.1555 −1.02135
\(515\) 0 0
\(516\) −1.21984 + 9.75803i −0.0537007 + 0.429573i
\(517\) 11.3009 11.3009i 0.497013 0.497013i
\(518\) −14.2300 14.2300i −0.625232 0.625232i
\(519\) −0.585149 + 4.68084i −0.0256852 + 0.205466i
\(520\) 0 0
\(521\) 3.26079i 0.142858i 0.997446 + 0.0714290i \(0.0227559\pi\)
−0.997446 + 0.0714290i \(0.977244\pi\)
\(522\) −26.3376 44.2715i −1.15277 1.93771i
\(523\) −3.50662 3.50662i −0.153334 0.153334i 0.626271 0.779605i \(-0.284580\pi\)
−0.779605 + 0.626271i \(0.784580\pi\)
\(524\) −18.5470 −0.810229
\(525\) 0 0
\(526\) 21.8868i 0.954308i
\(527\) 8.43423 8.43423i 0.367401 0.367401i
\(528\) −16.8795 + 13.1283i −0.734587 + 0.571335i
\(529\) 39.0237i 1.69668i
\(530\) 0 0
\(531\) −8.12385 2.06336i −0.352545 0.0895422i
\(532\) −3.59003 + 3.59003i −0.155647 + 0.155647i
\(533\) 4.59240 26.1018i 0.198919 1.13059i
\(534\) −22.8262 2.85349i −0.987787 0.123483i
\(535\) 0 0
\(536\) 2.84511i 0.122890i
\(537\) −25.0360 + 19.4720i −1.08038 + 0.840281i
\(538\) −25.0894 + 25.0894i −1.08168 + 1.08168i
\(539\) 4.64457i 0.200056i
\(540\) 0 0
\(541\) 37.7594i 1.62340i 0.584072 + 0.811702i \(0.301459\pi\)
−0.584072 + 0.811702i \(0.698541\pi\)
\(542\) 19.3984 + 19.3984i 0.833234 + 0.833234i
\(543\) 3.10558 2.41541i 0.133273 0.103655i
\(544\) −10.5470 −0.452197
\(545\) 0 0
\(546\) 11.7610 + 22.2165i 0.503324 + 0.950781i
\(547\) −16.3924 + 16.3924i −0.700888 + 0.700888i −0.964601 0.263714i \(-0.915053\pi\)
0.263714 + 0.964601i \(0.415053\pi\)
\(548\) 7.50251 + 7.50251i 0.320491 + 0.320491i
\(549\) −1.87967 + 7.40063i −0.0802224 + 0.315851i
\(550\) 0 0
\(551\) 18.6825 0.795901
\(552\) −16.0902 + 12.5144i −0.684844 + 0.532647i
\(553\) 10.3855 10.3855i 0.441636 0.441636i
\(554\) 21.0930i 0.896154i
\(555\) 0 0
\(556\) 13.9012 0.589541
\(557\) −9.89147 + 9.89147i −0.419115 + 0.419115i −0.884899 0.465784i \(-0.845773\pi\)
0.465784 + 0.884899i \(0.345773\pi\)
\(558\) 30.3362 18.0473i 1.28423 0.764005i
\(559\) −14.4612 + 10.1339i −0.611644 + 0.428619i
\(560\) 0 0
\(561\) 7.68558 + 0.960769i 0.324485 + 0.0405637i
\(562\) −25.5239 + 25.5239i −1.07666 + 1.07666i
\(563\) 1.00460 1.00460i 0.0423388 0.0423388i −0.685620 0.727959i \(-0.740469\pi\)
0.727959 + 0.685620i \(0.240469\pi\)
\(564\) 12.8305 + 1.60393i 0.540260 + 0.0675376i
\(565\) 0 0
\(566\) 33.2058 1.39574
\(567\) 5.78796 + 19.5426i 0.243071 + 0.820710i
\(568\) 6.95993 + 6.95993i 0.292032 + 0.292032i
\(569\) −5.08203 −0.213050 −0.106525 0.994310i \(-0.533972\pi\)
−0.106525 + 0.994310i \(0.533972\pi\)
\(570\) 0 0
\(571\) −19.2348 −0.804953 −0.402476 0.915430i \(-0.631850\pi\)
−0.402476 + 0.915430i \(0.631850\pi\)
\(572\) 10.2165 + 1.79751i 0.427174 + 0.0751578i
\(573\) −17.9670 23.1009i −0.750582 0.965052i
\(574\) 29.5875 1.23496
\(575\) 0 0
\(576\) −1.32240 0.335874i −0.0551001 0.0139948i
\(577\) −9.22836 9.22836i −0.384182 0.384182i 0.488424 0.872606i \(-0.337572\pi\)
−0.872606 + 0.488424i \(0.837572\pi\)
\(578\) −17.2857 17.2857i −0.718990 0.718990i
\(579\) 4.37786 35.0203i 0.181938 1.45539i
\(580\) 0 0
\(581\) 10.1830i 0.422461i
\(582\) 31.8642 24.7828i 1.32081 1.02728i
\(583\) 9.86305 9.86305i 0.408486 0.408486i
\(584\) 5.97960 0.247438
\(585\) 0 0
\(586\) 23.4500 0.968709
\(587\) 1.06387 1.06387i 0.0439105 0.0439105i −0.684811 0.728721i \(-0.740115\pi\)
0.728721 + 0.684811i \(0.240115\pi\)
\(588\) 2.96621 2.30701i 0.122324 0.0951393i
\(589\) 12.8018i 0.527490i
\(590\) 0 0
\(591\) 5.22446 41.7925i 0.214906 1.71912i
\(592\) 17.5864 + 17.5864i 0.722796 + 0.722796i
\(593\) −2.68739 2.68739i −0.110358 0.110358i 0.649772 0.760129i \(-0.274865\pi\)
−0.760129 + 0.649772i \(0.774865\pi\)
\(594\) 21.3445 + 8.35477i 0.875774 + 0.342800i
\(595\) 0 0
\(596\) −4.14774 −0.169898
\(597\) 19.1832 + 24.6646i 0.785117 + 1.00946i
\(598\) 49.7078 + 8.74568i 2.03270 + 0.357637i
\(599\) −25.8330 −1.05551 −0.527754 0.849397i \(-0.676966\pi\)
−0.527754 + 0.849397i \(0.676966\pi\)
\(600\) 0 0
\(601\) 26.5776 1.08412 0.542062 0.840338i \(-0.317644\pi\)
0.542062 + 0.840338i \(0.317644\pi\)
\(602\) −13.9398 13.9398i −0.568146 0.568146i
\(603\) −4.90881 + 2.92031i −0.199902 + 0.118924i
\(604\) 2.24190 0.0912216
\(605\) 0 0
\(606\) −31.6584 3.95760i −1.28604 0.160767i
\(607\) −6.01113 + 6.01113i −0.243984 + 0.243984i −0.818496 0.574512i \(-0.805192\pi\)
0.574512 + 0.818496i \(0.305192\pi\)
\(608\) 8.00431 8.00431i 0.324618 0.324618i
\(609\) 37.6007 + 4.70044i 1.52366 + 0.190471i
\(610\) 0 0
\(611\) 13.3247 + 19.0145i 0.539060 + 0.769245i
\(612\) 3.20392 + 5.38554i 0.129511 + 0.217698i
\(613\) 3.14970 3.14970i 0.127215 0.127215i −0.640632 0.767848i \(-0.721328\pi\)
0.767848 + 0.640632i \(0.221328\pi\)
\(614\) 40.8840 1.64994
\(615\) 0 0
\(616\) 8.39865i 0.338391i
\(617\) 2.15262 2.15262i 0.0866613 0.0866613i −0.662447 0.749109i \(-0.730482\pi\)
0.749109 + 0.662447i \(0.230482\pi\)
\(618\) 24.3003 18.8999i 0.977503 0.760265i
\(619\) 12.1579 0.488668 0.244334 0.969691i \(-0.421431\pi\)
0.244334 + 0.969691i \(0.421431\pi\)
\(620\) 0 0
\(621\) 38.1071 + 14.9161i 1.52918 + 0.598562i
\(622\) −6.26465 6.26465i −0.251190 0.251190i
\(623\) 11.9654 11.9654i 0.479385 0.479385i
\(624\) −14.5350 27.4566i −0.581865 1.09914i
\(625\) 0 0
\(626\) 35.8157 1.43148
\(627\) −6.56189 + 5.10360i −0.262057 + 0.203818i
\(628\) −11.4704 11.4704i −0.457720 0.457720i
\(629\) 9.00843i 0.359190i
\(630\) 0 0
\(631\) 24.6040i 0.979470i 0.871871 + 0.489735i \(0.162907\pi\)
−0.871871 + 0.489735i \(0.837093\pi\)
\(632\) −6.85297 + 6.85297i −0.272596 + 0.272596i
\(633\) −29.5656 + 22.9950i −1.17513 + 0.913970i
\(634\) 35.9903i 1.42936i
\(635\) 0 0
\(636\) 11.1980 + 1.39986i 0.444030 + 0.0555080i
\(637\) 6.64557 + 1.16923i 0.263307 + 0.0463268i
\(638\) 30.1334 30.1334i 1.19299 1.19299i
\(639\) 4.86442 19.1522i 0.192434 0.757648i
\(640\) 0 0
\(641\) 4.97308i 0.196425i 0.995165 + 0.0982124i \(0.0313124\pi\)
−0.995165 + 0.0982124i \(0.968688\pi\)
\(642\) −8.98621 + 6.98914i −0.354657 + 0.275839i
\(643\) −19.7877 + 19.7877i −0.780349 + 0.780349i −0.979890 0.199540i \(-0.936055\pi\)
0.199540 + 0.979890i \(0.436055\pi\)
\(644\) 20.6758i 0.814740i
\(645\) 0 0
\(646\) −6.19358 −0.243683
\(647\) 27.8871 + 27.8871i 1.09635 + 1.09635i 0.994833 + 0.101520i \(0.0323707\pi\)
0.101520 + 0.994833i \(0.467629\pi\)
\(648\) −3.81924 12.8953i −0.150034 0.506576i
\(649\) 6.93395i 0.272181i
\(650\) 0 0
\(651\) −3.22089 + 25.7652i −0.126236 + 1.00982i
\(652\) 3.57584 + 3.57584i 0.140041 + 0.140041i
\(653\) −14.6549 + 14.6549i −0.573491 + 0.573491i −0.933102 0.359611i \(-0.882909\pi\)
0.359611 + 0.933102i \(0.382909\pi\)
\(654\) 6.00701 48.0525i 0.234893 1.87900i
\(655\) 0 0
\(656\) −36.5661 −1.42767
\(657\) −6.13764 10.3169i −0.239452 0.402500i
\(658\) −18.3290 + 18.3290i −0.714538 + 0.714538i
\(659\) 27.9107 1.08725 0.543624 0.839329i \(-0.317052\pi\)
0.543624 + 0.839329i \(0.317052\pi\)
\(660\) 0 0
\(661\) 33.0735i 1.28641i 0.765693 + 0.643206i \(0.222396\pi\)
−0.765693 + 0.643206i \(0.777604\pi\)
\(662\) −19.6524 19.6524i −0.763813 0.763813i
\(663\) −3.30948 + 10.7549i −0.128529 + 0.417684i
\(664\) 6.71933i 0.260760i
\(665\) 0 0
\(666\) 6.56272 25.8387i 0.254300 1.00123i
\(667\) 53.7984 53.7984i 2.08308 2.08308i
\(668\) 0.630886 + 0.630886i 0.0244097 + 0.0244097i
\(669\) −5.16010 + 41.2777i −0.199501 + 1.59589i
\(670\) 0 0
\(671\) −6.31666 −0.243852
\(672\) 18.1234 14.0957i 0.699127 0.543755i
\(673\) −6.43667 6.43667i −0.248115 0.248115i 0.572082 0.820197i \(-0.306136\pi\)
−0.820197 + 0.572082i \(0.806136\pi\)
\(674\) 31.2275i 1.20284i
\(675\) 0 0
\(676\) −5.14386 + 14.1655i −0.197841 + 0.544829i
\(677\) −3.03614 3.03614i −0.116688 0.116688i 0.646351 0.763040i \(-0.276294\pi\)
−0.763040 + 0.646351i \(0.776294\pi\)
\(678\) −12.9936 16.7064i −0.499016 0.641604i
\(679\) 29.6942i 1.13956i
\(680\) 0 0
\(681\) 1.91099 15.2868i 0.0732294 0.585791i
\(682\) 20.6484 + 20.6484i 0.790667 + 0.790667i
\(683\) 6.75351 + 6.75351i 0.258416 + 0.258416i 0.824410 0.565994i \(-0.191507\pi\)
−0.565994 + 0.824410i \(0.691507\pi\)
\(684\) −6.51872 1.65568i −0.249250 0.0633064i
\(685\) 0 0
\(686\) 35.7097i 1.36340i
\(687\) 16.4944 12.8288i 0.629302 0.489448i
\(688\) 17.2277 + 17.2277i 0.656801 + 0.656801i
\(689\) 11.6294 + 16.5953i 0.443044 + 0.632229i
\(690\) 0 0
\(691\) 20.7041i 0.787620i 0.919192 + 0.393810i \(0.128843\pi\)
−0.919192 + 0.393810i \(0.871157\pi\)
\(692\) −2.23255 2.23255i −0.0848688 0.0848688i
\(693\) −14.4906 + 8.62063i −0.550452 + 0.327471i
\(694\) 16.7379 0.635361
\(695\) 0 0
\(696\) −24.8111 3.10163i −0.940464 0.117567i
\(697\) 9.36529 + 9.36529i 0.354736 + 0.354736i
\(698\) −4.22003 + 4.22003i −0.159730 + 0.159730i
\(699\) −2.52079 + 20.1648i −0.0953449 + 0.762702i
\(700\) 0 0
\(701\) 52.1479i 1.96960i −0.173691 0.984800i \(-0.555569\pi\)
0.173691 0.984800i \(-0.444431\pi\)
\(702\) −17.3275 + 28.4370i −0.653985 + 1.07328i
\(703\) 6.83669 + 6.83669i 0.257850 + 0.257850i
\(704\) 1.12871i 0.0425398i
\(705\) 0 0
\(706\) 27.2439 1.02534
\(707\) 16.5953 16.5953i 0.624129 0.624129i
\(708\) 4.42829 3.44416i 0.166425 0.129440i
\(709\) −4.45911 −0.167465 −0.0837327 0.996488i \(-0.526684\pi\)
−0.0837327 + 0.996488i \(0.526684\pi\)
\(710\) 0 0
\(711\) 18.8578 + 4.78966i 0.707224 + 0.179626i
\(712\) −7.89550 + 7.89550i −0.295896 + 0.295896i
\(713\) 36.8643 + 36.8643i 1.38058 + 1.38058i
\(714\) −12.4653 1.55828i −0.466502 0.0583171i
\(715\) 0 0
\(716\) 21.2283i 0.793340i
\(717\) 30.9250 + 39.7615i 1.15492 + 1.48492i
\(718\) −3.87309 3.87309i −0.144542 0.144542i
\(719\) 6.74702 0.251621 0.125811 0.992054i \(-0.459847\pi\)
0.125811 + 0.992054i \(0.459847\pi\)
\(720\) 0 0
\(721\) 22.6454i 0.843360i
\(722\) −19.1795 + 19.1795i −0.713785 + 0.713785i
\(723\) 4.60519 + 5.92107i 0.171269 + 0.220207i
\(724\) 2.63327i 0.0978646i
\(725\) 0 0
\(726\) 1.84859 14.7876i 0.0686075 0.548819i
\(727\) −9.42881 + 9.42881i −0.349695 + 0.349695i −0.859996 0.510301i \(-0.829534\pi\)
0.510301 + 0.859996i \(0.329534\pi\)
\(728\) 12.0170 + 2.11430i 0.445380 + 0.0783611i
\(729\) −18.3288 + 19.8257i −0.678843 + 0.734284i
\(730\) 0 0
\(731\) 8.82471i 0.326394i
\(732\) −3.13755 4.03407i −0.115967 0.149103i
\(733\) −20.5774 + 20.5774i −0.760042 + 0.760042i −0.976330 0.216288i \(-0.930605\pi\)
0.216288 + 0.976330i \(0.430605\pi\)
\(734\) 50.3624i 1.85891i
\(735\) 0 0
\(736\) 46.0986i 1.69922i
\(737\) −3.34119 3.34119i −0.123074 0.123074i
\(738\) 20.0396 + 33.6850i 0.737668 + 1.23996i
\(739\) 11.6627 0.429020 0.214510 0.976722i \(-0.431185\pi\)
0.214510 + 0.976722i \(0.431185\pi\)
\(740\) 0 0
\(741\) −5.65045 10.6737i −0.207575 0.392109i
\(742\) −15.9970 + 15.9970i −0.587267 + 0.587267i
\(743\) 8.16248 + 8.16248i 0.299452 + 0.299452i 0.840799 0.541347i \(-0.182085\pi\)
−0.541347 + 0.840799i \(0.682085\pi\)
\(744\) 2.12533 17.0014i 0.0779184 0.623300i
\(745\) 0 0
\(746\) −63.7524 −2.33414
\(747\) −11.5932 + 6.89692i −0.424172 + 0.252345i
\(748\) −3.66568 + 3.66568i −0.134030 + 0.134030i
\(749\) 8.37423i 0.305988i
\(750\) 0 0
\(751\) −36.7121 −1.33964 −0.669822 0.742522i \(-0.733630\pi\)
−0.669822 + 0.742522i \(0.733630\pi\)
\(752\) 22.6521 22.6521i 0.826038 0.826038i
\(753\) 7.05551 + 9.07154i 0.257117 + 0.330585i
\(754\) 35.5299 + 50.7016i 1.29392 + 1.84644i
\(755\) 0 0
\(756\) −12.7031 4.97232i −0.462008 0.180842i
\(757\) −5.75644 + 5.75644i −0.209221 + 0.209221i −0.803937 0.594715i \(-0.797265\pi\)
0.594715 + 0.803937i \(0.297265\pi\)
\(758\) −21.8110 + 21.8110i −0.792212 + 0.792212i
\(759\) −4.19933 + 33.5921i −0.152426 + 1.21932i
\(760\) 0 0
\(761\) 23.9994 0.869978 0.434989 0.900436i \(-0.356752\pi\)
0.434989 + 0.900436i \(0.356752\pi\)
\(762\) −18.4536 23.7265i −0.668502 0.859519i
\(763\) 25.1890 + 25.1890i 0.911903 + 0.911903i
\(764\) 19.5875 0.708652
\(765\) 0 0
\(766\) −40.5413 −1.46482
\(767\) 9.92127 + 1.74557i 0.358236 + 0.0630288i
\(768\) −27.7282 + 21.5660i −1.00055 + 0.778194i
\(769\) −14.2146 −0.512592 −0.256296 0.966598i \(-0.582502\pi\)
−0.256296 + 0.966598i \(0.582502\pi\)
\(770\) 0 0
\(771\) 22.3900 + 2.79896i 0.806358 + 0.100802i
\(772\) 16.7031 + 16.7031i 0.601158 + 0.601158i
\(773\) 14.3909 + 14.3909i 0.517605 + 0.517605i 0.916846 0.399241i \(-0.130726\pi\)
−0.399241 + 0.916846i \(0.630726\pi\)
\(774\) 6.42888 25.3118i 0.231081 0.909813i
\(775\) 0 0
\(776\) 19.5940i 0.703383i
\(777\) 12.0395 + 15.4797i 0.431916 + 0.555331i
\(778\) −8.17188 + 8.17188i −0.292976 + 0.292976i
\(779\) −14.2150 −0.509307
\(780\) 0 0
\(781\) 16.3469 0.584940
\(782\) −17.8351 + 17.8351i −0.637782 + 0.637782i
\(783\) 20.1155 + 45.9915i 0.718870 + 1.64360i
\(784\) 9.30982i 0.332494i
\(785\) 0 0
\(786\) 48.8736 + 6.10966i 1.74326 + 0.217924i
\(787\) −16.3053 16.3053i −0.581220 0.581220i 0.354019 0.935238i \(-0.384815\pi\)
−0.935238 + 0.354019i \(0.884815\pi\)
\(788\) 19.9332 + 19.9332i 0.710090 + 0.710090i
\(789\) −2.64560 + 21.1632i −0.0941858 + 0.753430i
\(790\) 0 0
\(791\) 15.5686 0.553557
\(792\) 9.56175 5.68840i 0.339762 0.202128i
\(793\) 1.59017 9.03804i 0.0564686 0.320950i
\(794\) −65.6054 −2.32825
\(795\) 0 0
\(796\) −20.9135 −0.741258
\(797\) −32.3953 32.3953i −1.14750 1.14750i −0.987042 0.160459i \(-0.948703\pi\)
−0.160459 0.987042i \(-0.551297\pi\)
\(798\) 10.6428 8.27756i 0.376750 0.293022i
\(799\) −11.6033 −0.410495
\(800\) 0 0
\(801\) 21.7267 + 5.51831i 0.767674 + 0.194980i
\(802\) 22.1203 22.1203i 0.781094 0.781094i
\(803\) 7.02221 7.02221i 0.247809 0.247809i
\(804\) 0.474213 3.79342i 0.0167242 0.133784i
\(805\) 0 0
\(806\) −34.7423 + 24.3462i −1.22375 + 0.857557i
\(807\) 27.2927 21.2273i 0.960749 0.747235i
\(808\) −10.9505 + 10.9505i −0.385238 + 0.385238i
\(809\) −9.15265 −0.321790 −0.160895 0.986972i \(-0.551438\pi\)
−0.160895 + 0.986972i \(0.551438\pi\)
\(810\) 0 0
\(811\) 5.06477i 0.177848i −0.996038 0.0889240i \(-0.971657\pi\)
0.996038 0.0889240i \(-0.0283428\pi\)
\(812\) −17.9338 + 17.9338i −0.629355 + 0.629355i
\(813\) −16.4123 21.1019i −0.575605 0.740077i
\(814\) 22.0541 0.772996
\(815\) 0 0
\(816\) 15.4054 + 1.92582i 0.539296 + 0.0674171i
\(817\) 6.69726 + 6.69726i 0.234307 + 0.234307i
\(818\) 42.8502 42.8502i 1.49822 1.49822i
\(819\) −8.68672 22.9037i −0.303539 0.800320i
\(820\) 0 0
\(821\) −25.6728 −0.895986 −0.447993 0.894037i \(-0.647861\pi\)
−0.447993 + 0.894037i \(0.647861\pi\)
\(822\) −17.2986 22.2415i −0.603358 0.775761i
\(823\) −18.2052 18.2052i −0.634593 0.634593i 0.314624 0.949216i \(-0.398122\pi\)
−0.949216 + 0.314624i \(0.898122\pi\)
\(824\) 14.9428i 0.520557i
\(825\) 0 0
\(826\) 11.2462i 0.391306i
\(827\) 37.3547 37.3547i 1.29895 1.29895i 0.369865 0.929086i \(-0.379404\pi\)
0.929086 0.369865i \(-0.120596\pi\)
\(828\) −23.5391 + 14.0037i −0.818040 + 0.486662i
\(829\) 13.2807i 0.461257i −0.973042 0.230628i \(-0.925922\pi\)
0.973042 0.230628i \(-0.0740782\pi\)
\(830\) 0 0
\(831\) 2.54965 20.3956i 0.0884463 0.707517i
\(832\) 1.61499 + 0.284144i 0.0559896 + 0.00985092i
\(833\) −2.38443 + 2.38443i −0.0826154 + 0.0826154i
\(834\) −36.6313 4.57926i −1.26844 0.158567i
\(835\) 0 0
\(836\) 5.56392i 0.192432i
\(837\) −31.5148 + 13.7838i −1.08931 + 0.476437i
\(838\) −18.7920 + 18.7920i −0.649159 + 0.649159i
\(839\) 41.5203i 1.43344i 0.697362 + 0.716719i \(0.254357\pi\)
−0.697362 + 0.716719i \(0.745643\pi\)
\(840\) 0 0
\(841\) 64.3277 2.21820
\(842\) −33.8618 33.8618i −1.16695 1.16695i
\(843\) 27.7653 21.5948i 0.956288 0.743765i
\(844\) 25.0691i 0.862913i
\(845\) 0 0
\(846\) −33.2815 8.45310i −1.14424 0.290623i
\(847\) 7.75162 + 7.75162i 0.266349 + 0.266349i
\(848\) 19.7700 19.7700i 0.678906 0.678906i
\(849\) −32.1080 4.01381i −1.10195 0.137753i
\(850\) 0 0
\(851\) 39.3740 1.34972
\(852\) 8.11970 + 10.4398i 0.278176 + 0.357662i
\(853\) 28.1269 28.1269i 0.963046 0.963046i −0.0362950 0.999341i \(-0.511556\pi\)
0.999341 + 0.0362950i \(0.0115556\pi\)
\(854\) 10.2450 0.350578
\(855\) 0 0
\(856\) 5.52581i 0.188868i
\(857\) 1.93395 + 1.93395i 0.0660625 + 0.0660625i 0.739366 0.673304i \(-0.235125\pi\)
−0.673304 + 0.739366i \(0.735125\pi\)
\(858\) −26.3296 8.10214i −0.898879 0.276603i
\(859\) 17.6240i 0.601324i 0.953731 + 0.300662i \(0.0972076\pi\)
−0.953731 + 0.300662i \(0.902792\pi\)
\(860\) 0 0
\(861\) −28.6094 3.57644i −0.975005 0.121885i
\(862\) 17.6810 17.6810i 0.602219 0.602219i
\(863\) −18.9188 18.9188i −0.644003 0.644003i 0.307534 0.951537i \(-0.400496\pi\)
−0.951537 + 0.307534i \(0.900496\pi\)
\(864\) 28.3228 + 11.0863i 0.963561 + 0.377162i
\(865\) 0 0
\(866\) 36.8187 1.25115
\(867\) 14.6248 + 18.8037i 0.496684 + 0.638606i
\(868\) −12.2888 12.2888i −0.417110 0.417110i
\(869\) 16.0957i 0.546010i
\(870\) 0 0
\(871\) 5.62178 3.93954i 0.190487 0.133486i
\(872\) −16.6212 16.6212i −0.562864 0.562864i
\(873\) −33.8064 + 20.1118i −1.14417 + 0.680683i
\(874\) 27.0709i 0.915686i
\(875\) 0 0
\(876\) 7.97267 + 0.996659i 0.269372 + 0.0336740i
\(877\) 7.67412 + 7.67412i 0.259137 + 0.259137i 0.824703 0.565566i \(-0.191342\pi\)
−0.565566 + 0.824703i \(0.691342\pi\)
\(878\) 0.627820 + 0.627820i 0.0211879 + 0.0211879i
\(879\) −22.6747 2.83455i −0.764799 0.0956070i
\(880\) 0 0
\(881\) 22.3843i 0.754145i −0.926184 0.377073i \(-0.876931\pi\)
0.926184 0.377073i \(-0.123069\pi\)
\(882\) −8.57628 + 5.10213i −0.288778 + 0.171798i
\(883\) −25.3525 25.3525i −0.853181 0.853181i 0.137342 0.990524i \(-0.456144\pi\)
−0.990524 + 0.137342i \(0.956144\pi\)
\(884\) −4.32214 6.16775i −0.145369 0.207444i
\(885\) 0 0
\(886\) 8.72098i 0.292987i
\(887\) −16.1083 16.1083i −0.540864 0.540864i 0.382919 0.923782i \(-0.374919\pi\)
−0.923782 + 0.382919i \(0.874919\pi\)
\(888\) −7.94439 10.2144i −0.266596 0.342773i
\(889\) 22.1107 0.741568
\(890\) 0 0
\(891\) −19.6289 10.6586i −0.657594 0.357077i
\(892\) −19.6876 19.6876i −0.659190 0.659190i
\(893\) 8.80598 8.80598i 0.294681 0.294681i
\(894\) 10.9298 + 1.36633i 0.365548 + 0.0456969i
\(895\) 0 0
\(896\) 24.6809i 0.824533i
\(897\) −47.0073 14.4651i −1.56953 0.482974i
\(898\) 18.5556 + 18.5556i 0.619209 + 0.619209i
\(899\) 63.9511i 2.13289i
\(900\) 0 0
\(901\) −10.1270 −0.337379
\(902\) −22.9278 + 22.9278i −0.763411 + 0.763411i
\(903\) 11.7940 + 15.1640i 0.392480 + 0.504626i
\(904\) −10.2731 −0.341678
\(905\) 0 0
\(906\) −5.90768 0.738515i −0.196269 0.0245355i
\(907\) −7.78524 + 7.78524i −0.258505 + 0.258505i −0.824446 0.565941i \(-0.808513\pi\)
0.565941 + 0.824446i \(0.308513\pi\)
\(908\) 7.29112 + 7.29112i 0.241964 + 0.241964i
\(909\) 30.1334 + 7.65353i 0.999463 + 0.253852i
\(910\) 0 0
\(911\) 13.2800i 0.439986i 0.975501 + 0.219993i \(0.0706034\pi\)
−0.975501 + 0.219993i \(0.929397\pi\)
\(912\) −13.1530 + 10.2299i −0.435540 + 0.338747i
\(913\) −7.89092 7.89092i −0.261151 0.261151i
\(914\) 13.5837 0.449310
\(915\) 0 0
\(916\) 13.9859i 0.462106i
\(917\) −25.6194 + 25.6194i −0.846028 + 0.846028i
\(918\) −6.66865 15.2470i −0.220098 0.503225i
\(919\) 17.0532i 0.562534i −0.959630 0.281267i \(-0.909245\pi\)
0.959630 0.281267i \(-0.0907546\pi\)
\(920\) 0 0
\(921\) −39.5324 4.94192i −1.30264 0.162842i
\(922\) −18.7964 + 18.7964i −0.619026 + 0.619026i
\(923\) −4.11522 + 23.3896i −0.135454 + 0.769879i
\(924\) 1.39986 11.1980i 0.0460519 0.368388i
\(925\) 0 0
\(926\) 32.6792i 1.07390i
\(927\) −25.7815 + 15.3377i −0.846777 + 0.503757i
\(928\) 39.9852 39.9852i 1.31258 1.31258i
\(929\) 17.0211i 0.558445i −0.960226 0.279223i \(-0.909923\pi\)
0.960226 0.279223i \(-0.0900768\pi\)
\(930\) 0 0
\(931\) 3.61918i 0.118614i
\(932\) −9.61770 9.61770i −0.315038 0.315038i
\(933\) 5.30030 + 6.81480i 0.173524 + 0.223106i
\(934\) 0.394106 0.0128955
\(935\) 0 0
\(936\) 5.73201 + 15.1132i 0.187357 + 0.493991i
\(937\) −10.5008 + 10.5008i −0.343048 + 0.343048i −0.857512 0.514464i \(-0.827991\pi\)
0.514464 + 0.857512i \(0.327991\pi\)
\(938\) 5.41909 + 5.41909i 0.176940 + 0.176940i
\(939\) −34.6316 4.32928i −1.13016 0.141281i
\(940\) 0 0
\(941\) −49.0451 −1.59882 −0.799412 0.600783i \(-0.794856\pi\)
−0.799412 + 0.600783i \(0.794856\pi\)
\(942\) 26.4474 + 34.0045i 0.861704 + 1.10793i
\(943\) −40.9338 + 40.9338i −1.33299 + 1.33299i
\(944\) 13.8988i 0.452367i
\(945\) 0 0
\(946\) 21.6043 0.702417
\(947\) −10.6955 + 10.6955i −0.347558 + 0.347558i −0.859199 0.511641i \(-0.829038\pi\)
0.511641 + 0.859199i \(0.329038\pi\)
\(948\) −10.2794 + 7.99491i −0.333858 + 0.259663i
\(949\) 8.27978 + 11.8154i 0.268773 + 0.383543i
\(950\) 0 0
\(951\) −4.35038 + 34.8004i −0.141071 + 1.12848i
\(952\) −4.31170 + 4.31170i −0.139743 + 0.139743i
\(953\) 15.7057 15.7057i 0.508756 0.508756i −0.405388 0.914145i \(-0.632864\pi\)
0.914145 + 0.405388i \(0.132864\pi\)
\(954\) −29.0470 7.37759i −0.940432 0.238858i
\(955\) 0 0
\(956\) −33.7143 −1.09040
\(957\) −32.7797 + 25.4948i −1.05962 + 0.824130i
\(958\) −33.2995 33.2995i −1.07586 1.07586i
\(959\) 20.7268 0.669303
\(960\) 0 0
\(961\) −12.8213 −0.413589
\(962\) −5.55195 + 31.5556i −0.179002 + 1.01739i
\(963\) 9.53395 5.67186i 0.307227 0.182773i
\(964\) −5.02055 −0.161701
\(965\) 0 0
\(966\) 6.81091 54.4832i 0.219138 1.75297i
\(967\) −31.6460 31.6460i −1.01767 1.01767i −0.999841 0.0178258i \(-0.994326\pi\)
−0.0178258 0.999841i \(-0.505674\pi\)
\(968\) −5.11497 5.11497i −0.164402 0.164402i
\(969\) 5.98882 + 0.748659i 0.192389 + 0.0240504i
\(970\) 0 0
\(971\) 35.7161i 1.14618i 0.819491 + 0.573092i \(0.194256\pi\)
−0.819491 + 0.573092i \(0.805744\pi\)
\(972\) −2.94288 17.8301i −0.0943931 0.571900i
\(973\) 19.2020 19.2020i 0.615589 0.615589i
\(974\) −11.5677 −0.370653
\(975\) 0 0
\(976\) −12.6614 −0.405283
\(977\) −3.00427 + 3.00427i −0.0961151 + 0.0961151i −0.753529 0.657414i \(-0.771650\pi\)
0.657414 + 0.753529i \(0.271650\pi\)
\(978\) −8.24484 10.6007i −0.263641 0.338973i
\(979\) 18.5443i 0.592680i
\(980\) 0 0
\(981\) −11.6168 + 45.7378i −0.370897 + 1.46030i
\(982\) 3.58443 + 3.58443i 0.114384 + 0.114384i
\(983\) 41.1733 + 41.1733i 1.31322 + 1.31322i 0.919025 + 0.394198i \(0.128978\pi\)
0.394198 + 0.919025i \(0.371022\pi\)
\(984\) 18.8782 + 2.35995i 0.601814 + 0.0752324i
\(985\) 0 0
\(986\) −30.9398 −0.985323
\(987\) 19.9386 15.5075i 0.634652 0.493609i
\(988\) 7.96100 + 1.40067i 0.253273 + 0.0445614i
\(989\) 38.5710 1.22649
\(990\) 0 0
\(991\) −30.2659 −0.961429 −0.480715 0.876877i \(-0.659623\pi\)
−0.480715 + 0.876877i \(0.659623\pi\)
\(992\) 27.3991 + 27.3991i 0.869923 + 0.869923i
\(993\) 16.6272 + 21.3782i 0.527648 + 0.678418i
\(994\) −26.5132 −0.840948
\(995\) 0 0
\(996\) 1.11995 8.95895i 0.0354871 0.283875i
\(997\) −15.8921 + 15.8921i −0.503309 + 0.503309i −0.912465 0.409155i \(-0.865823\pi\)
0.409155 + 0.912465i \(0.365823\pi\)
\(998\) −20.8444 + 20.8444i −0.659819 + 0.659819i
\(999\) −9.46906 + 24.1912i −0.299588 + 0.765376i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.s.e.818.13 32
3.2 odd 2 inner 975.2.s.e.818.4 32
5.2 odd 4 inner 975.2.s.e.857.14 32
5.3 odd 4 195.2.s.b.77.3 yes 32
5.4 even 2 195.2.s.b.38.4 yes 32
13.12 even 2 inner 975.2.s.e.818.3 32
15.2 even 4 inner 975.2.s.e.857.3 32
15.8 even 4 195.2.s.b.77.14 yes 32
15.14 odd 2 195.2.s.b.38.13 yes 32
39.38 odd 2 inner 975.2.s.e.818.14 32
65.12 odd 4 inner 975.2.s.e.857.4 32
65.38 odd 4 195.2.s.b.77.13 yes 32
65.64 even 2 195.2.s.b.38.14 yes 32
195.38 even 4 195.2.s.b.77.4 yes 32
195.77 even 4 inner 975.2.s.e.857.13 32
195.194 odd 2 195.2.s.b.38.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.s.b.38.3 32 195.194 odd 2
195.2.s.b.38.4 yes 32 5.4 even 2
195.2.s.b.38.13 yes 32 15.14 odd 2
195.2.s.b.38.14 yes 32 65.64 even 2
195.2.s.b.77.3 yes 32 5.3 odd 4
195.2.s.b.77.4 yes 32 195.38 even 4
195.2.s.b.77.13 yes 32 65.38 odd 4
195.2.s.b.77.14 yes 32 15.8 even 4
975.2.s.e.818.3 32 13.12 even 2 inner
975.2.s.e.818.4 32 3.2 odd 2 inner
975.2.s.e.818.13 32 1.1 even 1 trivial
975.2.s.e.818.14 32 39.38 odd 2 inner
975.2.s.e.857.3 32 15.2 even 4 inner
975.2.s.e.857.4 32 65.12 odd 4 inner
975.2.s.e.857.13 32 195.77 even 4 inner
975.2.s.e.857.14 32 5.2 odd 4 inner