Properties

Label 1950.4.a.y.1.1
Level $1950$
Weight $4$
Character 1950.1
Self dual yes
Analytic conductor $115.054$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,4,Mod(1,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.17891\) of defining polynomial
Character \(\chi\) \(=\) 1950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} +6.00000 q^{6} -24.7156 q^{7} +8.00000 q^{8} +9.00000 q^{9} +69.4313 q^{11} +12.0000 q^{12} -13.0000 q^{13} -49.4313 q^{14} +16.0000 q^{16} +22.7156 q^{17} +18.0000 q^{18} -102.147 q^{19} -74.1469 q^{21} +138.863 q^{22} -83.5782 q^{23} +24.0000 q^{24} -26.0000 q^{26} +27.0000 q^{27} -98.8625 q^{28} +37.2844 q^{29} +122.863 q^{31} +32.0000 q^{32} +208.294 q^{33} +45.4313 q^{34} +36.0000 q^{36} +374.294 q^{37} -204.294 q^{38} -39.0000 q^{39} +176.569 q^{41} -148.294 q^{42} +114.569 q^{43} +277.725 q^{44} -167.156 q^{46} +358.313 q^{47} +48.0000 q^{48} +267.863 q^{49} +68.1469 q^{51} -52.0000 q^{52} -523.725 q^{53} +54.0000 q^{54} -197.725 q^{56} -306.441 q^{57} +74.5687 q^{58} +722.569 q^{59} +451.137 q^{61} +245.725 q^{62} -222.441 q^{63} +64.0000 q^{64} +416.588 q^{66} -368.881 q^{67} +90.8625 q^{68} -250.735 q^{69} -175.744 q^{71} +72.0000 q^{72} +679.047 q^{73} +748.588 q^{74} -408.588 q^{76} -1716.04 q^{77} -78.0000 q^{78} +999.744 q^{79} +81.0000 q^{81} +353.137 q^{82} -1310.61 q^{83} -296.588 q^{84} +229.137 q^{86} +111.853 q^{87} +555.450 q^{88} -1316.64 q^{89} +321.303 q^{91} -334.313 q^{92} +368.588 q^{93} +716.625 q^{94} +96.0000 q^{96} -454.166 q^{97} +535.725 q^{98} +624.881 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 12 q^{6} - 4 q^{7} + 16 q^{8} + 18 q^{9} + 48 q^{11} + 24 q^{12} - 26 q^{13} - 8 q^{14} + 32 q^{16} + 36 q^{18} - 68 q^{19} - 12 q^{21} + 96 q^{22} + 60 q^{23} + 48 q^{24}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 6.00000 0.408248
\(7\) −24.7156 −1.33452 −0.667259 0.744825i \(-0.732533\pi\)
−0.667259 + 0.744825i \(0.732533\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 69.4313 1.90312 0.951560 0.307464i \(-0.0994803\pi\)
0.951560 + 0.307464i \(0.0994803\pi\)
\(12\) 12.0000 0.288675
\(13\) −13.0000 −0.277350
\(14\) −49.4313 −0.943647
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 22.7156 0.324079 0.162040 0.986784i \(-0.448193\pi\)
0.162040 + 0.986784i \(0.448193\pi\)
\(18\) 18.0000 0.235702
\(19\) −102.147 −1.23337 −0.616687 0.787208i \(-0.711526\pi\)
−0.616687 + 0.787208i \(0.711526\pi\)
\(20\) 0 0
\(21\) −74.1469 −0.770485
\(22\) 138.863 1.34571
\(23\) −83.5782 −0.757707 −0.378853 0.925457i \(-0.623682\pi\)
−0.378853 + 0.925457i \(0.623682\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) −26.0000 −0.196116
\(27\) 27.0000 0.192450
\(28\) −98.8625 −0.667259
\(29\) 37.2844 0.238743 0.119371 0.992850i \(-0.461912\pi\)
0.119371 + 0.992850i \(0.461912\pi\)
\(30\) 0 0
\(31\) 122.863 0.711831 0.355916 0.934518i \(-0.384169\pi\)
0.355916 + 0.934518i \(0.384169\pi\)
\(32\) 32.0000 0.176777
\(33\) 208.294 1.09877
\(34\) 45.4313 0.229159
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 374.294 1.66307 0.831534 0.555474i \(-0.187463\pi\)
0.831534 + 0.555474i \(0.187463\pi\)
\(38\) −204.294 −0.872127
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 176.569 0.672571 0.336285 0.941760i \(-0.390829\pi\)
0.336285 + 0.941760i \(0.390829\pi\)
\(42\) −148.294 −0.544815
\(43\) 114.569 0.406316 0.203158 0.979146i \(-0.434880\pi\)
0.203158 + 0.979146i \(0.434880\pi\)
\(44\) 277.725 0.951560
\(45\) 0 0
\(46\) −167.156 −0.535779
\(47\) 358.313 1.11203 0.556014 0.831173i \(-0.312330\pi\)
0.556014 + 0.831173i \(0.312330\pi\)
\(48\) 48.0000 0.144338
\(49\) 267.863 0.780940
\(50\) 0 0
\(51\) 68.1469 0.187107
\(52\) −52.0000 −0.138675
\(53\) −523.725 −1.35734 −0.678671 0.734442i \(-0.737444\pi\)
−0.678671 + 0.734442i \(0.737444\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) −197.725 −0.471824
\(57\) −306.441 −0.712089
\(58\) 74.5687 0.168816
\(59\) 722.569 1.59441 0.797207 0.603706i \(-0.206310\pi\)
0.797207 + 0.603706i \(0.206310\pi\)
\(60\) 0 0
\(61\) 451.137 0.946922 0.473461 0.880815i \(-0.343005\pi\)
0.473461 + 0.880815i \(0.343005\pi\)
\(62\) 245.725 0.503341
\(63\) −222.441 −0.444840
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 416.588 0.776945
\(67\) −368.881 −0.672627 −0.336314 0.941750i \(-0.609180\pi\)
−0.336314 + 0.941750i \(0.609180\pi\)
\(68\) 90.8625 0.162040
\(69\) −250.735 −0.437462
\(70\) 0 0
\(71\) −175.744 −0.293760 −0.146880 0.989154i \(-0.546923\pi\)
−0.146880 + 0.989154i \(0.546923\pi\)
\(72\) 72.0000 0.117851
\(73\) 679.047 1.08872 0.544359 0.838852i \(-0.316773\pi\)
0.544359 + 0.838852i \(0.316773\pi\)
\(74\) 748.588 1.17597
\(75\) 0 0
\(76\) −408.588 −0.616687
\(77\) −1716.04 −2.53975
\(78\) −78.0000 −0.113228
\(79\) 999.744 1.42380 0.711899 0.702282i \(-0.247836\pi\)
0.711899 + 0.702282i \(0.247836\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 353.137 0.475579
\(83\) −1310.61 −1.73323 −0.866613 0.498981i \(-0.833708\pi\)
−0.866613 + 0.498981i \(0.833708\pi\)
\(84\) −296.588 −0.385242
\(85\) 0 0
\(86\) 229.137 0.287308
\(87\) 111.853 0.137838
\(88\) 555.450 0.672854
\(89\) −1316.64 −1.56813 −0.784067 0.620676i \(-0.786858\pi\)
−0.784067 + 0.620676i \(0.786858\pi\)
\(90\) 0 0
\(91\) 321.303 0.370129
\(92\) −334.313 −0.378853
\(93\) 368.588 0.410976
\(94\) 716.625 0.786322
\(95\) 0 0
\(96\) 96.0000 0.102062
\(97\) −454.166 −0.475397 −0.237699 0.971339i \(-0.576393\pi\)
−0.237699 + 0.971339i \(0.576393\pi\)
\(98\) 535.725 0.552208
\(99\) 624.881 0.634373
\(100\) 0 0
\(101\) 1227.85 1.20966 0.604831 0.796354i \(-0.293240\pi\)
0.604831 + 0.796354i \(0.293240\pi\)
\(102\) 136.294 0.132305
\(103\) 959.744 0.918120 0.459060 0.888405i \(-0.348186\pi\)
0.459060 + 0.888405i \(0.348186\pi\)
\(104\) −104.000 −0.0980581
\(105\) 0 0
\(106\) −1047.45 −0.959786
\(107\) 2105.21 1.90204 0.951022 0.309125i \(-0.100036\pi\)
0.951022 + 0.309125i \(0.100036\pi\)
\(108\) 108.000 0.0962250
\(109\) −540.991 −0.475390 −0.237695 0.971340i \(-0.576392\pi\)
−0.237695 + 0.971340i \(0.576392\pi\)
\(110\) 0 0
\(111\) 1122.88 0.960173
\(112\) −395.450 −0.333630
\(113\) −1754.20 −1.46037 −0.730184 0.683251i \(-0.760566\pi\)
−0.730184 + 0.683251i \(0.760566\pi\)
\(114\) −612.881 −0.503523
\(115\) 0 0
\(116\) 149.137 0.119371
\(117\) −117.000 −0.0924500
\(118\) 1445.14 1.12742
\(119\) −561.431 −0.432490
\(120\) 0 0
\(121\) 3489.70 2.62186
\(122\) 902.275 0.669575
\(123\) 529.706 0.388309
\(124\) 491.450 0.355916
\(125\) 0 0
\(126\) −444.881 −0.314549
\(127\) 1422.64 0.994010 0.497005 0.867748i \(-0.334433\pi\)
0.497005 + 0.867748i \(0.334433\pi\)
\(128\) 128.000 0.0883883
\(129\) 343.706 0.234586
\(130\) 0 0
\(131\) 716.204 0.477672 0.238836 0.971060i \(-0.423234\pi\)
0.238836 + 0.971060i \(0.423234\pi\)
\(132\) 833.175 0.549383
\(133\) 2524.63 1.64596
\(134\) −737.763 −0.475619
\(135\) 0 0
\(136\) 181.725 0.114579
\(137\) −1437.45 −0.896421 −0.448210 0.893928i \(-0.647938\pi\)
−0.448210 + 0.893928i \(0.647938\pi\)
\(138\) −501.469 −0.309332
\(139\) −1726.02 −1.05323 −0.526615 0.850104i \(-0.676539\pi\)
−0.526615 + 0.850104i \(0.676539\pi\)
\(140\) 0 0
\(141\) 1074.94 0.642029
\(142\) −351.488 −0.207720
\(143\) −902.606 −0.527830
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) 1358.09 0.769840
\(147\) 803.588 0.450876
\(148\) 1497.18 0.831534
\(149\) 3377.27 1.85689 0.928445 0.371469i \(-0.121146\pi\)
0.928445 + 0.371469i \(0.121146\pi\)
\(150\) 0 0
\(151\) −2292.70 −1.23561 −0.617806 0.786331i \(-0.711978\pi\)
−0.617806 + 0.786331i \(0.711978\pi\)
\(152\) −817.175 −0.436064
\(153\) 204.441 0.108026
\(154\) −3432.08 −1.79587
\(155\) 0 0
\(156\) −156.000 −0.0800641
\(157\) 2432.39 1.23647 0.618235 0.785994i \(-0.287848\pi\)
0.618235 + 0.785994i \(0.287848\pi\)
\(158\) 1999.49 1.00678
\(159\) −1571.18 −0.783662
\(160\) 0 0
\(161\) 2065.69 1.01117
\(162\) 162.000 0.0785674
\(163\) 3355.64 1.61248 0.806239 0.591590i \(-0.201500\pi\)
0.806239 + 0.591590i \(0.201500\pi\)
\(164\) 706.275 0.336285
\(165\) 0 0
\(166\) −2621.21 −1.22558
\(167\) 1406.57 0.651758 0.325879 0.945412i \(-0.394340\pi\)
0.325879 + 0.945412i \(0.394340\pi\)
\(168\) −593.175 −0.272408
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −919.322 −0.411125
\(172\) 458.275 0.203158
\(173\) 3534.11 1.55314 0.776571 0.630029i \(-0.216957\pi\)
0.776571 + 0.630029i \(0.216957\pi\)
\(174\) 223.706 0.0974662
\(175\) 0 0
\(176\) 1110.90 0.475780
\(177\) 2167.71 0.920535
\(178\) −2633.29 −1.10884
\(179\) −1456.68 −0.608253 −0.304126 0.952632i \(-0.598364\pi\)
−0.304126 + 0.952632i \(0.598364\pi\)
\(180\) 0 0
\(181\) 2330.88 0.957199 0.478600 0.878033i \(-0.341145\pi\)
0.478600 + 0.878033i \(0.341145\pi\)
\(182\) 642.606 0.261721
\(183\) 1353.41 0.546706
\(184\) −668.625 −0.267890
\(185\) 0 0
\(186\) 737.175 0.290604
\(187\) 1577.18 0.616762
\(188\) 1433.25 0.556014
\(189\) −667.322 −0.256828
\(190\) 0 0
\(191\) 2749.65 1.04166 0.520832 0.853659i \(-0.325622\pi\)
0.520832 + 0.853659i \(0.325622\pi\)
\(192\) 192.000 0.0721688
\(193\) −1821.47 −0.679339 −0.339670 0.940545i \(-0.610315\pi\)
−0.339670 + 0.940545i \(0.610315\pi\)
\(194\) −908.332 −0.336157
\(195\) 0 0
\(196\) 1071.45 0.390470
\(197\) −3799.91 −1.37428 −0.687139 0.726526i \(-0.741134\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(198\) 1249.76 0.448570
\(199\) 872.995 0.310980 0.155490 0.987837i \(-0.450304\pi\)
0.155490 + 0.987837i \(0.450304\pi\)
\(200\) 0 0
\(201\) −1106.64 −0.388342
\(202\) 2455.71 0.855361
\(203\) −921.507 −0.318606
\(204\) 272.588 0.0935537
\(205\) 0 0
\(206\) 1919.49 0.649209
\(207\) −752.204 −0.252569
\(208\) −208.000 −0.0693375
\(209\) −7092.19 −2.34726
\(210\) 0 0
\(211\) 1014.35 0.330951 0.165476 0.986214i \(-0.447084\pi\)
0.165476 + 0.986214i \(0.447084\pi\)
\(212\) −2094.90 −0.678671
\(213\) −527.232 −0.169602
\(214\) 4210.43 1.34495
\(215\) 0 0
\(216\) 216.000 0.0680414
\(217\) −3036.63 −0.949952
\(218\) −1081.98 −0.336151
\(219\) 2037.14 0.628572
\(220\) 0 0
\(221\) −295.303 −0.0898835
\(222\) 2245.76 0.678945
\(223\) −1901.08 −0.570879 −0.285440 0.958397i \(-0.592140\pi\)
−0.285440 + 0.958397i \(0.592140\pi\)
\(224\) −790.900 −0.235912
\(225\) 0 0
\(226\) −3508.41 −1.03264
\(227\) 1410.98 0.412554 0.206277 0.978494i \(-0.433865\pi\)
0.206277 + 0.978494i \(0.433865\pi\)
\(228\) −1225.76 −0.356044
\(229\) 2334.02 0.673522 0.336761 0.941590i \(-0.390669\pi\)
0.336761 + 0.941590i \(0.390669\pi\)
\(230\) 0 0
\(231\) −5148.11 −1.46632
\(232\) 298.275 0.0844082
\(233\) −1686.50 −0.474189 −0.237095 0.971487i \(-0.576195\pi\)
−0.237095 + 0.971487i \(0.576195\pi\)
\(234\) −234.000 −0.0653720
\(235\) 0 0
\(236\) 2890.27 0.797207
\(237\) 2999.23 0.822030
\(238\) −1122.86 −0.305817
\(239\) 658.426 0.178201 0.0891005 0.996023i \(-0.471601\pi\)
0.0891005 + 0.996023i \(0.471601\pi\)
\(240\) 0 0
\(241\) 4051.18 1.08282 0.541409 0.840759i \(-0.317891\pi\)
0.541409 + 0.840759i \(0.317891\pi\)
\(242\) 6979.40 1.85394
\(243\) 243.000 0.0641500
\(244\) 1804.55 0.473461
\(245\) 0 0
\(246\) 1059.41 0.274576
\(247\) 1327.91 0.342076
\(248\) 982.900 0.251670
\(249\) −3931.82 −1.00068
\(250\) 0 0
\(251\) −3354.67 −0.843604 −0.421802 0.906688i \(-0.638602\pi\)
−0.421802 + 0.906688i \(0.638602\pi\)
\(252\) −889.763 −0.222420
\(253\) −5802.94 −1.44201
\(254\) 2845.29 0.702871
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2485.28 0.603221 0.301610 0.953431i \(-0.402476\pi\)
0.301610 + 0.953431i \(0.402476\pi\)
\(258\) 687.412 0.165878
\(259\) −9250.91 −2.21940
\(260\) 0 0
\(261\) 335.559 0.0795808
\(262\) 1432.41 0.337765
\(263\) 1859.58 0.435994 0.217997 0.975949i \(-0.430048\pi\)
0.217997 + 0.975949i \(0.430048\pi\)
\(264\) 1666.35 0.388473
\(265\) 0 0
\(266\) 5049.25 1.16387
\(267\) −3949.93 −0.905363
\(268\) −1475.53 −0.336314
\(269\) −4508.45 −1.02188 −0.510939 0.859617i \(-0.670702\pi\)
−0.510939 + 0.859617i \(0.670702\pi\)
\(270\) 0 0
\(271\) −3295.56 −0.738713 −0.369356 0.929288i \(-0.620422\pi\)
−0.369356 + 0.929288i \(0.620422\pi\)
\(272\) 363.450 0.0810199
\(273\) 963.910 0.213694
\(274\) −2874.90 −0.633865
\(275\) 0 0
\(276\) −1002.94 −0.218731
\(277\) −3459.88 −0.750483 −0.375242 0.926927i \(-0.622440\pi\)
−0.375242 + 0.926927i \(0.622440\pi\)
\(278\) −3452.04 −0.744746
\(279\) 1105.76 0.237277
\(280\) 0 0
\(281\) 6308.61 1.33929 0.669644 0.742682i \(-0.266447\pi\)
0.669644 + 0.742682i \(0.266447\pi\)
\(282\) 2149.88 0.453983
\(283\) −5126.32 −1.07678 −0.538389 0.842696i \(-0.680967\pi\)
−0.538389 + 0.842696i \(0.680967\pi\)
\(284\) −702.976 −0.146880
\(285\) 0 0
\(286\) −1805.21 −0.373232
\(287\) −4364.01 −0.897558
\(288\) 288.000 0.0589256
\(289\) −4397.00 −0.894973
\(290\) 0 0
\(291\) −1362.50 −0.274471
\(292\) 2716.19 0.544359
\(293\) 5291.40 1.05504 0.527520 0.849542i \(-0.323122\pi\)
0.527520 + 0.849542i \(0.323122\pi\)
\(294\) 1607.18 0.318818
\(295\) 0 0
\(296\) 2994.35 0.587983
\(297\) 1874.64 0.366256
\(298\) 6754.54 1.31302
\(299\) 1086.52 0.210150
\(300\) 0 0
\(301\) −2831.64 −0.542236
\(302\) −4585.40 −0.873709
\(303\) 3683.56 0.698399
\(304\) −1634.35 −0.308344
\(305\) 0 0
\(306\) 408.881 0.0763863
\(307\) −5858.21 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(308\) −6864.15 −1.26987
\(309\) 2879.23 0.530077
\(310\) 0 0
\(311\) −2168.81 −0.395441 −0.197721 0.980258i \(-0.563354\pi\)
−0.197721 + 0.980258i \(0.563354\pi\)
\(312\) −312.000 −0.0566139
\(313\) −4105.23 −0.741346 −0.370673 0.928763i \(-0.620873\pi\)
−0.370673 + 0.928763i \(0.620873\pi\)
\(314\) 4864.78 0.874316
\(315\) 0 0
\(316\) 3998.98 0.711899
\(317\) 2303.36 0.408107 0.204053 0.978960i \(-0.434588\pi\)
0.204053 + 0.978960i \(0.434588\pi\)
\(318\) −3142.35 −0.554133
\(319\) 2588.70 0.454356
\(320\) 0 0
\(321\) 6315.64 1.09815
\(322\) 4131.37 0.715008
\(323\) −2320.33 −0.399711
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) 6711.28 1.14019
\(327\) −1622.97 −0.274466
\(328\) 1412.55 0.237790
\(329\) −8855.92 −1.48402
\(330\) 0 0
\(331\) 3845.89 0.638638 0.319319 0.947647i \(-0.396546\pi\)
0.319319 + 0.947647i \(0.396546\pi\)
\(332\) −5242.43 −0.866613
\(333\) 3368.64 0.554356
\(334\) 2813.14 0.460862
\(335\) 0 0
\(336\) −1186.35 −0.192621
\(337\) −601.005 −0.0971479 −0.0485740 0.998820i \(-0.515468\pi\)
−0.0485740 + 0.998820i \(0.515468\pi\)
\(338\) 338.000 0.0543928
\(339\) −5262.61 −0.843144
\(340\) 0 0
\(341\) 8530.50 1.35470
\(342\) −1838.64 −0.290709
\(343\) 1857.07 0.292339
\(344\) 916.550 0.143654
\(345\) 0 0
\(346\) 7068.23 1.09824
\(347\) −2148.84 −0.332438 −0.166219 0.986089i \(-0.553156\pi\)
−0.166219 + 0.986089i \(0.553156\pi\)
\(348\) 447.412 0.0689190
\(349\) −9766.03 −1.49789 −0.748945 0.662632i \(-0.769439\pi\)
−0.748945 + 0.662632i \(0.769439\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 2221.80 0.336427
\(353\) −1962.00 −0.295826 −0.147913 0.989000i \(-0.547256\pi\)
−0.147913 + 0.989000i \(0.547256\pi\)
\(354\) 4335.41 0.650917
\(355\) 0 0
\(356\) −5266.58 −0.784067
\(357\) −1684.29 −0.249698
\(358\) −2913.36 −0.430100
\(359\) −2839.52 −0.417448 −0.208724 0.977975i \(-0.566931\pi\)
−0.208724 + 0.977975i \(0.566931\pi\)
\(360\) 0 0
\(361\) 3574.99 0.521211
\(362\) 4661.76 0.676842
\(363\) 10469.1 1.51373
\(364\) 1285.21 0.185064
\(365\) 0 0
\(366\) 2706.82 0.386579
\(367\) 3870.64 0.550534 0.275267 0.961368i \(-0.411234\pi\)
0.275267 + 0.961368i \(0.411234\pi\)
\(368\) −1337.25 −0.189427
\(369\) 1589.12 0.224190
\(370\) 0 0
\(371\) 12944.2 1.81140
\(372\) 1474.35 0.205488
\(373\) −3656.64 −0.507596 −0.253798 0.967257i \(-0.581680\pi\)
−0.253798 + 0.967257i \(0.581680\pi\)
\(374\) 3154.35 0.436117
\(375\) 0 0
\(376\) 2866.50 0.393161
\(377\) −484.697 −0.0662153
\(378\) −1334.64 −0.181605
\(379\) 8111.91 1.09942 0.549711 0.835355i \(-0.314738\pi\)
0.549711 + 0.835355i \(0.314738\pi\)
\(380\) 0 0
\(381\) 4267.93 0.573892
\(382\) 5499.30 0.736567
\(383\) 11631.1 1.55175 0.775876 0.630885i \(-0.217308\pi\)
0.775876 + 0.630885i \(0.217308\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) −3642.95 −0.480365
\(387\) 1031.12 0.135439
\(388\) −1816.66 −0.237699
\(389\) 5723.28 0.745969 0.372984 0.927838i \(-0.378334\pi\)
0.372984 + 0.927838i \(0.378334\pi\)
\(390\) 0 0
\(391\) −1898.53 −0.245557
\(392\) 2142.90 0.276104
\(393\) 2148.61 0.275784
\(394\) −7599.83 −0.971761
\(395\) 0 0
\(396\) 2499.53 0.317187
\(397\) −2934.26 −0.370947 −0.185474 0.982649i \(-0.559382\pi\)
−0.185474 + 0.982649i \(0.559382\pi\)
\(398\) 1745.99 0.219896
\(399\) 7573.88 0.950296
\(400\) 0 0
\(401\) −6089.57 −0.758351 −0.379175 0.925325i \(-0.623792\pi\)
−0.379175 + 0.925325i \(0.623792\pi\)
\(402\) −2213.29 −0.274599
\(403\) −1597.21 −0.197426
\(404\) 4911.41 0.604831
\(405\) 0 0
\(406\) −1843.01 −0.225289
\(407\) 25987.7 3.16502
\(408\) 545.175 0.0661524
\(409\) 9198.29 1.11204 0.556022 0.831167i \(-0.312327\pi\)
0.556022 + 0.831167i \(0.312327\pi\)
\(410\) 0 0
\(411\) −4312.35 −0.517549
\(412\) 3838.98 0.459060
\(413\) −17858.7 −2.12778
\(414\) −1504.41 −0.178593
\(415\) 0 0
\(416\) −416.000 −0.0490290
\(417\) −5178.06 −0.608083
\(418\) −14184.4 −1.65976
\(419\) −5655.53 −0.659405 −0.329703 0.944085i \(-0.606948\pi\)
−0.329703 + 0.944085i \(0.606948\pi\)
\(420\) 0 0
\(421\) −6687.37 −0.774163 −0.387081 0.922046i \(-0.626517\pi\)
−0.387081 + 0.922046i \(0.626517\pi\)
\(422\) 2028.70 0.234018
\(423\) 3224.81 0.370676
\(424\) −4189.80 −0.479893
\(425\) 0 0
\(426\) −1054.46 −0.119927
\(427\) −11150.1 −1.26368
\(428\) 8420.85 0.951022
\(429\) −2707.82 −0.304743
\(430\) 0 0
\(431\) 377.477 0.0421866 0.0210933 0.999778i \(-0.493285\pi\)
0.0210933 + 0.999778i \(0.493285\pi\)
\(432\) 432.000 0.0481125
\(433\) 7903.43 0.877170 0.438585 0.898690i \(-0.355480\pi\)
0.438585 + 0.898690i \(0.355480\pi\)
\(434\) −6073.25 −0.671717
\(435\) 0 0
\(436\) −2163.96 −0.237695
\(437\) 8537.25 0.934536
\(438\) 4074.28 0.444468
\(439\) −16459.9 −1.78950 −0.894748 0.446572i \(-0.852645\pi\)
−0.894748 + 0.446572i \(0.852645\pi\)
\(440\) 0 0
\(441\) 2410.76 0.260313
\(442\) −590.606 −0.0635572
\(443\) 1361.91 0.146063 0.0730317 0.997330i \(-0.476733\pi\)
0.0730317 + 0.997330i \(0.476733\pi\)
\(444\) 4491.53 0.480086
\(445\) 0 0
\(446\) −3802.17 −0.403673
\(447\) 10131.8 1.07208
\(448\) −1581.80 −0.166815
\(449\) −9924.51 −1.04313 −0.521566 0.853211i \(-0.674652\pi\)
−0.521566 + 0.853211i \(0.674652\pi\)
\(450\) 0 0
\(451\) 12259.4 1.27998
\(452\) −7016.81 −0.730184
\(453\) −6878.10 −0.713381
\(454\) 2821.95 0.291720
\(455\) 0 0
\(456\) −2451.53 −0.251761
\(457\) −3162.79 −0.323740 −0.161870 0.986812i \(-0.551753\pi\)
−0.161870 + 0.986812i \(0.551753\pi\)
\(458\) 4668.05 0.476252
\(459\) 613.322 0.0623691
\(460\) 0 0
\(461\) −2334.04 −0.235807 −0.117903 0.993025i \(-0.537617\pi\)
−0.117903 + 0.993025i \(0.537617\pi\)
\(462\) −10296.2 −1.03685
\(463\) 9502.97 0.953867 0.476934 0.878939i \(-0.341748\pi\)
0.476934 + 0.878939i \(0.341748\pi\)
\(464\) 596.550 0.0596856
\(465\) 0 0
\(466\) −3372.99 −0.335302
\(467\) −6464.93 −0.640602 −0.320301 0.947316i \(-0.603784\pi\)
−0.320301 + 0.947316i \(0.603784\pi\)
\(468\) −468.000 −0.0462250
\(469\) 9117.14 0.897634
\(470\) 0 0
\(471\) 7297.16 0.713876
\(472\) 5780.55 0.563711
\(473\) 7954.65 0.773267
\(474\) 5998.46 0.581263
\(475\) 0 0
\(476\) −2245.73 −0.216245
\(477\) −4713.53 −0.452448
\(478\) 1316.85 0.126007
\(479\) −10188.5 −0.971866 −0.485933 0.873996i \(-0.661520\pi\)
−0.485933 + 0.873996i \(0.661520\pi\)
\(480\) 0 0
\(481\) −4865.82 −0.461252
\(482\) 8102.35 0.765668
\(483\) 6197.06 0.583801
\(484\) 13958.8 1.31093
\(485\) 0 0
\(486\) 486.000 0.0453609
\(487\) 6529.20 0.607528 0.303764 0.952747i \(-0.401757\pi\)
0.303764 + 0.952747i \(0.401757\pi\)
\(488\) 3609.10 0.334787
\(489\) 10066.9 0.930965
\(490\) 0 0
\(491\) −20959.6 −1.92647 −0.963233 0.268668i \(-0.913416\pi\)
−0.963233 + 0.268668i \(0.913416\pi\)
\(492\) 2118.82 0.194154
\(493\) 846.938 0.0773715
\(494\) 2655.82 0.241885
\(495\) 0 0
\(496\) 1965.80 0.177958
\(497\) 4343.62 0.392028
\(498\) −7863.64 −0.707587
\(499\) 4484.84 0.402342 0.201171 0.979556i \(-0.435525\pi\)
0.201171 + 0.979556i \(0.435525\pi\)
\(500\) 0 0
\(501\) 4219.71 0.376293
\(502\) −6709.33 −0.596518
\(503\) −10761.5 −0.953939 −0.476970 0.878920i \(-0.658265\pi\)
−0.476970 + 0.878920i \(0.658265\pi\)
\(504\) −1779.53 −0.157275
\(505\) 0 0
\(506\) −11605.9 −1.01965
\(507\) 507.000 0.0444116
\(508\) 5690.58 0.497005
\(509\) −2898.08 −0.252367 −0.126184 0.992007i \(-0.540273\pi\)
−0.126184 + 0.992007i \(0.540273\pi\)
\(510\) 0 0
\(511\) −16783.1 −1.45292
\(512\) 512.000 0.0441942
\(513\) −2757.97 −0.237363
\(514\) 4970.57 0.426542
\(515\) 0 0
\(516\) 1374.82 0.117293
\(517\) 24878.1 2.11632
\(518\) −18501.8 −1.56935
\(519\) 10602.3 0.896707
\(520\) 0 0
\(521\) −12113.5 −1.01862 −0.509311 0.860583i \(-0.670100\pi\)
−0.509311 + 0.860583i \(0.670100\pi\)
\(522\) 671.119 0.0562722
\(523\) 6676.45 0.558204 0.279102 0.960261i \(-0.409963\pi\)
0.279102 + 0.960261i \(0.409963\pi\)
\(524\) 2864.81 0.238836
\(525\) 0 0
\(526\) 3719.16 0.308295
\(527\) 2790.90 0.230690
\(528\) 3332.70 0.274692
\(529\) −5181.69 −0.425881
\(530\) 0 0
\(531\) 6503.12 0.531471
\(532\) 10098.5 0.822980
\(533\) −2295.39 −0.186538
\(534\) −7899.87 −0.640188
\(535\) 0 0
\(536\) −2951.05 −0.237810
\(537\) −4370.03 −0.351175
\(538\) −9016.90 −0.722576
\(539\) 18598.0 1.48622
\(540\) 0 0
\(541\) −24548.0 −1.95084 −0.975418 0.220363i \(-0.929276\pi\)
−0.975418 + 0.220363i \(0.929276\pi\)
\(542\) −6591.13 −0.522349
\(543\) 6992.64 0.552639
\(544\) 726.900 0.0572897
\(545\) 0 0
\(546\) 1927.82 0.151104
\(547\) −23045.0 −1.80134 −0.900669 0.434507i \(-0.856923\pi\)
−0.900669 + 0.434507i \(0.856923\pi\)
\(548\) −5749.80 −0.448210
\(549\) 4060.24 0.315641
\(550\) 0 0
\(551\) −3808.48 −0.294459
\(552\) −2005.88 −0.154666
\(553\) −24709.3 −1.90008
\(554\) −6919.75 −0.530672
\(555\) 0 0
\(556\) −6904.08 −0.526615
\(557\) 1419.27 0.107965 0.0539823 0.998542i \(-0.482809\pi\)
0.0539823 + 0.998542i \(0.482809\pi\)
\(558\) 2211.53 0.167780
\(559\) −1489.39 −0.112692
\(560\) 0 0
\(561\) 4731.53 0.356088
\(562\) 12617.2 0.947020
\(563\) 11992.2 0.897712 0.448856 0.893604i \(-0.351832\pi\)
0.448856 + 0.893604i \(0.351832\pi\)
\(564\) 4299.75 0.321015
\(565\) 0 0
\(566\) −10252.6 −0.761397
\(567\) −2001.97 −0.148280
\(568\) −1405.95 −0.103860
\(569\) −22641.4 −1.66815 −0.834076 0.551650i \(-0.813999\pi\)
−0.834076 + 0.551650i \(0.813999\pi\)
\(570\) 0 0
\(571\) −3019.10 −0.221270 −0.110635 0.993861i \(-0.535288\pi\)
−0.110635 + 0.993861i \(0.535288\pi\)
\(572\) −3610.43 −0.263915
\(573\) 8248.95 0.601405
\(574\) −8728.02 −0.634670
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) 10924.4 0.788198 0.394099 0.919068i \(-0.371057\pi\)
0.394099 + 0.919068i \(0.371057\pi\)
\(578\) −8794.00 −0.632841
\(579\) −5464.42 −0.392217
\(580\) 0 0
\(581\) 32392.5 2.31302
\(582\) −2724.99 −0.194080
\(583\) −36362.9 −2.58319
\(584\) 5432.38 0.384920
\(585\) 0 0
\(586\) 10582.8 0.746027
\(587\) −1033.12 −0.0726431 −0.0363215 0.999340i \(-0.511564\pi\)
−0.0363215 + 0.999340i \(0.511564\pi\)
\(588\) 3214.35 0.225438
\(589\) −12550.0 −0.877954
\(590\) 0 0
\(591\) −11399.7 −0.793439
\(592\) 5988.70 0.415767
\(593\) −5737.44 −0.397316 −0.198658 0.980069i \(-0.563658\pi\)
−0.198658 + 0.980069i \(0.563658\pi\)
\(594\) 3749.29 0.258982
\(595\) 0 0
\(596\) 13509.1 0.928445
\(597\) 2618.98 0.179544
\(598\) 2173.03 0.148598
\(599\) −22779.5 −1.55383 −0.776917 0.629603i \(-0.783217\pi\)
−0.776917 + 0.629603i \(0.783217\pi\)
\(600\) 0 0
\(601\) −23346.9 −1.58459 −0.792297 0.610136i \(-0.791115\pi\)
−0.792297 + 0.610136i \(0.791115\pi\)
\(602\) −5663.28 −0.383419
\(603\) −3319.93 −0.224209
\(604\) −9170.80 −0.617806
\(605\) 0 0
\(606\) 7367.12 0.493843
\(607\) 5522.26 0.369261 0.184631 0.982808i \(-0.440891\pi\)
0.184631 + 0.982808i \(0.440891\pi\)
\(608\) −3268.70 −0.218032
\(609\) −2764.52 −0.183947
\(610\) 0 0
\(611\) −4658.06 −0.308421
\(612\) 817.763 0.0540132
\(613\) −22225.3 −1.46439 −0.732194 0.681096i \(-0.761504\pi\)
−0.732194 + 0.681096i \(0.761504\pi\)
\(614\) −11716.4 −0.770091
\(615\) 0 0
\(616\) −13728.3 −0.897937
\(617\) −19829.4 −1.29384 −0.646922 0.762556i \(-0.723944\pi\)
−0.646922 + 0.762556i \(0.723944\pi\)
\(618\) 5758.46 0.374821
\(619\) 6399.70 0.415550 0.207775 0.978177i \(-0.433378\pi\)
0.207775 + 0.978177i \(0.433378\pi\)
\(620\) 0 0
\(621\) −2256.61 −0.145821
\(622\) −4337.63 −0.279619
\(623\) 32541.7 2.09271
\(624\) −624.000 −0.0400320
\(625\) 0 0
\(626\) −8210.46 −0.524211
\(627\) −21276.6 −1.35519
\(628\) 9729.55 0.618235
\(629\) 8502.32 0.538966
\(630\) 0 0
\(631\) 10482.5 0.661333 0.330667 0.943748i \(-0.392726\pi\)
0.330667 + 0.943748i \(0.392726\pi\)
\(632\) 7997.95 0.503388
\(633\) 3043.05 0.191075
\(634\) 4606.73 0.288575
\(635\) 0 0
\(636\) −6284.70 −0.391831
\(637\) −3482.21 −0.216594
\(638\) 5177.40 0.321278
\(639\) −1581.70 −0.0979200
\(640\) 0 0
\(641\) 5622.19 0.346432 0.173216 0.984884i \(-0.444584\pi\)
0.173216 + 0.984884i \(0.444584\pi\)
\(642\) 12631.3 0.776506
\(643\) −3514.64 −0.215558 −0.107779 0.994175i \(-0.534374\pi\)
−0.107779 + 0.994175i \(0.534374\pi\)
\(644\) 8262.75 0.505587
\(645\) 0 0
\(646\) −4640.66 −0.282638
\(647\) 22134.0 1.34494 0.672470 0.740125i \(-0.265234\pi\)
0.672470 + 0.740125i \(0.265234\pi\)
\(648\) 648.000 0.0392837
\(649\) 50168.9 3.03436
\(650\) 0 0
\(651\) −9109.88 −0.548455
\(652\) 13422.6 0.806239
\(653\) −6410.46 −0.384166 −0.192083 0.981379i \(-0.561524\pi\)
−0.192083 + 0.981379i \(0.561524\pi\)
\(654\) −3245.94 −0.194077
\(655\) 0 0
\(656\) 2825.10 0.168143
\(657\) 6111.42 0.362906
\(658\) −17711.8 −1.04936
\(659\) −14644.7 −0.865670 −0.432835 0.901473i \(-0.642487\pi\)
−0.432835 + 0.901473i \(0.642487\pi\)
\(660\) 0 0
\(661\) 20048.6 1.17973 0.589865 0.807502i \(-0.299181\pi\)
0.589865 + 0.807502i \(0.299181\pi\)
\(662\) 7691.78 0.451585
\(663\) −885.910 −0.0518942
\(664\) −10484.9 −0.612788
\(665\) 0 0
\(666\) 6737.29 0.391989
\(667\) −3116.16 −0.180897
\(668\) 5626.27 0.325879
\(669\) −5703.25 −0.329597
\(670\) 0 0
\(671\) 31323.0 1.80211
\(672\) −2372.70 −0.136204
\(673\) 26499.8 1.51782 0.758910 0.651196i \(-0.225732\pi\)
0.758910 + 0.651196i \(0.225732\pi\)
\(674\) −1202.01 −0.0686940
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) −34096.3 −1.93564 −0.967818 0.251651i \(-0.919027\pi\)
−0.967818 + 0.251651i \(0.919027\pi\)
\(678\) −10525.2 −0.596193
\(679\) 11225.0 0.634427
\(680\) 0 0
\(681\) 4232.93 0.238188
\(682\) 17061.0 0.957917
\(683\) 14549.2 0.815097 0.407548 0.913184i \(-0.366384\pi\)
0.407548 + 0.913184i \(0.366384\pi\)
\(684\) −3677.29 −0.205562
\(685\) 0 0
\(686\) 3714.14 0.206715
\(687\) 7002.07 0.388858
\(688\) 1833.10 0.101579
\(689\) 6808.43 0.376459
\(690\) 0 0
\(691\) −8372.70 −0.460944 −0.230472 0.973079i \(-0.574027\pi\)
−0.230472 + 0.973079i \(0.574027\pi\)
\(692\) 14136.5 0.776571
\(693\) −15444.3 −0.846583
\(694\) −4297.69 −0.235069
\(695\) 0 0
\(696\) 894.825 0.0487331
\(697\) 4010.87 0.217966
\(698\) −19532.1 −1.05917
\(699\) −5059.49 −0.273773
\(700\) 0 0
\(701\) 5931.63 0.319593 0.159796 0.987150i \(-0.448916\pi\)
0.159796 + 0.987150i \(0.448916\pi\)
\(702\) −702.000 −0.0377426
\(703\) −38233.0 −2.05119
\(704\) 4443.60 0.237890
\(705\) 0 0
\(706\) −3924.00 −0.209181
\(707\) −30347.2 −1.61432
\(708\) 8670.82 0.460268
\(709\) 16609.8 0.879822 0.439911 0.898041i \(-0.355010\pi\)
0.439911 + 0.898041i \(0.355010\pi\)
\(710\) 0 0
\(711\) 8997.70 0.474599
\(712\) −10533.2 −0.554419
\(713\) −10268.6 −0.539359
\(714\) −3368.59 −0.176563
\(715\) 0 0
\(716\) −5826.71 −0.304126
\(717\) 1975.28 0.102884
\(718\) −5679.04 −0.295181
\(719\) 18475.2 0.958289 0.479144 0.877736i \(-0.340947\pi\)
0.479144 + 0.877736i \(0.340947\pi\)
\(720\) 0 0
\(721\) −23720.7 −1.22525
\(722\) 7149.98 0.368552
\(723\) 12153.5 0.625165
\(724\) 9323.53 0.478600
\(725\) 0 0
\(726\) 20938.2 1.07037
\(727\) 4893.89 0.249662 0.124831 0.992178i \(-0.460161\pi\)
0.124831 + 0.992178i \(0.460161\pi\)
\(728\) 2570.43 0.130860
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 2602.50 0.131679
\(732\) 5413.65 0.273353
\(733\) 36355.6 1.83196 0.915979 0.401225i \(-0.131416\pi\)
0.915979 + 0.401225i \(0.131416\pi\)
\(734\) 7741.29 0.389286
\(735\) 0 0
\(736\) −2674.50 −0.133945
\(737\) −25611.9 −1.28009
\(738\) 3178.24 0.158526
\(739\) −17826.9 −0.887377 −0.443688 0.896181i \(-0.646330\pi\)
−0.443688 + 0.896181i \(0.646330\pi\)
\(740\) 0 0
\(741\) 3983.73 0.197498
\(742\) 25888.4 1.28085
\(743\) 39501.1 1.95041 0.975204 0.221307i \(-0.0710322\pi\)
0.975204 + 0.221307i \(0.0710322\pi\)
\(744\) 2948.70 0.145302
\(745\) 0 0
\(746\) −7313.27 −0.358925
\(747\) −11795.5 −0.577742
\(748\) 6308.70 0.308381
\(749\) −52031.7 −2.53831
\(750\) 0 0
\(751\) −35688.8 −1.73409 −0.867046 0.498228i \(-0.833984\pi\)
−0.867046 + 0.498228i \(0.833984\pi\)
\(752\) 5733.00 0.278007
\(753\) −10064.0 −0.487055
\(754\) −969.394 −0.0468213
\(755\) 0 0
\(756\) −2669.29 −0.128414
\(757\) 6300.22 0.302490 0.151245 0.988496i \(-0.451672\pi\)
0.151245 + 0.988496i \(0.451672\pi\)
\(758\) 16223.8 0.777409
\(759\) −17408.8 −0.832543
\(760\) 0 0
\(761\) −9254.88 −0.440853 −0.220426 0.975404i \(-0.570745\pi\)
−0.220426 + 0.975404i \(0.570745\pi\)
\(762\) 8535.87 0.405803
\(763\) 13370.9 0.634417
\(764\) 10998.6 0.520832
\(765\) 0 0
\(766\) 23262.2 1.09725
\(767\) −9393.39 −0.442211
\(768\) 768.000 0.0360844
\(769\) 20070.9 0.941189 0.470595 0.882350i \(-0.344039\pi\)
0.470595 + 0.882350i \(0.344039\pi\)
\(770\) 0 0
\(771\) 7455.85 0.348270
\(772\) −7285.89 −0.339670
\(773\) −1015.46 −0.0472491 −0.0236246 0.999721i \(-0.507521\pi\)
−0.0236246 + 0.999721i \(0.507521\pi\)
\(774\) 2062.24 0.0957695
\(775\) 0 0
\(776\) −3633.33 −0.168078
\(777\) −27752.7 −1.28137
\(778\) 11446.6 0.527480
\(779\) −18035.9 −0.829531
\(780\) 0 0
\(781\) −12202.1 −0.559061
\(782\) −3797.06 −0.173635
\(783\) 1006.68 0.0459460
\(784\) 4285.80 0.195235
\(785\) 0 0
\(786\) 4297.22 0.195009
\(787\) 4194.48 0.189984 0.0949918 0.995478i \(-0.469718\pi\)
0.0949918 + 0.995478i \(0.469718\pi\)
\(788\) −15199.7 −0.687139
\(789\) 5578.73 0.251721
\(790\) 0 0
\(791\) 43356.3 1.94889
\(792\) 4999.05 0.224285
\(793\) −5864.79 −0.262629
\(794\) −5868.51 −0.262299
\(795\) 0 0
\(796\) 3491.98 0.155490
\(797\) −17342.0 −0.770748 −0.385374 0.922760i \(-0.625928\pi\)
−0.385374 + 0.922760i \(0.625928\pi\)
\(798\) 15147.8 0.671961
\(799\) 8139.30 0.360385
\(800\) 0 0
\(801\) −11849.8 −0.522712
\(802\) −12179.1 −0.536235
\(803\) 47147.1 2.07196
\(804\) −4426.58 −0.194171
\(805\) 0 0
\(806\) −3194.43 −0.139602
\(807\) −13525.3 −0.589981
\(808\) 9822.82 0.427680
\(809\) −28170.2 −1.22424 −0.612120 0.790765i \(-0.709683\pi\)
−0.612120 + 0.790765i \(0.709683\pi\)
\(810\) 0 0
\(811\) −860.578 −0.0372614 −0.0186307 0.999826i \(-0.505931\pi\)
−0.0186307 + 0.999826i \(0.505931\pi\)
\(812\) −3686.03 −0.159303
\(813\) −9886.69 −0.426496
\(814\) 51975.4 2.23801
\(815\) 0 0
\(816\) 1090.35 0.0467768
\(817\) −11702.8 −0.501139
\(818\) 18396.6 0.786334
\(819\) 2891.73 0.123376
\(820\) 0 0
\(821\) 31502.6 1.33916 0.669580 0.742740i \(-0.266474\pi\)
0.669580 + 0.742740i \(0.266474\pi\)
\(822\) −8624.70 −0.365962
\(823\) −18862.9 −0.798929 −0.399464 0.916749i \(-0.630804\pi\)
−0.399464 + 0.916749i \(0.630804\pi\)
\(824\) 7677.95 0.324605
\(825\) 0 0
\(826\) −35717.5 −1.50456
\(827\) −44348.4 −1.86475 −0.932374 0.361496i \(-0.882266\pi\)
−0.932374 + 0.361496i \(0.882266\pi\)
\(828\) −3008.81 −0.126284
\(829\) −10661.7 −0.446678 −0.223339 0.974741i \(-0.571696\pi\)
−0.223339 + 0.974741i \(0.571696\pi\)
\(830\) 0 0
\(831\) −10379.6 −0.433292
\(832\) −832.000 −0.0346688
\(833\) 6084.67 0.253087
\(834\) −10356.1 −0.429979
\(835\) 0 0
\(836\) −28368.8 −1.17363
\(837\) 3317.29 0.136992
\(838\) −11311.1 −0.466270
\(839\) 44333.3 1.82426 0.912130 0.409901i \(-0.134437\pi\)
0.912130 + 0.409901i \(0.134437\pi\)
\(840\) 0 0
\(841\) −22998.9 −0.943002
\(842\) −13374.7 −0.547416
\(843\) 18925.8 0.773238
\(844\) 4057.40 0.165476
\(845\) 0 0
\(846\) 6449.63 0.262107
\(847\) −86250.2 −3.49893
\(848\) −8379.60 −0.339336
\(849\) −15379.0 −0.621678
\(850\) 0 0
\(851\) −31282.8 −1.26012
\(852\) −2108.93 −0.0848012
\(853\) 34534.5 1.38621 0.693105 0.720836i \(-0.256242\pi\)
0.693105 + 0.720836i \(0.256242\pi\)
\(854\) −22300.3 −0.893560
\(855\) 0 0
\(856\) 16841.7 0.672474
\(857\) −35150.2 −1.40106 −0.700529 0.713624i \(-0.747053\pi\)
−0.700529 + 0.713624i \(0.747053\pi\)
\(858\) −5415.64 −0.215486
\(859\) −6398.73 −0.254158 −0.127079 0.991893i \(-0.540560\pi\)
−0.127079 + 0.991893i \(0.540560\pi\)
\(860\) 0 0
\(861\) −13092.0 −0.518206
\(862\) 754.954 0.0298304
\(863\) 5448.16 0.214899 0.107449 0.994211i \(-0.465732\pi\)
0.107449 + 0.994211i \(0.465732\pi\)
\(864\) 864.000 0.0340207
\(865\) 0 0
\(866\) 15806.9 0.620253
\(867\) −13191.0 −0.516713
\(868\) −12146.5 −0.474976
\(869\) 69413.5 2.70966
\(870\) 0 0
\(871\) 4795.46 0.186553
\(872\) −4327.92 −0.168076
\(873\) −4087.49 −0.158466
\(874\) 17074.5 0.660817
\(875\) 0 0
\(876\) 8148.57 0.314286
\(877\) −29875.7 −1.15032 −0.575161 0.818040i \(-0.695061\pi\)
−0.575161 + 0.818040i \(0.695061\pi\)
\(878\) −32919.8 −1.26536
\(879\) 15874.2 0.609128
\(880\) 0 0
\(881\) 16680.0 0.637868 0.318934 0.947777i \(-0.396675\pi\)
0.318934 + 0.947777i \(0.396675\pi\)
\(882\) 4821.53 0.184069
\(883\) −31287.5 −1.19242 −0.596210 0.802828i \(-0.703327\pi\)
−0.596210 + 0.802828i \(0.703327\pi\)
\(884\) −1181.21 −0.0449417
\(885\) 0 0
\(886\) 2723.81 0.103282
\(887\) 2712.06 0.102663 0.0513314 0.998682i \(-0.483654\pi\)
0.0513314 + 0.998682i \(0.483654\pi\)
\(888\) 8983.05 0.339472
\(889\) −35161.6 −1.32652
\(890\) 0 0
\(891\) 5623.93 0.211458
\(892\) −7604.34 −0.285440
\(893\) −36600.5 −1.37155
\(894\) 20263.6 0.758072
\(895\) 0 0
\(896\) −3163.60 −0.117956
\(897\) 3259.55 0.121330
\(898\) −19849.0 −0.737606
\(899\) 4580.85 0.169944
\(900\) 0 0
\(901\) −11896.7 −0.439887
\(902\) 24518.8 0.905084
\(903\) −8494.92 −0.313060
\(904\) −14033.6 −0.516318
\(905\) 0 0
\(906\) −13756.2 −0.504436
\(907\) −38445.0 −1.40744 −0.703719 0.710478i \(-0.748479\pi\)
−0.703719 + 0.710478i \(0.748479\pi\)
\(908\) 5643.90 0.206277
\(909\) 11050.7 0.403221
\(910\) 0 0
\(911\) −21695.4 −0.789023 −0.394512 0.918891i \(-0.629086\pi\)
−0.394512 + 0.918891i \(0.629086\pi\)
\(912\) −4903.05 −0.178022
\(913\) −90997.1 −3.29854
\(914\) −6325.58 −0.228919
\(915\) 0 0
\(916\) 9336.09 0.336761
\(917\) −17701.4 −0.637462
\(918\) 1226.64 0.0441016
\(919\) 43511.9 1.56183 0.780916 0.624636i \(-0.214753\pi\)
0.780916 + 0.624636i \(0.214753\pi\)
\(920\) 0 0
\(921\) −17574.6 −0.628777
\(922\) −4668.08 −0.166741
\(923\) 2284.67 0.0814744
\(924\) −20592.5 −0.733162
\(925\) 0 0
\(926\) 19005.9 0.674486
\(927\) 8637.70 0.306040
\(928\) 1193.10 0.0422041
\(929\) 47420.1 1.67471 0.837354 0.546661i \(-0.184101\pi\)
0.837354 + 0.546661i \(0.184101\pi\)
\(930\) 0 0
\(931\) −27361.3 −0.963192
\(932\) −6745.99 −0.237095
\(933\) −6506.44 −0.228308
\(934\) −12929.9 −0.452974
\(935\) 0 0
\(936\) −936.000 −0.0326860
\(937\) 45605.6 1.59004 0.795021 0.606583i \(-0.207460\pi\)
0.795021 + 0.606583i \(0.207460\pi\)
\(938\) 18234.3 0.634723
\(939\) −12315.7 −0.428017
\(940\) 0 0
\(941\) −27433.9 −0.950392 −0.475196 0.879880i \(-0.657623\pi\)
−0.475196 + 0.879880i \(0.657623\pi\)
\(942\) 14594.3 0.504787
\(943\) −14757.3 −0.509611
\(944\) 11561.1 0.398604
\(945\) 0 0
\(946\) 15909.3 0.546782
\(947\) 13279.2 0.455667 0.227834 0.973700i \(-0.426836\pi\)
0.227834 + 0.973700i \(0.426836\pi\)
\(948\) 11996.9 0.411015
\(949\) −8827.61 −0.301956
\(950\) 0 0
\(951\) 6910.09 0.235620
\(952\) −4491.45 −0.152908
\(953\) 44919.8 1.52686 0.763428 0.645892i \(-0.223515\pi\)
0.763428 + 0.645892i \(0.223515\pi\)
\(954\) −9427.05 −0.319929
\(955\) 0 0
\(956\) 2633.70 0.0891005
\(957\) 7766.10 0.262322
\(958\) −20377.0 −0.687213
\(959\) 35527.5 1.19629
\(960\) 0 0
\(961\) −14695.8 −0.493297
\(962\) −9731.64 −0.326154
\(963\) 18946.9 0.634014
\(964\) 16204.7 0.541409
\(965\) 0 0
\(966\) 12394.1 0.412810
\(967\) 16705.7 0.555551 0.277775 0.960646i \(-0.410403\pi\)
0.277775 + 0.960646i \(0.410403\pi\)
\(968\) 27917.6 0.926969
\(969\) −6960.99 −0.230773
\(970\) 0 0
\(971\) −8016.63 −0.264950 −0.132475 0.991186i \(-0.542292\pi\)
−0.132475 + 0.991186i \(0.542292\pi\)
\(972\) 972.000 0.0320750
\(973\) 42659.6 1.40556
\(974\) 13058.4 0.429587
\(975\) 0 0
\(976\) 7218.20 0.236730
\(977\) 23991.4 0.785623 0.392812 0.919619i \(-0.371502\pi\)
0.392812 + 0.919619i \(0.371502\pi\)
\(978\) 20133.8 0.658291
\(979\) −91416.3 −2.98435
\(980\) 0 0
\(981\) −4868.92 −0.158463
\(982\) −41919.2 −1.36222
\(983\) 1525.59 0.0495002 0.0247501 0.999694i \(-0.492121\pi\)
0.0247501 + 0.999694i \(0.492121\pi\)
\(984\) 4237.65 0.137288
\(985\) 0 0
\(986\) 1693.88 0.0547099
\(987\) −26567.8 −0.856800
\(988\) 5311.64 0.171038
\(989\) −9575.44 −0.307868
\(990\) 0 0
\(991\) −9146.49 −0.293186 −0.146593 0.989197i \(-0.546831\pi\)
−0.146593 + 0.989197i \(0.546831\pi\)
\(992\) 3931.60 0.125835
\(993\) 11537.7 0.368718
\(994\) 8687.25 0.277206
\(995\) 0 0
\(996\) −15727.3 −0.500339
\(997\) 13787.3 0.437962 0.218981 0.975729i \(-0.429727\pi\)
0.218981 + 0.975729i \(0.429727\pi\)
\(998\) 8969.67 0.284499
\(999\) 10105.9 0.320058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.4.a.y.1.1 2
5.4 even 2 390.4.a.m.1.2 2
15.14 odd 2 1170.4.a.x.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.4.a.m.1.2 2 5.4 even 2
1170.4.a.x.1.2 2 15.14 odd 2
1950.4.a.y.1.1 2 1.1 even 1 trivial