Properties

Label 1950.4.a.y.1.2
Level $1950$
Weight $4$
Character 1950.1
Self dual yes
Analytic conductor $115.054$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1950,4,Mod(1,1950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1950.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.17891\) of defining polynomial
Character \(\chi\) \(=\) 1950.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} +6.00000 q^{6} +20.7156 q^{7} +8.00000 q^{8} +9.00000 q^{9} -21.4313 q^{11} +12.0000 q^{12} -13.0000 q^{13} +41.4313 q^{14} +16.0000 q^{16} -22.7156 q^{17} +18.0000 q^{18} +34.1469 q^{19} +62.1469 q^{21} -42.8625 q^{22} +143.578 q^{23} +24.0000 q^{24} -26.0000 q^{26} +27.0000 q^{27} +82.8625 q^{28} +82.7156 q^{29} -58.8625 q^{31} +32.0000 q^{32} -64.2938 q^{33} -45.4313 q^{34} +36.0000 q^{36} +101.706 q^{37} +68.2938 q^{38} -39.0000 q^{39} +267.431 q^{41} +124.294 q^{42} +205.431 q^{43} -85.7251 q^{44} +287.156 q^{46} -550.313 q^{47} +48.0000 q^{48} +86.1375 q^{49} -68.1469 q^{51} -52.0000 q^{52} -160.275 q^{53} +54.0000 q^{54} +165.725 q^{56} +102.441 q^{57} +165.431 q^{58} +813.431 q^{59} +632.863 q^{61} -117.725 q^{62} +186.441 q^{63} +64.0000 q^{64} -128.588 q^{66} +448.881 q^{67} -90.8625 q^{68} +430.735 q^{69} +823.744 q^{71} +72.0000 q^{72} -911.047 q^{73} +203.412 q^{74} +136.588 q^{76} -443.962 q^{77} -78.0000 q^{78} +0.256066 q^{79} +81.0000 q^{81} +534.863 q^{82} -129.394 q^{83} +248.588 q^{84} +410.863 q^{86} +248.147 q^{87} -171.450 q^{88} +1136.64 q^{89} -269.303 q^{91} +574.313 q^{92} -176.588 q^{93} -1100.63 q^{94} +96.0000 q^{96} +318.166 q^{97} +172.275 q^{98} -192.881 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 12 q^{6} - 4 q^{7} + 16 q^{8} + 18 q^{9} + 48 q^{11} + 24 q^{12} - 26 q^{13} - 8 q^{14} + 32 q^{16} + 36 q^{18} - 68 q^{19} - 12 q^{21} + 96 q^{22} + 60 q^{23} + 48 q^{24}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 6.00000 0.408248
\(7\) 20.7156 1.11854 0.559270 0.828986i \(-0.311082\pi\)
0.559270 + 0.828986i \(0.311082\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −21.4313 −0.587434 −0.293717 0.955892i \(-0.594892\pi\)
−0.293717 + 0.955892i \(0.594892\pi\)
\(12\) 12.0000 0.288675
\(13\) −13.0000 −0.277350
\(14\) 41.4313 0.790927
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −22.7156 −0.324079 −0.162040 0.986784i \(-0.551807\pi\)
−0.162040 + 0.986784i \(0.551807\pi\)
\(18\) 18.0000 0.235702
\(19\) 34.1469 0.412307 0.206154 0.978520i \(-0.433905\pi\)
0.206154 + 0.978520i \(0.433905\pi\)
\(20\) 0 0
\(21\) 62.1469 0.645789
\(22\) −42.8625 −0.415378
\(23\) 143.578 1.30166 0.650829 0.759225i \(-0.274422\pi\)
0.650829 + 0.759225i \(0.274422\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) −26.0000 −0.196116
\(27\) 27.0000 0.192450
\(28\) 82.8625 0.559270
\(29\) 82.7156 0.529652 0.264826 0.964296i \(-0.414685\pi\)
0.264826 + 0.964296i \(0.414685\pi\)
\(30\) 0 0
\(31\) −58.8625 −0.341033 −0.170517 0.985355i \(-0.554544\pi\)
−0.170517 + 0.985355i \(0.554544\pi\)
\(32\) 32.0000 0.176777
\(33\) −64.2938 −0.339155
\(34\) −45.4313 −0.229159
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 101.706 0.451903 0.225951 0.974139i \(-0.427451\pi\)
0.225951 + 0.974139i \(0.427451\pi\)
\(38\) 68.2938 0.291545
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 267.431 1.01868 0.509338 0.860566i \(-0.329890\pi\)
0.509338 + 0.860566i \(0.329890\pi\)
\(42\) 124.294 0.456642
\(43\) 205.431 0.728558 0.364279 0.931290i \(-0.381316\pi\)
0.364279 + 0.931290i \(0.381316\pi\)
\(44\) −85.7251 −0.293717
\(45\) 0 0
\(46\) 287.156 0.920411
\(47\) −550.313 −1.70790 −0.853951 0.520354i \(-0.825800\pi\)
−0.853951 + 0.520354i \(0.825800\pi\)
\(48\) 48.0000 0.144338
\(49\) 86.1375 0.251130
\(50\) 0 0
\(51\) −68.1469 −0.187107
\(52\) −52.0000 −0.138675
\(53\) −160.275 −0.415386 −0.207693 0.978194i \(-0.566595\pi\)
−0.207693 + 0.978194i \(0.566595\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) 165.725 0.395463
\(57\) 102.441 0.238046
\(58\) 165.431 0.374521
\(59\) 813.431 1.79491 0.897455 0.441105i \(-0.145413\pi\)
0.897455 + 0.441105i \(0.145413\pi\)
\(60\) 0 0
\(61\) 632.863 1.32836 0.664178 0.747574i \(-0.268782\pi\)
0.664178 + 0.747574i \(0.268782\pi\)
\(62\) −117.725 −0.241147
\(63\) 186.441 0.372846
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −128.588 −0.239819
\(67\) 448.881 0.818501 0.409251 0.912422i \(-0.365790\pi\)
0.409251 + 0.912422i \(0.365790\pi\)
\(68\) −90.8625 −0.162040
\(69\) 430.735 0.751512
\(70\) 0 0
\(71\) 823.744 1.37691 0.688454 0.725280i \(-0.258290\pi\)
0.688454 + 0.725280i \(0.258290\pi\)
\(72\) 72.0000 0.117851
\(73\) −911.047 −1.46069 −0.730343 0.683081i \(-0.760640\pi\)
−0.730343 + 0.683081i \(0.760640\pi\)
\(74\) 203.412 0.319543
\(75\) 0 0
\(76\) 136.588 0.206154
\(77\) −443.962 −0.657067
\(78\) −78.0000 −0.113228
\(79\) 0.256066 0.000364679 0 0.000182339 1.00000i \(-0.499942\pi\)
0.000182339 1.00000i \(0.499942\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 534.863 0.720313
\(83\) −129.394 −0.171118 −0.0855589 0.996333i \(-0.527268\pi\)
−0.0855589 + 0.996333i \(0.527268\pi\)
\(84\) 248.588 0.322894
\(85\) 0 0
\(86\) 410.863 0.515168
\(87\) 248.147 0.305795
\(88\) −171.450 −0.207689
\(89\) 1136.64 1.35375 0.676877 0.736096i \(-0.263333\pi\)
0.676877 + 0.736096i \(0.263333\pi\)
\(90\) 0 0
\(91\) −269.303 −0.310227
\(92\) 574.313 0.650829
\(93\) −176.588 −0.196895
\(94\) −1100.63 −1.20767
\(95\) 0 0
\(96\) 96.0000 0.102062
\(97\) 318.166 0.333040 0.166520 0.986038i \(-0.446747\pi\)
0.166520 + 0.986038i \(0.446747\pi\)
\(98\) 172.275 0.177575
\(99\) −192.881 −0.195811
\(100\) 0 0
\(101\) 1364.15 1.34394 0.671969 0.740579i \(-0.265449\pi\)
0.671969 + 0.740579i \(0.265449\pi\)
\(102\) −136.294 −0.132305
\(103\) −39.7439 −0.0380203 −0.0190101 0.999819i \(-0.506051\pi\)
−0.0190101 + 0.999819i \(0.506051\pi\)
\(104\) −104.000 −0.0980581
\(105\) 0 0
\(106\) −320.550 −0.293722
\(107\) −257.213 −0.232390 −0.116195 0.993226i \(-0.537070\pi\)
−0.116195 + 0.993226i \(0.537070\pi\)
\(108\) 108.000 0.0962250
\(109\) −859.009 −0.754846 −0.377423 0.926041i \(-0.623190\pi\)
−0.377423 + 0.926041i \(0.623190\pi\)
\(110\) 0 0
\(111\) 305.119 0.260906
\(112\) 331.450 0.279635
\(113\) 290.204 0.241593 0.120797 0.992677i \(-0.461455\pi\)
0.120797 + 0.992677i \(0.461455\pi\)
\(114\) 204.881 0.168324
\(115\) 0 0
\(116\) 330.863 0.264826
\(117\) −117.000 −0.0924500
\(118\) 1626.86 1.26919
\(119\) −470.569 −0.362496
\(120\) 0 0
\(121\) −871.701 −0.654922
\(122\) 1265.73 0.939290
\(123\) 802.294 0.588133
\(124\) −235.450 −0.170517
\(125\) 0 0
\(126\) 372.881 0.263642
\(127\) −1030.64 −0.720117 −0.360059 0.932930i \(-0.617243\pi\)
−0.360059 + 0.932930i \(0.617243\pi\)
\(128\) 128.000 0.0883883
\(129\) 616.294 0.420633
\(130\) 0 0
\(131\) −1328.20 −0.885845 −0.442922 0.896560i \(-0.646058\pi\)
−0.442922 + 0.896560i \(0.646058\pi\)
\(132\) −257.175 −0.169577
\(133\) 707.375 0.461182
\(134\) 897.763 0.578768
\(135\) 0 0
\(136\) −181.725 −0.114579
\(137\) −710.550 −0.443112 −0.221556 0.975148i \(-0.571114\pi\)
−0.221556 + 0.975148i \(0.571114\pi\)
\(138\) 861.469 0.531399
\(139\) −1089.98 −0.665115 −0.332558 0.943083i \(-0.607912\pi\)
−0.332558 + 0.943083i \(0.607912\pi\)
\(140\) 0 0
\(141\) −1650.94 −0.986057
\(142\) 1647.49 0.973620
\(143\) 278.606 0.162925
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −1822.09 −1.03286
\(147\) 258.412 0.144990
\(148\) 406.825 0.225951
\(149\) −893.270 −0.491138 −0.245569 0.969379i \(-0.578975\pi\)
−0.245569 + 0.969379i \(0.578975\pi\)
\(150\) 0 0
\(151\) 2068.70 1.11489 0.557445 0.830214i \(-0.311782\pi\)
0.557445 + 0.830214i \(0.311782\pi\)
\(152\) 273.175 0.145773
\(153\) −204.441 −0.108026
\(154\) −887.925 −0.464617
\(155\) 0 0
\(156\) −156.000 −0.0800641
\(157\) −1020.39 −0.518700 −0.259350 0.965783i \(-0.583508\pi\)
−0.259350 + 0.965783i \(0.583508\pi\)
\(158\) 0.512131 0.000257867 0
\(159\) −480.825 −0.239823
\(160\) 0 0
\(161\) 2974.31 1.45595
\(162\) 162.000 0.0785674
\(163\) −3731.64 −1.79316 −0.896578 0.442885i \(-0.853955\pi\)
−0.896578 + 0.442885i \(0.853955\pi\)
\(164\) 1069.73 0.509338
\(165\) 0 0
\(166\) −258.787 −0.120999
\(167\) 1497.43 0.693861 0.346930 0.937891i \(-0.387224\pi\)
0.346930 + 0.937891i \(0.387224\pi\)
\(168\) 497.175 0.228321
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 307.322 0.137436
\(172\) 821.725 0.364279
\(173\) −282.113 −0.123981 −0.0619904 0.998077i \(-0.519745\pi\)
−0.0619904 + 0.998077i \(0.519745\pi\)
\(174\) 496.294 0.216230
\(175\) 0 0
\(176\) −342.900 −0.146858
\(177\) 2440.29 1.03629
\(178\) 2273.29 0.957248
\(179\) −2683.32 −1.12045 −0.560226 0.828340i \(-0.689286\pi\)
−0.560226 + 0.828340i \(0.689286\pi\)
\(180\) 0 0
\(181\) 1513.12 0.621377 0.310688 0.950512i \(-0.399440\pi\)
0.310688 + 0.950512i \(0.399440\pi\)
\(182\) −538.606 −0.219364
\(183\) 1898.59 0.766927
\(184\) 1148.63 0.460205
\(185\) 0 0
\(186\) −353.175 −0.139226
\(187\) 486.825 0.190375
\(188\) −2201.25 −0.853951
\(189\) 559.322 0.215263
\(190\) 0 0
\(191\) 4930.35 1.86779 0.933894 0.357549i \(-0.116388\pi\)
0.933894 + 0.357549i \(0.116388\pi\)
\(192\) 192.000 0.0721688
\(193\) 4493.47 1.67589 0.837946 0.545753i \(-0.183756\pi\)
0.837946 + 0.545753i \(0.183756\pi\)
\(194\) 636.332 0.235495
\(195\) 0 0
\(196\) 344.550 0.125565
\(197\) 2923.91 1.05746 0.528732 0.848789i \(-0.322668\pi\)
0.528732 + 0.848789i \(0.322668\pi\)
\(198\) −385.763 −0.138459
\(199\) −3760.99 −1.33975 −0.669874 0.742475i \(-0.733652\pi\)
−0.669874 + 0.742475i \(0.733652\pi\)
\(200\) 0 0
\(201\) 1346.64 0.472562
\(202\) 2728.29 0.950307
\(203\) 1713.51 0.592436
\(204\) −272.588 −0.0935537
\(205\) 0 0
\(206\) −79.4879 −0.0268844
\(207\) 1292.20 0.433886
\(208\) −208.000 −0.0693375
\(209\) −731.811 −0.242203
\(210\) 0 0
\(211\) −1166.35 −0.380544 −0.190272 0.981731i \(-0.560937\pi\)
−0.190272 + 0.981731i \(0.560937\pi\)
\(212\) −641.100 −0.207693
\(213\) 2471.23 0.794958
\(214\) −514.426 −0.164324
\(215\) 0 0
\(216\) 216.000 0.0680414
\(217\) −1219.37 −0.381459
\(218\) −1718.02 −0.533757
\(219\) −2733.14 −0.843327
\(220\) 0 0
\(221\) 295.303 0.0898835
\(222\) 610.237 0.184488
\(223\) 961.085 0.288605 0.144303 0.989534i \(-0.453906\pi\)
0.144303 + 0.989534i \(0.453906\pi\)
\(224\) 662.900 0.197732
\(225\) 0 0
\(226\) 580.407 0.170832
\(227\) −2586.98 −0.756404 −0.378202 0.925723i \(-0.623457\pi\)
−0.378202 + 0.925723i \(0.623457\pi\)
\(228\) 409.763 0.119023
\(229\) −3254.02 −0.939004 −0.469502 0.882931i \(-0.655567\pi\)
−0.469502 + 0.882931i \(0.655567\pi\)
\(230\) 0 0
\(231\) −1331.89 −0.379358
\(232\) 661.725 0.187260
\(233\) 630.497 0.177276 0.0886379 0.996064i \(-0.471749\pi\)
0.0886379 + 0.996064i \(0.471749\pi\)
\(234\) −234.000 −0.0653720
\(235\) 0 0
\(236\) 3253.73 0.897455
\(237\) 0.768197 0.000210547 0
\(238\) −941.137 −0.256323
\(239\) −4066.43 −1.10057 −0.550283 0.834978i \(-0.685480\pi\)
−0.550283 + 0.834978i \(0.685480\pi\)
\(240\) 0 0
\(241\) 2960.82 0.791384 0.395692 0.918383i \(-0.370505\pi\)
0.395692 + 0.918383i \(0.370505\pi\)
\(242\) −1743.40 −0.463100
\(243\) 243.000 0.0641500
\(244\) 2531.45 0.664178
\(245\) 0 0
\(246\) 1604.59 0.415873
\(247\) −443.910 −0.114353
\(248\) −470.900 −0.120573
\(249\) −388.181 −0.0987950
\(250\) 0 0
\(251\) 4686.67 1.17856 0.589282 0.807927i \(-0.299411\pi\)
0.589282 + 0.807927i \(0.299411\pi\)
\(252\) 745.763 0.186423
\(253\) −3077.06 −0.764637
\(254\) −2061.29 −0.509200
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2530.72 0.614248 0.307124 0.951670i \(-0.400633\pi\)
0.307124 + 0.951670i \(0.400633\pi\)
\(258\) 1232.59 0.297432
\(259\) 2106.91 0.505471
\(260\) 0 0
\(261\) 744.441 0.176551
\(262\) −2656.41 −0.626387
\(263\) 1632.42 0.382736 0.191368 0.981518i \(-0.438708\pi\)
0.191368 + 0.981518i \(0.438708\pi\)
\(264\) −514.350 −0.119909
\(265\) 0 0
\(266\) 1414.75 0.326105
\(267\) 3409.93 0.781590
\(268\) 1795.53 0.409251
\(269\) 5804.45 1.31563 0.657813 0.753181i \(-0.271482\pi\)
0.657813 + 0.753181i \(0.271482\pi\)
\(270\) 0 0
\(271\) 1247.56 0.279646 0.139823 0.990177i \(-0.455347\pi\)
0.139823 + 0.990177i \(0.455347\pi\)
\(272\) −363.450 −0.0810199
\(273\) −807.910 −0.179110
\(274\) −1421.10 −0.313328
\(275\) 0 0
\(276\) 1722.94 0.375756
\(277\) 1991.88 0.432059 0.216029 0.976387i \(-0.430689\pi\)
0.216029 + 0.976387i \(0.430689\pi\)
\(278\) −2179.96 −0.470307
\(279\) −529.763 −0.113678
\(280\) 0 0
\(281\) 5127.39 1.08852 0.544261 0.838916i \(-0.316810\pi\)
0.544261 + 0.838916i \(0.316810\pi\)
\(282\) −3301.88 −0.697248
\(283\) 5686.32 1.19441 0.597203 0.802090i \(-0.296279\pi\)
0.597203 + 0.802090i \(0.296279\pi\)
\(284\) 3294.98 0.688454
\(285\) 0 0
\(286\) 557.213 0.115205
\(287\) 5540.01 1.13943
\(288\) 288.000 0.0589256
\(289\) −4397.00 −0.894973
\(290\) 0 0
\(291\) 954.497 0.192280
\(292\) −3644.19 −0.730343
\(293\) −3431.40 −0.684180 −0.342090 0.939667i \(-0.611135\pi\)
−0.342090 + 0.939667i \(0.611135\pi\)
\(294\) 516.825 0.102523
\(295\) 0 0
\(296\) 813.650 0.159772
\(297\) −578.644 −0.113052
\(298\) −1786.54 −0.347287
\(299\) −1866.52 −0.361015
\(300\) 0 0
\(301\) 4255.64 0.814920
\(302\) 4137.40 0.788347
\(303\) 4092.44 0.775923
\(304\) 546.350 0.103077
\(305\) 0 0
\(306\) −408.881 −0.0763863
\(307\) 1138.21 0.211599 0.105800 0.994387i \(-0.466260\pi\)
0.105800 + 0.994387i \(0.466260\pi\)
\(308\) −1775.85 −0.328534
\(309\) −119.232 −0.0219510
\(310\) 0 0
\(311\) 6008.81 1.09559 0.547795 0.836612i \(-0.315467\pi\)
0.547795 + 0.836612i \(0.315467\pi\)
\(312\) −312.000 −0.0566139
\(313\) −1106.77 −0.199867 −0.0999333 0.994994i \(-0.531863\pi\)
−0.0999333 + 0.994994i \(0.531863\pi\)
\(314\) −2040.78 −0.366776
\(315\) 0 0
\(316\) 1.02426 0.000182339 0
\(317\) −5147.36 −0.912002 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(318\) −961.650 −0.169581
\(319\) −1772.70 −0.311135
\(320\) 0 0
\(321\) −771.639 −0.134170
\(322\) 5948.63 1.02952
\(323\) −775.668 −0.133620
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) −7463.28 −1.26795
\(327\) −2577.03 −0.435810
\(328\) 2139.45 0.360157
\(329\) −11400.1 −1.91035
\(330\) 0 0
\(331\) 2710.11 0.450033 0.225017 0.974355i \(-0.427756\pi\)
0.225017 + 0.974355i \(0.427756\pi\)
\(332\) −517.574 −0.0855589
\(333\) 915.356 0.150634
\(334\) 2994.86 0.490633
\(335\) 0 0
\(336\) 994.350 0.161447
\(337\) −5234.99 −0.846197 −0.423098 0.906084i \(-0.639058\pi\)
−0.423098 + 0.906084i \(0.639058\pi\)
\(338\) 338.000 0.0543928
\(339\) 870.611 0.139484
\(340\) 0 0
\(341\) 1261.50 0.200334
\(342\) 614.644 0.0971817
\(343\) −5321.07 −0.837641
\(344\) 1643.45 0.257584
\(345\) 0 0
\(346\) −564.226 −0.0876676
\(347\) −2603.16 −0.402723 −0.201361 0.979517i \(-0.564537\pi\)
−0.201361 + 0.979517i \(0.564537\pi\)
\(348\) 992.588 0.152897
\(349\) 5726.03 0.878245 0.439122 0.898427i \(-0.355289\pi\)
0.439122 + 0.898427i \(0.355289\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) −685.801 −0.103845
\(353\) −1962.00 −0.295826 −0.147913 0.989000i \(-0.547256\pi\)
−0.147913 + 0.989000i \(0.547256\pi\)
\(354\) 4880.59 0.732769
\(355\) 0 0
\(356\) 4546.58 0.676877
\(357\) −1411.71 −0.209287
\(358\) −5366.64 −0.792279
\(359\) −9472.48 −1.39259 −0.696293 0.717757i \(-0.745169\pi\)
−0.696293 + 0.717757i \(0.745169\pi\)
\(360\) 0 0
\(361\) −5692.99 −0.830003
\(362\) 3026.24 0.439380
\(363\) −2615.10 −0.378119
\(364\) −1077.21 −0.155113
\(365\) 0 0
\(366\) 3797.18 0.542299
\(367\) 1417.36 0.201595 0.100798 0.994907i \(-0.467861\pi\)
0.100798 + 0.994907i \(0.467861\pi\)
\(368\) 2297.25 0.325414
\(369\) 2406.88 0.339559
\(370\) 0 0
\(371\) −3320.20 −0.464625
\(372\) −706.350 −0.0984477
\(373\) −11107.4 −1.54187 −0.770935 0.636914i \(-0.780211\pi\)
−0.770935 + 0.636914i \(0.780211\pi\)
\(374\) 973.650 0.134616
\(375\) 0 0
\(376\) −4402.50 −0.603834
\(377\) −1075.30 −0.146899
\(378\) 1118.64 0.152214
\(379\) 6340.09 0.859284 0.429642 0.902999i \(-0.358640\pi\)
0.429642 + 0.902999i \(0.358640\pi\)
\(380\) 0 0
\(381\) −3091.93 −0.415760
\(382\) 9860.70 1.32073
\(383\) −6087.10 −0.812105 −0.406052 0.913850i \(-0.633095\pi\)
−0.406052 + 0.913850i \(0.633095\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) 8986.95 1.18504
\(387\) 1848.88 0.242853
\(388\) 1272.66 0.166520
\(389\) −13403.3 −1.74698 −0.873488 0.486846i \(-0.838147\pi\)
−0.873488 + 0.486846i \(0.838147\pi\)
\(390\) 0 0
\(391\) −3261.47 −0.421840
\(392\) 689.100 0.0887877
\(393\) −3984.61 −0.511443
\(394\) 5847.83 0.747739
\(395\) 0 0
\(396\) −771.526 −0.0979056
\(397\) −3933.74 −0.497302 −0.248651 0.968593i \(-0.579987\pi\)
−0.248651 + 0.968593i \(0.579987\pi\)
\(398\) −7521.99 −0.947345
\(399\) 2122.12 0.266263
\(400\) 0 0
\(401\) 8357.57 1.04079 0.520396 0.853925i \(-0.325785\pi\)
0.520396 + 0.853925i \(0.325785\pi\)
\(402\) 2693.29 0.334152
\(403\) 765.213 0.0945855
\(404\) 5456.59 0.671969
\(405\) 0 0
\(406\) 3427.01 0.418916
\(407\) −2179.69 −0.265463
\(408\) −545.175 −0.0661524
\(409\) 8925.71 1.07909 0.539545 0.841957i \(-0.318596\pi\)
0.539545 + 0.841957i \(0.318596\pi\)
\(410\) 0 0
\(411\) −2131.65 −0.255831
\(412\) −158.976 −0.0190101
\(413\) 16850.7 2.00768
\(414\) 2584.41 0.306804
\(415\) 0 0
\(416\) −416.000 −0.0490290
\(417\) −3269.94 −0.384004
\(418\) −1463.62 −0.171263
\(419\) −16604.5 −1.93599 −0.967997 0.250962i \(-0.919253\pi\)
−0.967997 + 0.250962i \(0.919253\pi\)
\(420\) 0 0
\(421\) −13456.6 −1.55781 −0.778903 0.627145i \(-0.784223\pi\)
−0.778903 + 0.627145i \(0.784223\pi\)
\(422\) −2332.70 −0.269086
\(423\) −4952.81 −0.569300
\(424\) −1282.20 −0.146861
\(425\) 0 0
\(426\) 4942.46 0.562120
\(427\) 13110.1 1.48582
\(428\) −1028.85 −0.116195
\(429\) 835.819 0.0940647
\(430\) 0 0
\(431\) −10889.5 −1.21700 −0.608501 0.793553i \(-0.708229\pi\)
−0.608501 + 0.793553i \(0.708229\pi\)
\(432\) 432.000 0.0481125
\(433\) 7812.57 0.867086 0.433543 0.901133i \(-0.357263\pi\)
0.433543 + 0.901133i \(0.357263\pi\)
\(434\) −2438.75 −0.269732
\(435\) 0 0
\(436\) −3436.04 −0.377423
\(437\) 4902.75 0.536683
\(438\) −5466.28 −0.596322
\(439\) −468.097 −0.0508908 −0.0254454 0.999676i \(-0.508100\pi\)
−0.0254454 + 0.999676i \(0.508100\pi\)
\(440\) 0 0
\(441\) 775.237 0.0837099
\(442\) 590.606 0.0635572
\(443\) 4542.09 0.487136 0.243568 0.969884i \(-0.421682\pi\)
0.243568 + 0.969884i \(0.421682\pi\)
\(444\) 1220.47 0.130453
\(445\) 0 0
\(446\) 1922.17 0.204075
\(447\) −2679.81 −0.283558
\(448\) 1325.80 0.139817
\(449\) 7248.51 0.761867 0.380934 0.924602i \(-0.375603\pi\)
0.380934 + 0.924602i \(0.375603\pi\)
\(450\) 0 0
\(451\) −5731.39 −0.598405
\(452\) 1160.81 0.120797
\(453\) 6206.10 0.643682
\(454\) −5173.95 −0.534858
\(455\) 0 0
\(456\) 819.526 0.0841618
\(457\) −573.209 −0.0586730 −0.0293365 0.999570i \(-0.509339\pi\)
−0.0293365 + 0.999570i \(0.509339\pi\)
\(458\) −6508.05 −0.663976
\(459\) −613.322 −0.0623691
\(460\) 0 0
\(461\) −1061.96 −0.107290 −0.0536448 0.998560i \(-0.517084\pi\)
−0.0536448 + 0.998560i \(0.517084\pi\)
\(462\) −2663.77 −0.268247
\(463\) −8714.97 −0.874771 −0.437385 0.899274i \(-0.644095\pi\)
−0.437385 + 0.899274i \(0.644095\pi\)
\(464\) 1323.45 0.132413
\(465\) 0 0
\(466\) 1260.99 0.125353
\(467\) 5528.93 0.547855 0.273927 0.961750i \(-0.411677\pi\)
0.273927 + 0.961750i \(0.411677\pi\)
\(468\) −468.000 −0.0462250
\(469\) 9298.86 0.915526
\(470\) 0 0
\(471\) −3061.16 −0.299471
\(472\) 6507.45 0.634597
\(473\) −4402.65 −0.427979
\(474\) 1.53639 0.000148880 0
\(475\) 0 0
\(476\) −1882.27 −0.181248
\(477\) −1442.47 −0.138462
\(478\) −8132.85 −0.778218
\(479\) 6348.49 0.605574 0.302787 0.953058i \(-0.402083\pi\)
0.302787 + 0.953058i \(0.402083\pi\)
\(480\) 0 0
\(481\) −1322.18 −0.125335
\(482\) 5921.65 0.559593
\(483\) 8922.94 0.840596
\(484\) −3486.80 −0.327461
\(485\) 0 0
\(486\) 486.000 0.0453609
\(487\) −149.198 −0.0138826 −0.00694129 0.999976i \(-0.502209\pi\)
−0.00694129 + 0.999976i \(0.502209\pi\)
\(488\) 5062.90 0.469645
\(489\) −11194.9 −1.03528
\(490\) 0 0
\(491\) −9556.38 −0.878357 −0.439178 0.898400i \(-0.644730\pi\)
−0.439178 + 0.898400i \(0.644730\pi\)
\(492\) 3209.18 0.294067
\(493\) −1878.94 −0.171649
\(494\) −887.819 −0.0808601
\(495\) 0 0
\(496\) −941.801 −0.0852583
\(497\) 17064.4 1.54012
\(498\) −776.361 −0.0698586
\(499\) −9280.84 −0.832600 −0.416300 0.909227i \(-0.636673\pi\)
−0.416300 + 0.909227i \(0.636673\pi\)
\(500\) 0 0
\(501\) 4492.29 0.400601
\(502\) 9373.33 0.833371
\(503\) 6093.50 0.540151 0.270075 0.962839i \(-0.412951\pi\)
0.270075 + 0.962839i \(0.412951\pi\)
\(504\) 1491.53 0.131821
\(505\) 0 0
\(506\) −6154.12 −0.540680
\(507\) 507.000 0.0444116
\(508\) −4122.58 −0.360059
\(509\) −353.925 −0.0308201 −0.0154100 0.999881i \(-0.504905\pi\)
−0.0154100 + 0.999881i \(0.504905\pi\)
\(510\) 0 0
\(511\) −18872.9 −1.63383
\(512\) 512.000 0.0441942
\(513\) 921.966 0.0793486
\(514\) 5061.43 0.434339
\(515\) 0 0
\(516\) 2465.18 0.210316
\(517\) 11793.9 1.00328
\(518\) 4213.82 0.357422
\(519\) −846.340 −0.0715803
\(520\) 0 0
\(521\) −210.504 −0.0177012 −0.00885062 0.999961i \(-0.502817\pi\)
−0.00885062 + 0.999961i \(0.502817\pi\)
\(522\) 1488.88 0.124840
\(523\) −8588.45 −0.718063 −0.359031 0.933325i \(-0.616893\pi\)
−0.359031 + 0.933325i \(0.616893\pi\)
\(524\) −5312.81 −0.442922
\(525\) 0 0
\(526\) 3264.84 0.270635
\(527\) 1337.10 0.110522
\(528\) −1028.70 −0.0847887
\(529\) 8447.69 0.694312
\(530\) 0 0
\(531\) 7320.88 0.598304
\(532\) 2829.50 0.230591
\(533\) −3476.61 −0.282530
\(534\) 6819.87 0.552667
\(535\) 0 0
\(536\) 3591.05 0.289384
\(537\) −8049.97 −0.646893
\(538\) 11608.9 0.930288
\(539\) −1846.04 −0.147522
\(540\) 0 0
\(541\) 10116.0 0.803922 0.401961 0.915657i \(-0.368329\pi\)
0.401961 + 0.915657i \(0.368329\pi\)
\(542\) 2495.13 0.197740
\(543\) 4539.36 0.358752
\(544\) −726.900 −0.0572897
\(545\) 0 0
\(546\) −1615.82 −0.126650
\(547\) −9779.04 −0.764390 −0.382195 0.924082i \(-0.624832\pi\)
−0.382195 + 0.924082i \(0.624832\pi\)
\(548\) −2842.20 −0.221556
\(549\) 5695.76 0.442785
\(550\) 0 0
\(551\) 2824.48 0.218379
\(552\) 3445.88 0.265700
\(553\) 5.30456 0.000407908 0
\(554\) 3983.75 0.305512
\(555\) 0 0
\(556\) −4359.92 −0.332558
\(557\) −22023.3 −1.67532 −0.837662 0.546189i \(-0.816078\pi\)
−0.837662 + 0.546189i \(0.816078\pi\)
\(558\) −1059.53 −0.0803822
\(559\) −2670.61 −0.202066
\(560\) 0 0
\(561\) 1460.47 0.109913
\(562\) 10254.8 0.769701
\(563\) 14263.8 1.06776 0.533878 0.845561i \(-0.320734\pi\)
0.533878 + 0.845561i \(0.320734\pi\)
\(564\) −6603.75 −0.493029
\(565\) 0 0
\(566\) 11372.6 0.844572
\(567\) 1677.97 0.124282
\(568\) 6589.95 0.486810
\(569\) 6525.44 0.480774 0.240387 0.970677i \(-0.422726\pi\)
0.240387 + 0.970677i \(0.422726\pi\)
\(570\) 0 0
\(571\) 14699.1 1.07730 0.538650 0.842530i \(-0.318935\pi\)
0.538650 + 0.842530i \(0.318935\pi\)
\(572\) 1114.43 0.0814624
\(573\) 14791.1 1.07837
\(574\) 11080.0 0.805698
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) 10515.6 0.758698 0.379349 0.925254i \(-0.376148\pi\)
0.379349 + 0.925254i \(0.376148\pi\)
\(578\) −8794.00 −0.632841
\(579\) 13480.4 0.967577
\(580\) 0 0
\(581\) −2680.47 −0.191402
\(582\) 1908.99 0.135963
\(583\) 3434.89 0.244012
\(584\) −7288.38 −0.516430
\(585\) 0 0
\(586\) −6862.80 −0.483788
\(587\) −21022.9 −1.47821 −0.739103 0.673592i \(-0.764750\pi\)
−0.739103 + 0.673592i \(0.764750\pi\)
\(588\) 1033.65 0.0724949
\(589\) −2009.97 −0.140610
\(590\) 0 0
\(591\) 8771.74 0.610527
\(592\) 1627.30 0.112976
\(593\) −14914.6 −1.03283 −0.516414 0.856339i \(-0.672734\pi\)
−0.516414 + 0.856339i \(0.672734\pi\)
\(594\) −1157.29 −0.0799396
\(595\) 0 0
\(596\) −3573.08 −0.245569
\(597\) −11283.0 −0.773504
\(598\) −3733.03 −0.255276
\(599\) −19508.5 −1.33071 −0.665354 0.746528i \(-0.731720\pi\)
−0.665354 + 0.746528i \(0.731720\pi\)
\(600\) 0 0
\(601\) −11353.1 −0.770552 −0.385276 0.922801i \(-0.625894\pi\)
−0.385276 + 0.922801i \(0.625894\pi\)
\(602\) 8511.28 0.576236
\(603\) 4039.93 0.272834
\(604\) 8274.80 0.557445
\(605\) 0 0
\(606\) 8184.88 0.548660
\(607\) −22554.3 −1.50815 −0.754077 0.656786i \(-0.771915\pi\)
−0.754077 + 0.656786i \(0.771915\pi\)
\(608\) 1092.70 0.0728863
\(609\) 5140.52 0.342043
\(610\) 0 0
\(611\) 7154.06 0.473687
\(612\) −817.763 −0.0540132
\(613\) −17954.7 −1.18301 −0.591505 0.806302i \(-0.701466\pi\)
−0.591505 + 0.806302i \(0.701466\pi\)
\(614\) 2276.42 0.149623
\(615\) 0 0
\(616\) −3551.70 −0.232308
\(617\) 17969.4 1.17248 0.586241 0.810137i \(-0.300607\pi\)
0.586241 + 0.810137i \(0.300607\pi\)
\(618\) −238.464 −0.0155217
\(619\) −7547.70 −0.490093 −0.245047 0.969511i \(-0.578803\pi\)
−0.245047 + 0.969511i \(0.578803\pi\)
\(620\) 0 0
\(621\) 3876.61 0.250504
\(622\) 12017.6 0.774699
\(623\) 23546.3 1.51423
\(624\) −624.000 −0.0400320
\(625\) 0 0
\(626\) −2213.54 −0.141327
\(627\) −2195.43 −0.139836
\(628\) −4081.55 −0.259350
\(629\) −2310.32 −0.146452
\(630\) 0 0
\(631\) −25226.5 −1.59152 −0.795761 0.605611i \(-0.792929\pi\)
−0.795761 + 0.605611i \(0.792929\pi\)
\(632\) 2.04852 0.000128933 0
\(633\) −3499.05 −0.219707
\(634\) −10294.7 −0.644883
\(635\) 0 0
\(636\) −1923.30 −0.119912
\(637\) −1119.79 −0.0696508
\(638\) −3545.40 −0.220006
\(639\) 7413.70 0.458969
\(640\) 0 0
\(641\) −738.189 −0.0454863 −0.0227431 0.999741i \(-0.507240\pi\)
−0.0227431 + 0.999741i \(0.507240\pi\)
\(642\) −1543.28 −0.0948728
\(643\) −1061.36 −0.0650945 −0.0325473 0.999470i \(-0.510362\pi\)
−0.0325473 + 0.999470i \(0.510362\pi\)
\(644\) 11897.3 0.727977
\(645\) 0 0
\(646\) −1551.34 −0.0944838
\(647\) −19890.0 −1.20859 −0.604293 0.796762i \(-0.706544\pi\)
−0.604293 + 0.796762i \(0.706544\pi\)
\(648\) 648.000 0.0392837
\(649\) −17432.9 −1.05439
\(650\) 0 0
\(651\) −3658.12 −0.220235
\(652\) −14926.6 −0.896578
\(653\) 18758.5 1.12416 0.562079 0.827083i \(-0.310002\pi\)
0.562079 + 0.827083i \(0.310002\pi\)
\(654\) −5154.06 −0.308164
\(655\) 0 0
\(656\) 4278.90 0.254669
\(657\) −8199.42 −0.486895
\(658\) −22800.2 −1.35082
\(659\) 13840.7 0.818144 0.409072 0.912502i \(-0.365852\pi\)
0.409072 + 0.912502i \(0.365852\pi\)
\(660\) 0 0
\(661\) 13279.4 0.781403 0.390702 0.920517i \(-0.372232\pi\)
0.390702 + 0.920517i \(0.372232\pi\)
\(662\) 5420.22 0.318222
\(663\) 885.910 0.0518942
\(664\) −1035.15 −0.0604993
\(665\) 0 0
\(666\) 1830.71 0.106514
\(667\) 11876.2 0.689425
\(668\) 5989.73 0.346930
\(669\) 2883.25 0.166626
\(670\) 0 0
\(671\) −13563.0 −0.780321
\(672\) 1988.70 0.114160
\(673\) 3784.18 0.216745 0.108373 0.994110i \(-0.465436\pi\)
0.108373 + 0.994110i \(0.465436\pi\)
\(674\) −10470.0 −0.598352
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) −6019.74 −0.341739 −0.170870 0.985294i \(-0.554658\pi\)
−0.170870 + 0.985294i \(0.554658\pi\)
\(678\) 1741.22 0.0986301
\(679\) 6591.01 0.372518
\(680\) 0 0
\(681\) −7760.93 −0.436710
\(682\) 2523.00 0.141658
\(683\) −17525.2 −0.981822 −0.490911 0.871210i \(-0.663336\pi\)
−0.490911 + 0.871210i \(0.663336\pi\)
\(684\) 1229.29 0.0687179
\(685\) 0 0
\(686\) −10642.1 −0.592301
\(687\) −9762.07 −0.542134
\(688\) 3286.90 0.182139
\(689\) 2083.57 0.115207
\(690\) 0 0
\(691\) 20112.7 1.10727 0.553635 0.832760i \(-0.313240\pi\)
0.553635 + 0.832760i \(0.313240\pi\)
\(692\) −1128.45 −0.0619904
\(693\) −3995.66 −0.219022
\(694\) −5206.31 −0.284768
\(695\) 0 0
\(696\) 1985.18 0.108115
\(697\) −6074.87 −0.330132
\(698\) 11452.1 0.621013
\(699\) 1891.49 0.102350
\(700\) 0 0
\(701\) 13700.4 0.738168 0.369084 0.929396i \(-0.379671\pi\)
0.369084 + 0.929396i \(0.379671\pi\)
\(702\) −702.000 −0.0377426
\(703\) 3472.95 0.186323
\(704\) −1371.60 −0.0734292
\(705\) 0 0
\(706\) −3924.00 −0.209181
\(707\) 28259.2 1.50325
\(708\) 9761.18 0.518146
\(709\) −19689.8 −1.04297 −0.521485 0.853260i \(-0.674622\pi\)
−0.521485 + 0.853260i \(0.674622\pi\)
\(710\) 0 0
\(711\) 2.30459 0.000121560 0
\(712\) 9093.15 0.478624
\(713\) −8451.37 −0.443908
\(714\) −2823.41 −0.147988
\(715\) 0 0
\(716\) −10733.3 −0.560226
\(717\) −12199.3 −0.635412
\(718\) −18945.0 −0.984707
\(719\) −22867.2 −1.18610 −0.593048 0.805167i \(-0.702076\pi\)
−0.593048 + 0.805167i \(0.702076\pi\)
\(720\) 0 0
\(721\) −823.321 −0.0425271
\(722\) −11386.0 −0.586901
\(723\) 8882.47 0.456906
\(724\) 6052.47 0.310688
\(725\) 0 0
\(726\) −5230.20 −0.267371
\(727\) −20365.9 −1.03897 −0.519484 0.854480i \(-0.673876\pi\)
−0.519484 + 0.854480i \(0.673876\pi\)
\(728\) −2154.43 −0.109682
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −4666.50 −0.236111
\(732\) 7594.35 0.383463
\(733\) −28247.6 −1.42340 −0.711699 0.702485i \(-0.752074\pi\)
−0.711699 + 0.702485i \(0.752074\pi\)
\(734\) 2834.71 0.142549
\(735\) 0 0
\(736\) 4594.50 0.230103
\(737\) −9620.10 −0.480815
\(738\) 4813.76 0.240104
\(739\) 34918.9 1.73817 0.869087 0.494659i \(-0.164707\pi\)
0.869087 + 0.494659i \(0.164707\pi\)
\(740\) 0 0
\(741\) −1331.73 −0.0660220
\(742\) −6640.39 −0.328540
\(743\) −6021.06 −0.297297 −0.148648 0.988890i \(-0.547492\pi\)
−0.148648 + 0.988890i \(0.547492\pi\)
\(744\) −1412.70 −0.0696131
\(745\) 0 0
\(746\) −22214.7 −1.09027
\(747\) −1164.54 −0.0570393
\(748\) 1947.30 0.0951876
\(749\) −5328.33 −0.259937
\(750\) 0 0
\(751\) −27511.2 −1.33675 −0.668374 0.743826i \(-0.733009\pi\)
−0.668374 + 0.743826i \(0.733009\pi\)
\(752\) −8805.00 −0.426975
\(753\) 14060.0 0.680445
\(754\) −2150.61 −0.103873
\(755\) 0 0
\(756\) 2237.29 0.107631
\(757\) −10600.2 −0.508945 −0.254473 0.967080i \(-0.581902\pi\)
−0.254473 + 0.967080i \(0.581902\pi\)
\(758\) 12680.2 0.607605
\(759\) −9231.19 −0.441464
\(760\) 0 0
\(761\) 29906.9 1.42460 0.712302 0.701873i \(-0.247653\pi\)
0.712302 + 0.701873i \(0.247653\pi\)
\(762\) −6183.87 −0.293987
\(763\) −17794.9 −0.844324
\(764\) 19721.4 0.933894
\(765\) 0 0
\(766\) −12174.2 −0.574245
\(767\) −10574.6 −0.497819
\(768\) 768.000 0.0360844
\(769\) −28994.9 −1.35966 −0.679832 0.733367i \(-0.737947\pi\)
−0.679832 + 0.733367i \(0.737947\pi\)
\(770\) 0 0
\(771\) 7592.15 0.354636
\(772\) 17973.9 0.837946
\(773\) −9556.54 −0.444663 −0.222332 0.974971i \(-0.571367\pi\)
−0.222332 + 0.974971i \(0.571367\pi\)
\(774\) 3697.76 0.171723
\(775\) 0 0
\(776\) 2545.33 0.117747
\(777\) 6320.73 0.291834
\(778\) −26806.6 −1.23530
\(779\) 9131.95 0.420008
\(780\) 0 0
\(781\) −17653.9 −0.808842
\(782\) −6522.94 −0.298286
\(783\) 2233.32 0.101932
\(784\) 1378.20 0.0627824
\(785\) 0 0
\(786\) −7969.22 −0.361645
\(787\) −21610.5 −0.978819 −0.489409 0.872054i \(-0.662788\pi\)
−0.489409 + 0.872054i \(0.662788\pi\)
\(788\) 11695.7 0.528732
\(789\) 4897.27 0.220972
\(790\) 0 0
\(791\) 6011.75 0.270232
\(792\) −1543.05 −0.0692297
\(793\) −8227.21 −0.368420
\(794\) −7867.49 −0.351646
\(795\) 0 0
\(796\) −15044.0 −0.669874
\(797\) 22274.0 0.989946 0.494973 0.868908i \(-0.335178\pi\)
0.494973 + 0.868908i \(0.335178\pi\)
\(798\) 4244.25 0.188277
\(799\) 12500.7 0.553496
\(800\) 0 0
\(801\) 10229.8 0.451251
\(802\) 16715.1 0.735950
\(803\) 19524.9 0.858056
\(804\) 5386.58 0.236281
\(805\) 0 0
\(806\) 1530.43 0.0668821
\(807\) 17413.3 0.759577
\(808\) 10913.2 0.475154
\(809\) 35070.2 1.52411 0.762053 0.647515i \(-0.224192\pi\)
0.762053 + 0.647515i \(0.224192\pi\)
\(810\) 0 0
\(811\) −34343.4 −1.48700 −0.743502 0.668733i \(-0.766837\pi\)
−0.743502 + 0.668733i \(0.766837\pi\)
\(812\) 6854.03 0.296218
\(813\) 3742.69 0.161454
\(814\) −4359.39 −0.187711
\(815\) 0 0
\(816\) −1090.35 −0.0467768
\(817\) 7014.84 0.300389
\(818\) 17851.4 0.763032
\(819\) −2423.73 −0.103409
\(820\) 0 0
\(821\) −26.6496 −0.00113286 −0.000566429 1.00000i \(-0.500180\pi\)
−0.000566429 1.00000i \(0.500180\pi\)
\(822\) −4263.30 −0.180900
\(823\) −8777.13 −0.371752 −0.185876 0.982573i \(-0.559512\pi\)
−0.185876 + 0.982573i \(0.559512\pi\)
\(824\) −317.951 −0.0134422
\(825\) 0 0
\(826\) 33701.5 1.41964
\(827\) −20451.6 −0.859941 −0.429970 0.902843i \(-0.641476\pi\)
−0.429970 + 0.902843i \(0.641476\pi\)
\(828\) 5168.81 0.216943
\(829\) 17505.7 0.733411 0.366706 0.930337i \(-0.380486\pi\)
0.366706 + 0.930337i \(0.380486\pi\)
\(830\) 0 0
\(831\) 5975.63 0.249449
\(832\) −832.000 −0.0346688
\(833\) −1956.67 −0.0813860
\(834\) −6539.89 −0.271532
\(835\) 0 0
\(836\) −2927.25 −0.121102
\(837\) −1589.29 −0.0656318
\(838\) −33208.9 −1.36895
\(839\) −17453.3 −0.718181 −0.359090 0.933303i \(-0.616913\pi\)
−0.359090 + 0.933303i \(0.616913\pi\)
\(840\) 0 0
\(841\) −17547.1 −0.719469
\(842\) −26913.3 −1.10153
\(843\) 15382.2 0.628458
\(844\) −4665.40 −0.190272
\(845\) 0 0
\(846\) −9905.63 −0.402556
\(847\) −18057.8 −0.732556
\(848\) −2564.40 −0.103846
\(849\) 17059.0 0.689590
\(850\) 0 0
\(851\) 14602.8 0.588222
\(852\) 9884.93 0.397479
\(853\) −10442.5 −0.419160 −0.209580 0.977791i \(-0.567210\pi\)
−0.209580 + 0.977791i \(0.567210\pi\)
\(854\) 26220.3 1.05063
\(855\) 0 0
\(856\) −2057.70 −0.0821622
\(857\) −34377.8 −1.37027 −0.685137 0.728414i \(-0.740258\pi\)
−0.685137 + 0.728414i \(0.740258\pi\)
\(858\) 1671.64 0.0665138
\(859\) 8502.73 0.337729 0.168865 0.985639i \(-0.445990\pi\)
0.168865 + 0.985639i \(0.445990\pi\)
\(860\) 0 0
\(861\) 16620.0 0.657850
\(862\) −21779.0 −0.860550
\(863\) 28799.8 1.13599 0.567994 0.823033i \(-0.307720\pi\)
0.567994 + 0.823033i \(0.307720\pi\)
\(864\) 864.000 0.0340207
\(865\) 0 0
\(866\) 15625.1 0.613122
\(867\) −13191.0 −0.516713
\(868\) −4877.50 −0.190729
\(869\) −5.48781 −0.000214225 0
\(870\) 0 0
\(871\) −5835.46 −0.227011
\(872\) −6872.08 −0.266878
\(873\) 2863.49 0.111013
\(874\) 9805.50 0.379492
\(875\) 0 0
\(876\) −10932.6 −0.421663
\(877\) −9704.26 −0.373648 −0.186824 0.982393i \(-0.559819\pi\)
−0.186824 + 0.982393i \(0.559819\pi\)
\(878\) −936.194 −0.0359852
\(879\) −10294.2 −0.395011
\(880\) 0 0
\(881\) −39564.0 −1.51299 −0.756495 0.654000i \(-0.773090\pi\)
−0.756495 + 0.654000i \(0.773090\pi\)
\(882\) 1550.47 0.0591918
\(883\) −10752.5 −0.409798 −0.204899 0.978783i \(-0.565687\pi\)
−0.204899 + 0.978783i \(0.565687\pi\)
\(884\) 1181.21 0.0449417
\(885\) 0 0
\(886\) 9084.19 0.344457
\(887\) −42492.1 −1.60850 −0.804252 0.594288i \(-0.797434\pi\)
−0.804252 + 0.594288i \(0.797434\pi\)
\(888\) 2440.95 0.0922442
\(889\) −21350.4 −0.805479
\(890\) 0 0
\(891\) −1735.93 −0.0652704
\(892\) 3844.34 0.144303
\(893\) −18791.5 −0.704180
\(894\) −5359.62 −0.200506
\(895\) 0 0
\(896\) 2651.60 0.0988658
\(897\) −5599.55 −0.208432
\(898\) 14497.0 0.538721
\(899\) −4868.85 −0.180629
\(900\) 0 0
\(901\) 3640.75 0.134618
\(902\) −11462.8 −0.423136
\(903\) 12766.9 0.470494
\(904\) 2321.63 0.0854161
\(905\) 0 0
\(906\) 12412.2 0.455152
\(907\) 25613.0 0.937670 0.468835 0.883286i \(-0.344674\pi\)
0.468835 + 0.883286i \(0.344674\pi\)
\(908\) −10347.9 −0.378202
\(909\) 12277.3 0.447979
\(910\) 0 0
\(911\) −13608.6 −0.494922 −0.247461 0.968898i \(-0.579596\pi\)
−0.247461 + 0.968898i \(0.579596\pi\)
\(912\) 1639.05 0.0595114
\(913\) 2773.07 0.100520
\(914\) −1146.42 −0.0414881
\(915\) 0 0
\(916\) −13016.1 −0.469502
\(917\) −27514.6 −0.990852
\(918\) −1226.64 −0.0441016
\(919\) 28792.1 1.03348 0.516738 0.856143i \(-0.327146\pi\)
0.516738 + 0.856143i \(0.327146\pi\)
\(920\) 0 0
\(921\) 3414.62 0.122167
\(922\) −2123.92 −0.0758652
\(923\) −10708.7 −0.381885
\(924\) −5327.55 −0.189679
\(925\) 0 0
\(926\) −17429.9 −0.618556
\(927\) −357.695 −0.0126734
\(928\) 2646.90 0.0936301
\(929\) 4623.87 0.163299 0.0816493 0.996661i \(-0.473981\pi\)
0.0816493 + 0.996661i \(0.473981\pi\)
\(930\) 0 0
\(931\) 2941.33 0.103543
\(932\) 2521.99 0.0886379
\(933\) 18026.4 0.632539
\(934\) 11057.9 0.387392
\(935\) 0 0
\(936\) −936.000 −0.0326860
\(937\) −35625.6 −1.24209 −0.621044 0.783776i \(-0.713291\pi\)
−0.621044 + 0.783776i \(0.713291\pi\)
\(938\) 18597.7 0.647374
\(939\) −3320.30 −0.115393
\(940\) 0 0
\(941\) 35533.9 1.23100 0.615500 0.788137i \(-0.288954\pi\)
0.615500 + 0.788137i \(0.288954\pi\)
\(942\) −6122.33 −0.211758
\(943\) 38397.3 1.32597
\(944\) 13014.9 0.448728
\(945\) 0 0
\(946\) −8805.30 −0.302627
\(947\) −28063.2 −0.962970 −0.481485 0.876454i \(-0.659902\pi\)
−0.481485 + 0.876454i \(0.659902\pi\)
\(948\) 3.07279 0.000105274 0
\(949\) 11843.6 0.405121
\(950\) 0 0
\(951\) −15442.1 −0.526545
\(952\) −3764.55 −0.128162
\(953\) −10551.8 −0.358663 −0.179332 0.983789i \(-0.557393\pi\)
−0.179332 + 0.983789i \(0.557393\pi\)
\(954\) −2884.95 −0.0979074
\(955\) 0 0
\(956\) −16265.7 −0.550283
\(957\) −5318.10 −0.179634
\(958\) 12697.0 0.428205
\(959\) −14719.5 −0.495638
\(960\) 0 0
\(961\) −26326.2 −0.883696
\(962\) −2644.36 −0.0886254
\(963\) −2314.92 −0.0774633
\(964\) 11843.3 0.395692
\(965\) 0 0
\(966\) 17845.9 0.594391
\(967\) −5237.65 −0.174179 −0.0870897 0.996200i \(-0.527757\pi\)
−0.0870897 + 0.996200i \(0.527757\pi\)
\(968\) −6973.61 −0.231550
\(969\) −2327.01 −0.0771457
\(970\) 0 0
\(971\) 27828.6 0.919736 0.459868 0.887987i \(-0.347897\pi\)
0.459868 + 0.887987i \(0.347897\pi\)
\(972\) 972.000 0.0320750
\(973\) −22579.6 −0.743957
\(974\) −298.396 −0.00981646
\(975\) 0 0
\(976\) 10125.8 0.332089
\(977\) 23900.6 0.782648 0.391324 0.920253i \(-0.372017\pi\)
0.391324 + 0.920253i \(0.372017\pi\)
\(978\) −22389.8 −0.732053
\(979\) −24359.7 −0.795240
\(980\) 0 0
\(981\) −7731.08 −0.251615
\(982\) −19112.8 −0.621092
\(983\) 34690.4 1.12559 0.562794 0.826597i \(-0.309727\pi\)
0.562794 + 0.826597i \(0.309727\pi\)
\(984\) 6418.35 0.207937
\(985\) 0 0
\(986\) −3757.88 −0.121374
\(987\) −34200.2 −1.10294
\(988\) −1775.64 −0.0571767
\(989\) 29495.4 0.948332
\(990\) 0 0
\(991\) 26562.5 0.851448 0.425724 0.904853i \(-0.360019\pi\)
0.425724 + 0.904853i \(0.360019\pi\)
\(992\) −1883.60 −0.0602867
\(993\) 8130.33 0.259827
\(994\) 34128.8 1.08903
\(995\) 0 0
\(996\) −1552.72 −0.0493975
\(997\) 27416.7 0.870908 0.435454 0.900211i \(-0.356588\pi\)
0.435454 + 0.900211i \(0.356588\pi\)
\(998\) −18561.7 −0.588737
\(999\) 2746.07 0.0869687
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.4.a.y.1.2 2
5.4 even 2 390.4.a.m.1.1 2
15.14 odd 2 1170.4.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.4.a.m.1.1 2 5.4 even 2
1170.4.a.x.1.1 2 15.14 odd 2
1950.4.a.y.1.2 2 1.1 even 1 trivial