Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [196,10,Mod(165,196)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(196, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("196.165");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 196.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 28) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
165.1 |
|
0 | −123.535 | + | 213.969i | 0 | 1006.82 | + | 1743.86i | 0 | 0 | 0 | −20680.4 | − | 35819.5i | 0 | ||||||||||||||||||||||||
165.2 | 0 | 11.5352 | − | 19.9795i | 0 | −208.817 | − | 361.681i | 0 | 0 | 0 | 9575.38 | + | 16585.0i | 0 | |||||||||||||||||||||||||
177.1 | 0 | −123.535 | − | 213.969i | 0 | 1006.82 | − | 1743.86i | 0 | 0 | 0 | −20680.4 | + | 35819.5i | 0 | |||||||||||||||||||||||||
177.2 | 0 | 11.5352 | + | 19.9795i | 0 | −208.817 | + | 361.681i | 0 | 0 | 0 | 9575.38 | − | 16585.0i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 196.10.e.c | 4 | |
7.b | odd | 2 | 1 | 196.10.e.f | 4 | ||
7.c | even | 3 | 1 | 196.10.a.c | 2 | ||
7.c | even | 3 | 1 | inner | 196.10.e.c | 4 | |
7.d | odd | 6 | 1 | 28.10.a.a | ✓ | 2 | |
7.d | odd | 6 | 1 | 196.10.e.f | 4 | ||
21.g | even | 6 | 1 | 252.10.a.a | 2 | ||
28.f | even | 6 | 1 | 112.10.a.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
28.10.a.a | ✓ | 2 | 7.d | odd | 6 | 1 | |
112.10.a.f | 2 | 28.f | even | 6 | 1 | ||
196.10.a.c | 2 | 7.c | even | 3 | 1 | ||
196.10.e.c | 4 | 1.a | even | 1 | 1 | trivial | |
196.10.e.c | 4 | 7.c | even | 3 | 1 | inner | |
196.10.e.f | 4 | 7.b | odd | 2 | 1 | ||
196.10.e.f | 4 | 7.d | odd | 6 | 1 | ||
252.10.a.a | 2 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .