Properties

Label 196.10.e.c
Level $196$
Weight $10$
Character orbit 196.e
Analytic conductor $100.947$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,10,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.947023888\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{4561})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1141x^{2} + 1140x + 1299600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 112 \beta_1) q^{3} + (9 \beta_{3} + 9 \beta_{2} + \cdots + 798) q^{5} + ( - 224 \beta_{3} - 224 \beta_{2} + \cdots - 11105) q^{9} + ( - 168 \beta_{2} + 25296 \beta_1) q^{11} + (585 \beta_{3} + 92386) q^{13}+ \cdots + ( - 7531944 \beta_{3} - 967470288) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 224 q^{3} + 1596 q^{5} - 22210 q^{9} + 50592 q^{11} + 369544 q^{13} - 1014288 q^{15} - 152124 q^{17} - 605024 q^{19} + 2503608 q^{23} - 322886 q^{25} + 12503680 q^{27} - 5454984 q^{29} - 6655040 q^{31}+ \cdots - 3869881152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 1141x^{2} + 1140x + 1299600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 1141\nu^{2} - 1141\nu + 1299600 ) / 1300740 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 1141\nu^{2} + 2602621\nu - 1299600 ) / 650370 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{3} + 6842 ) / 1141 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 4562\beta _1 - 4562 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1141\beta_{3} - 6842 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
−16.6338 + 28.8106i
17.1338 29.6766i
−16.6338 28.8106i
17.1338 + 29.6766i
0 −123.535 + 213.969i 0 1006.82 + 1743.86i 0 0 0 −20680.4 35819.5i 0
165.2 0 11.5352 19.9795i 0 −208.817 361.681i 0 0 0 9575.38 + 16585.0i 0
177.1 0 −123.535 213.969i 0 1006.82 1743.86i 0 0 0 −20680.4 + 35819.5i 0
177.2 0 11.5352 + 19.9795i 0 −208.817 + 361.681i 0 0 0 9575.38 16585.0i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.10.e.c 4
7.b odd 2 1 196.10.e.f 4
7.c even 3 1 196.10.a.c 2
7.c even 3 1 inner 196.10.e.c 4
7.d odd 6 1 28.10.a.a 2
7.d odd 6 1 196.10.e.f 4
21.g even 6 1 252.10.a.a 2
28.f even 6 1 112.10.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.10.a.a 2 7.d odd 6 1
112.10.a.f 2 28.f even 6 1
196.10.a.c 2 7.c even 3 1
196.10.e.c 4 1.a even 1 1 trivial
196.10.e.c 4 7.c even 3 1 inner
196.10.e.f 4 7.b odd 2 1
196.10.e.f 4 7.d odd 6 1
252.10.a.a 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 224T_{3}^{3} + 55876T_{3}^{2} - 1276800T_{3} + 32490000 \) acting on \(S_{10}^{\mathrm{new}}(196, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 224 T^{3} + \cdots + 32490000 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 707213721600 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} - 184772 T + 2291620096)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 26\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 24\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots + 1800297865332)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 60\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots - 14920909260300)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots - 246967771338944)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 52\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 17\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 33\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 53\!\cdots\!80)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 49\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 84\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots - 66\!\cdots\!20)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 18\!\cdots\!16)^{2} \) Copy content Toggle raw display
show more
show less