Properties

Label 196.10.e.c
Level 196196
Weight 1010
Character orbit 196.e
Analytic conductor 100.947100.947
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,10,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 196=2272 196 = 2^{2} \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 196.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 100.947023888100.947023888
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,4561)\Q(\sqrt{-3}, \sqrt{4561})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+1141x2+1140x+1299600 x^{4} - x^{3} + 1141x^{2} + 1140x + 1299600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2112β1)q3+(9β3+9β2++798)q5+(224β3224β2+11105)q9+(168β2+25296β1)q11+(585β3+92386)q13++(7531944β3967470288)q99+O(q100) q + (\beta_{2} - 112 \beta_1) q^{3} + (9 \beta_{3} + 9 \beta_{2} + \cdots + 798) q^{5} + ( - 224 \beta_{3} - 224 \beta_{2} + \cdots - 11105) q^{9} + ( - 168 \beta_{2} + 25296 \beta_1) q^{11} + (585 \beta_{3} + 92386) q^{13}+ \cdots + ( - 7531944 \beta_{3} - 967470288) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q224q3+1596q522210q9+50592q11+369544q131014288q15152124q17605024q19+2503608q23322886q25+12503680q275454984q296655040q31+3869881152q99+O(q100) 4 q - 224 q^{3} + 1596 q^{5} - 22210 q^{9} + 50592 q^{11} + 369544 q^{13} - 1014288 q^{15} - 152124 q^{17} - 605024 q^{19} + 2503608 q^{23} - 322886 q^{25} + 12503680 q^{27} - 5454984 q^{29} - 6655040 q^{31}+ \cdots - 3869881152 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+1141x2+1140x+1299600 x^{4} - x^{3} + 1141x^{2} + 1140x + 1299600 : Copy content Toggle raw display

β1\beta_{1}== (ν3+1141ν21141ν+1299600)/1300740 ( -\nu^{3} + 1141\nu^{2} - 1141\nu + 1299600 ) / 1300740 Copy content Toggle raw display
β2\beta_{2}== (ν31141ν2+2602621ν1299600)/650370 ( \nu^{3} - 1141\nu^{2} + 2602621\nu - 1299600 ) / 650370 Copy content Toggle raw display
β3\beta_{3}== (4ν3+6842)/1141 ( 4\nu^{3} + 6842 ) / 1141 Copy content Toggle raw display
ν\nu== (β2+2β1)/4 ( \beta_{2} + 2\beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+β2+4562β14562)/4 ( \beta_{3} + \beta_{2} + 4562\beta _1 - 4562 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (1141β36842)/4 ( 1141\beta_{3} - 6842 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/196Z)×\left(\mathbb{Z}/196\mathbb{Z}\right)^\times.

nn 9999 101101
χ(n)\chi(n) 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
165.1
−16.6338 + 28.8106i
17.1338 29.6766i
−16.6338 28.8106i
17.1338 + 29.6766i
0 −123.535 + 213.969i 0 1006.82 + 1743.86i 0 0 0 −20680.4 35819.5i 0
165.2 0 11.5352 19.9795i 0 −208.817 361.681i 0 0 0 9575.38 + 16585.0i 0
177.1 0 −123.535 213.969i 0 1006.82 1743.86i 0 0 0 −20680.4 + 35819.5i 0
177.2 0 11.5352 + 19.9795i 0 −208.817 + 361.681i 0 0 0 9575.38 16585.0i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.10.e.c 4
7.b odd 2 1 196.10.e.f 4
7.c even 3 1 196.10.a.c 2
7.c even 3 1 inner 196.10.e.c 4
7.d odd 6 1 28.10.a.a 2
7.d odd 6 1 196.10.e.f 4
21.g even 6 1 252.10.a.a 2
28.f even 6 1 112.10.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.10.a.a 2 7.d odd 6 1
112.10.a.f 2 28.f even 6 1
196.10.a.c 2 7.c even 3 1
196.10.e.c 4 1.a even 1 1 trivial
196.10.e.c 4 7.c even 3 1 inner
196.10.e.f 4 7.b odd 2 1
196.10.e.f 4 7.d odd 6 1
252.10.a.a 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+224T33+55876T321276800T3+32490000 T_{3}^{4} + 224T_{3}^{3} + 55876T_{3}^{2} - 1276800T_{3} + 32490000 acting on S10new(196,[χ])S_{10}^{\mathrm{new}}(196, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+224T3++32490000 T^{4} + 224 T^{3} + \cdots + 32490000 Copy content Toggle raw display
55 T4++707213721600 T^{4} + \cdots + 707213721600 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4++15 ⁣ ⁣00 T^{4} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
1313 (T2184772T+2291620096)2 (T^{2} - 184772 T + 2291620096)^{2} Copy content Toggle raw display
1717 T4++26 ⁣ ⁣84 T^{4} + \cdots + 26\!\cdots\!84 Copy content Toggle raw display
1919 T4++12 ⁣ ⁣04 T^{4} + \cdots + 12\!\cdots\!04 Copy content Toggle raw display
2323 T4++24 ⁣ ⁣44 T^{4} + \cdots + 24\!\cdots\!44 Copy content Toggle raw display
2929 (T2++1800297865332)2 (T^{2} + \cdots + 1800297865332)^{2} Copy content Toggle raw display
3131 T4++60 ⁣ ⁣36 T^{4} + \cdots + 60\!\cdots\!36 Copy content Toggle raw display
3737 T4++29 ⁣ ⁣00 T^{4} + \cdots + 29\!\cdots\!00 Copy content Toggle raw display
4141 (T2+14920909260300)2 (T^{2} + \cdots - 14920909260300)^{2} Copy content Toggle raw display
4343 (T2+246967771338944)2 (T^{2} + \cdots - 246967771338944)^{2} Copy content Toggle raw display
4747 T4++52 ⁣ ⁣76 T^{4} + \cdots + 52\!\cdots\!76 Copy content Toggle raw display
5353 T4++16 ⁣ ⁣00 T^{4} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
5959 T4++17 ⁣ ⁣24 T^{4} + \cdots + 17\!\cdots\!24 Copy content Toggle raw display
6161 T4++33 ⁣ ⁣64 T^{4} + \cdots + 33\!\cdots\!64 Copy content Toggle raw display
6767 T4++30 ⁣ ⁣16 T^{4} + \cdots + 30\!\cdots\!16 Copy content Toggle raw display
7171 (T2++53 ⁣ ⁣80)2 (T^{2} + \cdots + 53\!\cdots\!80)^{2} Copy content Toggle raw display
7373 T4++49 ⁣ ⁣16 T^{4} + \cdots + 49\!\cdots\!16 Copy content Toggle raw display
7979 T4++84 ⁣ ⁣00 T^{4} + \cdots + 84\!\cdots\!00 Copy content Toggle raw display
8383 (T2+66 ⁣ ⁣20)2 (T^{2} + \cdots - 66\!\cdots\!20)^{2} Copy content Toggle raw display
8989 T4++38 ⁣ ⁣00 T^{4} + \cdots + 38\!\cdots\!00 Copy content Toggle raw display
9797 (T2++18 ⁣ ⁣16)2 (T^{2} + \cdots + 18\!\cdots\!16)^{2} Copy content Toggle raw display
show more
show less