Properties

Label 28.10.a.a
Level $28$
Weight $10$
Character orbit 28.a
Self dual yes
Analytic conductor $14.421$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,10,Mod(1,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4210034126\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4561}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1140 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{4561}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 112) q^{3} + (9 \beta + 798) q^{5} + 2401 q^{7} + (224 \beta + 11105) q^{9} + ( - 168 \beta - 25296) q^{11} + ( - 585 \beta - 92386) q^{13} + ( - 1806 \beta - 253572) q^{15} + (3042 \beta - 76062) q^{17}+ \cdots + ( - 7531944 \beta - 967470288) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 224 q^{3} + 1596 q^{5} + 4802 q^{7} + 22210 q^{9} - 50592 q^{11} - 184772 q^{13} - 507144 q^{15} - 152124 q^{17} - 605024 q^{19} - 537824 q^{21} - 2503608 q^{23} + 322886 q^{25} - 6251840 q^{27} - 2727492 q^{29}+ \cdots - 1934940576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
34.2676
−33.2676
0 −247.070 0 2013.63 0 2401.00 0 41360.8 0
1.2 0 23.0704 0 −417.633 0 2401.00 0 −19150.8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 28.10.a.a 2
3.b odd 2 1 252.10.a.a 2
4.b odd 2 1 112.10.a.f 2
7.b odd 2 1 196.10.a.c 2
7.c even 3 2 196.10.e.f 4
7.d odd 6 2 196.10.e.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.10.a.a 2 1.a even 1 1 trivial
112.10.a.f 2 4.b odd 2 1
196.10.a.c 2 7.b odd 2 1
196.10.e.c 4 7.d odd 6 2
196.10.e.f 4 7.c even 3 2
252.10.a.a 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 224T_{3} - 5700 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(28))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 224T - 5700 \) Copy content Toggle raw display
$5$ \( T^{2} - 1596 T - 840960 \) Copy content Toggle raw display
$7$ \( (T - 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 50592 T + 124968960 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 2291620096 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 163040242572 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 11287180348 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1561574426112 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 1800297865332 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 24611763152144 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 170375239019660 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 14920909260300 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 246967771338944 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 229754037712176 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 40\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 13\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 57\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 53\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 70\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 91\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 66\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 62\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
show more
show less