Properties

Label 196.4.e.f
Level 196196
Weight 44
Character orbit 196.e
Analytic conductor 11.56411.564
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,4,Mod(165,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.165");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 196=2272 196 = 2^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 196.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.564374361111.5643743611
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(10ζ6+10)q3+8ζ6q573ζ6q9+(40ζ6+40)q1112q13+80q15+(58ζ6+58)q1726ζ6q19+64ζ6q23+2920q99+O(q100) q + ( - 10 \zeta_{6} + 10) q^{3} + 8 \zeta_{6} q^{5} - 73 \zeta_{6} q^{9} + ( - 40 \zeta_{6} + 40) q^{11} - 12 q^{13} + 80 q^{15} + ( - 58 \zeta_{6} + 58) q^{17} - 26 \zeta_{6} q^{19} + 64 \zeta_{6} q^{23} + \cdots - 2920 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+10q3+8q573q9+40q1124q13+160q15+58q1726q19+64q23+61q25920q27124q29252q31400q3326q37120q39+12q41+5840q99+O(q100) 2 q + 10 q^{3} + 8 q^{5} - 73 q^{9} + 40 q^{11} - 24 q^{13} + 160 q^{15} + 58 q^{17} - 26 q^{19} + 64 q^{23} + 61 q^{25} - 920 q^{27} - 124 q^{29} - 252 q^{31} - 400 q^{33} - 26 q^{37} - 120 q^{39} + 12 q^{41}+ \cdots - 5840 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/196Z)×\left(\mathbb{Z}/196\mathbb{Z}\right)^\times.

nn 9999 101101
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
165.1
0.500000 + 0.866025i
0.500000 0.866025i
0 5.00000 8.66025i 0 4.00000 + 6.92820i 0 0 0 −36.5000 63.2199i 0
177.1 0 5.00000 + 8.66025i 0 4.00000 6.92820i 0 0 0 −36.5000 + 63.2199i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 196.4.e.f 2
3.b odd 2 1 1764.4.k.d 2
7.b odd 2 1 196.4.e.a 2
7.c even 3 1 28.4.a.a 1
7.c even 3 1 inner 196.4.e.f 2
7.d odd 6 1 196.4.a.d 1
7.d odd 6 1 196.4.e.a 2
21.c even 2 1 1764.4.k.m 2
21.g even 6 1 1764.4.a.c 1
21.g even 6 1 1764.4.k.m 2
21.h odd 6 1 252.4.a.d 1
21.h odd 6 1 1764.4.k.d 2
28.f even 6 1 784.4.a.a 1
28.g odd 6 1 112.4.a.g 1
35.j even 6 1 700.4.a.n 1
35.l odd 12 2 700.4.e.a 2
56.k odd 6 1 448.4.a.a 1
56.p even 6 1 448.4.a.p 1
84.n even 6 1 1008.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.4.a.a 1 7.c even 3 1
112.4.a.g 1 28.g odd 6 1
196.4.a.d 1 7.d odd 6 1
196.4.e.a 2 7.b odd 2 1
196.4.e.a 2 7.d odd 6 1
196.4.e.f 2 1.a even 1 1 trivial
196.4.e.f 2 7.c even 3 1 inner
252.4.a.d 1 21.h odd 6 1
448.4.a.a 1 56.k odd 6 1
448.4.a.p 1 56.p even 6 1
700.4.a.n 1 35.j even 6 1
700.4.e.a 2 35.l odd 12 2
784.4.a.a 1 28.f even 6 1
1008.4.a.o 1 84.n even 6 1
1764.4.a.c 1 21.g even 6 1
1764.4.k.d 2 3.b odd 2 1
1764.4.k.d 2 21.h odd 6 1
1764.4.k.m 2 21.c even 2 1
1764.4.k.m 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(196,[χ])S_{4}^{\mathrm{new}}(196, [\chi]):

T3210T3+100 T_{3}^{2} - 10T_{3} + 100 Copy content Toggle raw display
T528T5+64 T_{5}^{2} - 8T_{5} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
55 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T240T+1600 T^{2} - 40T + 1600 Copy content Toggle raw display
1313 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
1717 T258T+3364 T^{2} - 58T + 3364 Copy content Toggle raw display
1919 T2+26T+676 T^{2} + 26T + 676 Copy content Toggle raw display
2323 T264T+4096 T^{2} - 64T + 4096 Copy content Toggle raw display
2929 (T+62)2 (T + 62)^{2} Copy content Toggle raw display
3131 T2+252T+63504 T^{2} + 252T + 63504 Copy content Toggle raw display
3737 T2+26T+676 T^{2} + 26T + 676 Copy content Toggle raw display
4141 (T6)2 (T - 6)^{2} Copy content Toggle raw display
4343 (T416)2 (T - 416)^{2} Copy content Toggle raw display
4747 T2396T+156816 T^{2} - 396T + 156816 Copy content Toggle raw display
5353 T2450T+202500 T^{2} - 450T + 202500 Copy content Toggle raw display
5959 T2+274T+75076 T^{2} + 274T + 75076 Copy content Toggle raw display
6161 T2576T+331776 T^{2} - 576T + 331776 Copy content Toggle raw display
6767 T2476T+226576 T^{2} - 476T + 226576 Copy content Toggle raw display
7171 (T+448)2 (T + 448)^{2} Copy content Toggle raw display
7373 T2158T+24964 T^{2} - 158T + 24964 Copy content Toggle raw display
7979 T2936T+876096 T^{2} - 936T + 876096 Copy content Toggle raw display
8383 (T530)2 (T - 530)^{2} Copy content Toggle raw display
8989 T2390T+152100 T^{2} - 390T + 152100 Copy content Toggle raw display
9797 (T214)2 (T - 214)^{2} Copy content Toggle raw display
show more
show less