Properties

Label 252.4.a.d
Level 252252
Weight 44
Character orbit 252.a
Self dual yes
Analytic conductor 14.86814.868
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,4,Mod(1,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 252.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.868481321414.8684813214
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 28)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8q57q7+40q1112q13+58q17+26q19+64q2361q25+62q29+252q3156q35+26q376q41+416q43+396q47+49q49+450q53++214q97+O(q100) q + 8 q^{5} - 7 q^{7} + 40 q^{11} - 12 q^{13} + 58 q^{17} + 26 q^{19} + 64 q^{23} - 61 q^{25} + 62 q^{29} + 252 q^{31} - 56 q^{35} + 26 q^{37} - 6 q^{41} + 416 q^{43} + 396 q^{47} + 49 q^{49} + 450 q^{53}+ \cdots + 214 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 8.00000 0 −7.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.4.a.d 1
3.b odd 2 1 28.4.a.a 1
4.b odd 2 1 1008.4.a.o 1
7.b odd 2 1 1764.4.a.c 1
7.c even 3 2 1764.4.k.d 2
7.d odd 6 2 1764.4.k.m 2
12.b even 2 1 112.4.a.g 1
15.d odd 2 1 700.4.a.n 1
15.e even 4 2 700.4.e.a 2
21.c even 2 1 196.4.a.d 1
21.g even 6 2 196.4.e.a 2
21.h odd 6 2 196.4.e.f 2
24.f even 2 1 448.4.a.a 1
24.h odd 2 1 448.4.a.p 1
84.h odd 2 1 784.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.4.a.a 1 3.b odd 2 1
112.4.a.g 1 12.b even 2 1
196.4.a.d 1 21.c even 2 1
196.4.e.a 2 21.g even 6 2
196.4.e.f 2 21.h odd 6 2
252.4.a.d 1 1.a even 1 1 trivial
448.4.a.a 1 24.f even 2 1
448.4.a.p 1 24.h odd 2 1
700.4.a.n 1 15.d odd 2 1
700.4.e.a 2 15.e even 4 2
784.4.a.a 1 84.h odd 2 1
1008.4.a.o 1 4.b odd 2 1
1764.4.a.c 1 7.b odd 2 1
1764.4.k.d 2 7.c even 3 2
1764.4.k.m 2 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(252))S_{4}^{\mathrm{new}}(\Gamma_0(252)):

T58 T_{5} - 8 Copy content Toggle raw display
T1140 T_{11} - 40 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T8 T - 8 Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T40 T - 40 Copy content Toggle raw display
1313 T+12 T + 12 Copy content Toggle raw display
1717 T58 T - 58 Copy content Toggle raw display
1919 T26 T - 26 Copy content Toggle raw display
2323 T64 T - 64 Copy content Toggle raw display
2929 T62 T - 62 Copy content Toggle raw display
3131 T252 T - 252 Copy content Toggle raw display
3737 T26 T - 26 Copy content Toggle raw display
4141 T+6 T + 6 Copy content Toggle raw display
4343 T416 T - 416 Copy content Toggle raw display
4747 T396 T - 396 Copy content Toggle raw display
5353 T450 T - 450 Copy content Toggle raw display
5959 T+274 T + 274 Copy content Toggle raw display
6161 T+576 T + 576 Copy content Toggle raw display
6767 T+476 T + 476 Copy content Toggle raw display
7171 T448 T - 448 Copy content Toggle raw display
7373 T+158 T + 158 Copy content Toggle raw display
7979 T+936 T + 936 Copy content Toggle raw display
8383 T+530 T + 530 Copy content Toggle raw display
8989 T390 T - 390 Copy content Toggle raw display
9797 T214 T - 214 Copy content Toggle raw display
show more
show less