Properties

Label 196.6.a.h.1.1
Level $196$
Weight $6$
Character 196.1
Self dual yes
Analytic conductor $31.435$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,6,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.4352286833\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 28)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.72015\) of defining polynomial
Character \(\chi\) \(=\) 196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.4403 q^{3} -83.6418 q^{5} +354.329 q^{9} +549.246 q^{11} +823.135 q^{13} +2044.23 q^{15} -145.567 q^{17} -1768.04 q^{19} -1522.73 q^{23} +3870.96 q^{25} -2720.90 q^{27} -741.943 q^{29} +3204.18 q^{31} -13423.8 q^{33} -3549.55 q^{37} -20117.7 q^{39} +6461.29 q^{41} +6716.00 q^{43} -29636.7 q^{45} +19176.8 q^{47} +3557.71 q^{51} -21278.6 q^{53} -45940.0 q^{55} +43211.4 q^{57} -36528.7 q^{59} -43433.8 q^{61} -68848.5 q^{65} +5028.15 q^{67} +37215.9 q^{69} -6311.32 q^{71} +42597.9 q^{73} -94607.4 q^{75} +95069.1 q^{79} -19602.1 q^{81} +34978.2 q^{83} +12175.5 q^{85} +18133.3 q^{87} -100553. q^{89} -78311.0 q^{93} +147882. q^{95} -76794.5 q^{97} +194614. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 28 q^{3} - 42 q^{5} + 124 q^{9} + 660 q^{11} + 644 q^{13} + 1896 q^{15} + 210 q^{17} - 3724 q^{19} + 24 q^{23} + 2480 q^{25} - 1036 q^{27} + 5532 q^{29} - 2800 q^{31} - 13818 q^{33} - 13238 q^{37}+ \cdots + 169104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.4403 −1.56785 −0.783923 0.620858i \(-0.786784\pi\)
−0.783923 + 0.620858i \(0.786784\pi\)
\(4\) 0 0
\(5\) −83.6418 −1.49623 −0.748115 0.663569i \(-0.769041\pi\)
−0.748115 + 0.663569i \(0.769041\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 354.329 1.45814
\(10\) 0 0
\(11\) 549.246 1.36863 0.684314 0.729187i \(-0.260102\pi\)
0.684314 + 0.729187i \(0.260102\pi\)
\(12\) 0 0
\(13\) 823.135 1.35087 0.675433 0.737421i \(-0.263957\pi\)
0.675433 + 0.737421i \(0.263957\pi\)
\(14\) 0 0
\(15\) 2044.23 2.34586
\(16\) 0 0
\(17\) −145.567 −0.122164 −0.0610818 0.998133i \(-0.519455\pi\)
−0.0610818 + 0.998133i \(0.519455\pi\)
\(18\) 0 0
\(19\) −1768.04 −1.12359 −0.561794 0.827277i \(-0.689889\pi\)
−0.561794 + 0.827277i \(0.689889\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1522.73 −0.600208 −0.300104 0.953906i \(-0.597021\pi\)
−0.300104 + 0.953906i \(0.597021\pi\)
\(24\) 0 0
\(25\) 3870.96 1.23871
\(26\) 0 0
\(27\) −2720.90 −0.718297
\(28\) 0 0
\(29\) −741.943 −0.163823 −0.0819116 0.996640i \(-0.526103\pi\)
−0.0819116 + 0.996640i \(0.526103\pi\)
\(30\) 0 0
\(31\) 3204.18 0.598842 0.299421 0.954121i \(-0.403207\pi\)
0.299421 + 0.954121i \(0.403207\pi\)
\(32\) 0 0
\(33\) −13423.8 −2.14580
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3549.55 −0.426254 −0.213127 0.977024i \(-0.568365\pi\)
−0.213127 + 0.977024i \(0.568365\pi\)
\(38\) 0 0
\(39\) −20117.7 −2.11795
\(40\) 0 0
\(41\) 6461.29 0.600288 0.300144 0.953894i \(-0.402965\pi\)
0.300144 + 0.953894i \(0.402965\pi\)
\(42\) 0 0
\(43\) 6716.00 0.553910 0.276955 0.960883i \(-0.410675\pi\)
0.276955 + 0.960883i \(0.410675\pi\)
\(44\) 0 0
\(45\) −29636.7 −2.18172
\(46\) 0 0
\(47\) 19176.8 1.26629 0.633143 0.774035i \(-0.281765\pi\)
0.633143 + 0.774035i \(0.281765\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3557.71 0.191534
\(52\) 0 0
\(53\) −21278.6 −1.04053 −0.520263 0.854006i \(-0.674166\pi\)
−0.520263 + 0.854006i \(0.674166\pi\)
\(54\) 0 0
\(55\) −45940.0 −2.04778
\(56\) 0 0
\(57\) 43211.4 1.76161
\(58\) 0 0
\(59\) −36528.7 −1.36617 −0.683083 0.730340i \(-0.739361\pi\)
−0.683083 + 0.730340i \(0.739361\pi\)
\(60\) 0 0
\(61\) −43433.8 −1.49452 −0.747262 0.664530i \(-0.768632\pi\)
−0.747262 + 0.664530i \(0.768632\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −68848.5 −2.02121
\(66\) 0 0
\(67\) 5028.15 0.136842 0.0684212 0.997657i \(-0.478204\pi\)
0.0684212 + 0.997657i \(0.478204\pi\)
\(68\) 0 0
\(69\) 37215.9 0.941034
\(70\) 0 0
\(71\) −6311.32 −0.148585 −0.0742923 0.997237i \(-0.523670\pi\)
−0.0742923 + 0.997237i \(0.523670\pi\)
\(72\) 0 0
\(73\) 42597.9 0.935580 0.467790 0.883840i \(-0.345050\pi\)
0.467790 + 0.883840i \(0.345050\pi\)
\(74\) 0 0
\(75\) −94607.4 −1.94210
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 95069.1 1.71385 0.856923 0.515445i \(-0.172373\pi\)
0.856923 + 0.515445i \(0.172373\pi\)
\(80\) 0 0
\(81\) −19602.1 −0.331963
\(82\) 0 0
\(83\) 34978.2 0.557318 0.278659 0.960390i \(-0.410110\pi\)
0.278659 + 0.960390i \(0.410110\pi\)
\(84\) 0 0
\(85\) 12175.5 0.182785
\(86\) 0 0
\(87\) 18133.3 0.256850
\(88\) 0 0
\(89\) −100553. −1.34562 −0.672809 0.739816i \(-0.734912\pi\)
−0.672809 + 0.739816i \(0.734912\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −78311.0 −0.938892
\(94\) 0 0
\(95\) 147882. 1.68115
\(96\) 0 0
\(97\) −76794.5 −0.828707 −0.414353 0.910116i \(-0.635992\pi\)
−0.414353 + 0.910116i \(0.635992\pi\)
\(98\) 0 0
\(99\) 194614. 1.99565
\(100\) 0 0
\(101\) −114040. −1.11239 −0.556193 0.831053i \(-0.687739\pi\)
−0.556193 + 0.831053i \(0.687739\pi\)
\(102\) 0 0
\(103\) 123637. 1.14830 0.574150 0.818750i \(-0.305333\pi\)
0.574150 + 0.818750i \(0.305333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −23340.2 −0.197081 −0.0985404 0.995133i \(-0.531417\pi\)
−0.0985404 + 0.995133i \(0.531417\pi\)
\(108\) 0 0
\(109\) −27203.2 −0.219307 −0.109654 0.993970i \(-0.534974\pi\)
−0.109654 + 0.993970i \(0.534974\pi\)
\(110\) 0 0
\(111\) 86752.1 0.668302
\(112\) 0 0
\(113\) −157394. −1.15955 −0.579777 0.814775i \(-0.696860\pi\)
−0.579777 + 0.814775i \(0.696860\pi\)
\(114\) 0 0
\(115\) 127364. 0.898050
\(116\) 0 0
\(117\) 291660. 1.96976
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 140621. 0.873144
\(122\) 0 0
\(123\) −157916. −0.941159
\(124\) 0 0
\(125\) −62393.2 −0.357160
\(126\) 0 0
\(127\) −253263. −1.39336 −0.696679 0.717383i \(-0.745340\pi\)
−0.696679 + 0.717383i \(0.745340\pi\)
\(128\) 0 0
\(129\) −164141. −0.868446
\(130\) 0 0
\(131\) 115545. 0.588266 0.294133 0.955764i \(-0.404969\pi\)
0.294133 + 0.955764i \(0.404969\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 227581. 1.07474
\(136\) 0 0
\(137\) −207808. −0.945933 −0.472966 0.881080i \(-0.656817\pi\)
−0.472966 + 0.881080i \(0.656817\pi\)
\(138\) 0 0
\(139\) 28993.1 0.127279 0.0636395 0.997973i \(-0.479729\pi\)
0.0636395 + 0.997973i \(0.479729\pi\)
\(140\) 0 0
\(141\) −468687. −1.98534
\(142\) 0 0
\(143\) 452104. 1.84883
\(144\) 0 0
\(145\) 62057.5 0.245117
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −330980. −1.22134 −0.610668 0.791886i \(-0.709099\pi\)
−0.610668 + 0.791886i \(0.709099\pi\)
\(150\) 0 0
\(151\) 108857. 0.388519 0.194260 0.980950i \(-0.437770\pi\)
0.194260 + 0.980950i \(0.437770\pi\)
\(152\) 0 0
\(153\) −51578.7 −0.178132
\(154\) 0 0
\(155\) −268003. −0.896005
\(156\) 0 0
\(157\) 497745. 1.61160 0.805801 0.592186i \(-0.201735\pi\)
0.805801 + 0.592186i \(0.201735\pi\)
\(158\) 0 0
\(159\) 520055. 1.63139
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −359103. −1.05864 −0.529321 0.848421i \(-0.677553\pi\)
−0.529321 + 0.848421i \(0.677553\pi\)
\(164\) 0 0
\(165\) 1.12279e6 3.21061
\(166\) 0 0
\(167\) 50645.2 0.140523 0.0702614 0.997529i \(-0.477617\pi\)
0.0702614 + 0.997529i \(0.477617\pi\)
\(168\) 0 0
\(169\) 306258. 0.824841
\(170\) 0 0
\(171\) −626466. −1.63835
\(172\) 0 0
\(173\) −303189. −0.770191 −0.385095 0.922877i \(-0.625831\pi\)
−0.385095 + 0.922877i \(0.625831\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 892772. 2.14194
\(178\) 0 0
\(179\) −682543. −1.59220 −0.796100 0.605165i \(-0.793107\pi\)
−0.796100 + 0.605165i \(0.793107\pi\)
\(180\) 0 0
\(181\) −182455. −0.413961 −0.206980 0.978345i \(-0.566364\pi\)
−0.206980 + 0.978345i \(0.566364\pi\)
\(182\) 0 0
\(183\) 1.06153e6 2.34318
\(184\) 0 0
\(185\) 296891. 0.637775
\(186\) 0 0
\(187\) −79952.4 −0.167197
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 683543. 1.35576 0.677879 0.735173i \(-0.262899\pi\)
0.677879 + 0.735173i \(0.262899\pi\)
\(192\) 0 0
\(193\) 946503. 1.82906 0.914532 0.404515i \(-0.132559\pi\)
0.914532 + 0.404515i \(0.132559\pi\)
\(194\) 0 0
\(195\) 1.68268e6 3.16894
\(196\) 0 0
\(197\) −184209. −0.338178 −0.169089 0.985601i \(-0.554082\pi\)
−0.169089 + 0.985601i \(0.554082\pi\)
\(198\) 0 0
\(199\) −68206.6 −0.122094 −0.0610469 0.998135i \(-0.519444\pi\)
−0.0610469 + 0.998135i \(0.519444\pi\)
\(200\) 0 0
\(201\) −122889. −0.214548
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −540434. −0.898169
\(206\) 0 0
\(207\) −539545. −0.875189
\(208\) 0 0
\(209\) −971088. −1.53778
\(210\) 0 0
\(211\) −1.19270e6 −1.84427 −0.922134 0.386871i \(-0.873556\pi\)
−0.922134 + 0.386871i \(0.873556\pi\)
\(212\) 0 0
\(213\) 154250. 0.232958
\(214\) 0 0
\(215\) −561739. −0.828778
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.04111e6 −1.46685
\(220\) 0 0
\(221\) −119822. −0.165027
\(222\) 0 0
\(223\) −200502. −0.269995 −0.134998 0.990846i \(-0.543103\pi\)
−0.134998 + 0.990846i \(0.543103\pi\)
\(224\) 0 0
\(225\) 1.37159e6 1.80621
\(226\) 0 0
\(227\) −290769. −0.374527 −0.187264 0.982310i \(-0.559962\pi\)
−0.187264 + 0.982310i \(0.559962\pi\)
\(228\) 0 0
\(229\) −944942. −1.19074 −0.595369 0.803452i \(-0.702994\pi\)
−0.595369 + 0.803452i \(0.702994\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 216384. 0.261117 0.130558 0.991441i \(-0.458323\pi\)
0.130558 + 0.991441i \(0.458323\pi\)
\(234\) 0 0
\(235\) −1.60398e6 −1.89465
\(236\) 0 0
\(237\) −2.32352e6 −2.68705
\(238\) 0 0
\(239\) −668807. −0.757366 −0.378683 0.925526i \(-0.623623\pi\)
−0.378683 + 0.925526i \(0.623623\pi\)
\(240\) 0 0
\(241\) −1.15601e6 −1.28209 −0.641047 0.767501i \(-0.721500\pi\)
−0.641047 + 0.767501i \(0.721500\pi\)
\(242\) 0 0
\(243\) 1.14026e6 1.23876
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.45533e6 −1.51782
\(248\) 0 0
\(249\) −854879. −0.873788
\(250\) 0 0
\(251\) 77574.9 0.0777207 0.0388604 0.999245i \(-0.487627\pi\)
0.0388604 + 0.999245i \(0.487627\pi\)
\(252\) 0 0
\(253\) −836351. −0.821462
\(254\) 0 0
\(255\) −297573. −0.286579
\(256\) 0 0
\(257\) 280202. 0.264630 0.132315 0.991208i \(-0.457759\pi\)
0.132315 + 0.991208i \(0.457759\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −262892. −0.238878
\(262\) 0 0
\(263\) −269966. −0.240669 −0.120334 0.992733i \(-0.538397\pi\)
−0.120334 + 0.992733i \(0.538397\pi\)
\(264\) 0 0
\(265\) 1.77978e6 1.55687
\(266\) 0 0
\(267\) 2.45756e6 2.10972
\(268\) 0 0
\(269\) −890267. −0.750135 −0.375068 0.926997i \(-0.622380\pi\)
−0.375068 + 0.926997i \(0.622380\pi\)
\(270\) 0 0
\(271\) −384279. −0.317851 −0.158926 0.987291i \(-0.550803\pi\)
−0.158926 + 0.987291i \(0.550803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.12611e6 1.69533
\(276\) 0 0
\(277\) −1.09193e6 −0.855061 −0.427530 0.904001i \(-0.640616\pi\)
−0.427530 + 0.904001i \(0.640616\pi\)
\(278\) 0 0
\(279\) 1.13533e6 0.873196
\(280\) 0 0
\(281\) 771640. 0.582974 0.291487 0.956575i \(-0.405850\pi\)
0.291487 + 0.956575i \(0.405850\pi\)
\(282\) 0 0
\(283\) 541805. 0.402140 0.201070 0.979577i \(-0.435558\pi\)
0.201070 + 0.979577i \(0.435558\pi\)
\(284\) 0 0
\(285\) −3.61428e6 −2.63578
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.39867e6 −0.985076
\(290\) 0 0
\(291\) 1.87688e6 1.29929
\(292\) 0 0
\(293\) −1.69804e6 −1.15552 −0.577762 0.816205i \(-0.696074\pi\)
−0.577762 + 0.816205i \(0.696074\pi\)
\(294\) 0 0
\(295\) 3.05532e6 2.04410
\(296\) 0 0
\(297\) −1.49445e6 −0.983081
\(298\) 0 0
\(299\) −1.25341e6 −0.810801
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.78718e6 1.74405
\(304\) 0 0
\(305\) 3.63288e6 2.23615
\(306\) 0 0
\(307\) 288376. 0.174627 0.0873137 0.996181i \(-0.472172\pi\)
0.0873137 + 0.996181i \(0.472172\pi\)
\(308\) 0 0
\(309\) −3.02173e6 −1.80036
\(310\) 0 0
\(311\) −347601. −0.203789 −0.101894 0.994795i \(-0.532490\pi\)
−0.101894 + 0.994795i \(0.532490\pi\)
\(312\) 0 0
\(313\) 770403. 0.444485 0.222242 0.974991i \(-0.428662\pi\)
0.222242 + 0.974991i \(0.428662\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.01752e6 −1.12764 −0.563819 0.825898i \(-0.690669\pi\)
−0.563819 + 0.825898i \(0.690669\pi\)
\(318\) 0 0
\(319\) −407510. −0.224213
\(320\) 0 0
\(321\) 570441. 0.308993
\(322\) 0 0
\(323\) 257369. 0.137262
\(324\) 0 0
\(325\) 3.18632e6 1.67333
\(326\) 0 0
\(327\) 664854. 0.343840
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 425932. 0.213683 0.106842 0.994276i \(-0.465926\pi\)
0.106842 + 0.994276i \(0.465926\pi\)
\(332\) 0 0
\(333\) −1.25771e6 −0.621540
\(334\) 0 0
\(335\) −420563. −0.204748
\(336\) 0 0
\(337\) 1.15035e6 0.551767 0.275884 0.961191i \(-0.411030\pi\)
0.275884 + 0.961191i \(0.411030\pi\)
\(338\) 0 0
\(339\) 3.84675e6 1.81800
\(340\) 0 0
\(341\) 1.75988e6 0.819592
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.11280e6 −1.40800
\(346\) 0 0
\(347\) −313136. −0.139608 −0.0698039 0.997561i \(-0.522237\pi\)
−0.0698039 + 0.997561i \(0.522237\pi\)
\(348\) 0 0
\(349\) 3.01459e6 1.32484 0.662422 0.749131i \(-0.269529\pi\)
0.662422 + 0.749131i \(0.269529\pi\)
\(350\) 0 0
\(351\) −2.23967e6 −0.970323
\(352\) 0 0
\(353\) −4.38460e6 −1.87281 −0.936404 0.350925i \(-0.885867\pi\)
−0.936404 + 0.350925i \(0.885867\pi\)
\(354\) 0 0
\(355\) 527890. 0.222317
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −192656. −0.0788943 −0.0394471 0.999222i \(-0.512560\pi\)
−0.0394471 + 0.999222i \(0.512560\pi\)
\(360\) 0 0
\(361\) 649857. 0.262452
\(362\) 0 0
\(363\) −3.43681e6 −1.36896
\(364\) 0 0
\(365\) −3.56297e6 −1.39984
\(366\) 0 0
\(367\) 2.33981e6 0.906809 0.453405 0.891305i \(-0.350209\pi\)
0.453405 + 0.891305i \(0.350209\pi\)
\(368\) 0 0
\(369\) 2.28942e6 0.875305
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.92433e6 1.46047 0.730237 0.683194i \(-0.239410\pi\)
0.730237 + 0.683194i \(0.239410\pi\)
\(374\) 0 0
\(375\) 1.52491e6 0.559972
\(376\) 0 0
\(377\) −610719. −0.221303
\(378\) 0 0
\(379\) −3.26556e6 −1.16778 −0.583889 0.811834i \(-0.698470\pi\)
−0.583889 + 0.811834i \(0.698470\pi\)
\(380\) 0 0
\(381\) 6.18983e6 2.18457
\(382\) 0 0
\(383\) 4.42975e6 1.54306 0.771529 0.636194i \(-0.219492\pi\)
0.771529 + 0.636194i \(0.219492\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.37967e6 0.807680
\(388\) 0 0
\(389\) −5.11467e6 −1.71373 −0.856867 0.515537i \(-0.827592\pi\)
−0.856867 + 0.515537i \(0.827592\pi\)
\(390\) 0 0
\(391\) 221659. 0.0733236
\(392\) 0 0
\(393\) −2.82396e6 −0.922311
\(394\) 0 0
\(395\) −7.95176e6 −2.56431
\(396\) 0 0
\(397\) 1.54189e6 0.490995 0.245497 0.969397i \(-0.421049\pi\)
0.245497 + 0.969397i \(0.421049\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.44227e6 1.69013 0.845064 0.534666i \(-0.179563\pi\)
0.845064 + 0.534666i \(0.179563\pi\)
\(402\) 0 0
\(403\) 2.63747e6 0.808955
\(404\) 0 0
\(405\) 1.63956e6 0.496694
\(406\) 0 0
\(407\) −1.94958e6 −0.583384
\(408\) 0 0
\(409\) −5.18482e6 −1.53259 −0.766294 0.642490i \(-0.777901\pi\)
−0.766294 + 0.642490i \(0.777901\pi\)
\(410\) 0 0
\(411\) 5.07888e6 1.48308
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.92564e6 −0.833876
\(416\) 0 0
\(417\) −708599. −0.199554
\(418\) 0 0
\(419\) 2.17093e6 0.604102 0.302051 0.953292i \(-0.402329\pi\)
0.302051 + 0.953292i \(0.402329\pi\)
\(420\) 0 0
\(421\) 6.61967e6 1.82025 0.910125 0.414334i \(-0.135986\pi\)
0.910125 + 0.414334i \(0.135986\pi\)
\(422\) 0 0
\(423\) 6.79489e6 1.84642
\(424\) 0 0
\(425\) −563485. −0.151325
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.10496e7 −2.89869
\(430\) 0 0
\(431\) −2.89984e6 −0.751937 −0.375968 0.926632i \(-0.622690\pi\)
−0.375968 + 0.926632i \(0.622690\pi\)
\(432\) 0 0
\(433\) −4.71803e6 −1.20932 −0.604659 0.796484i \(-0.706691\pi\)
−0.604659 + 0.796484i \(0.706691\pi\)
\(434\) 0 0
\(435\) −1.51670e6 −0.384306
\(436\) 0 0
\(437\) 2.69223e6 0.674387
\(438\) 0 0
\(439\) 3.47700e6 0.861081 0.430540 0.902571i \(-0.358323\pi\)
0.430540 + 0.902571i \(0.358323\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.29658e6 1.76649 0.883243 0.468916i \(-0.155355\pi\)
0.883243 + 0.468916i \(0.155355\pi\)
\(444\) 0 0
\(445\) 8.41047e6 2.01336
\(446\) 0 0
\(447\) 8.08924e6 1.91487
\(448\) 0 0
\(449\) 3.65867e6 0.856462 0.428231 0.903669i \(-0.359137\pi\)
0.428231 + 0.903669i \(0.359137\pi\)
\(450\) 0 0
\(451\) 3.54884e6 0.821571
\(452\) 0 0
\(453\) −2.66049e6 −0.609139
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.44062e6 1.44257 0.721286 0.692638i \(-0.243552\pi\)
0.721286 + 0.692638i \(0.243552\pi\)
\(458\) 0 0
\(459\) 396075. 0.0877497
\(460\) 0 0
\(461\) −4.47898e6 −0.981583 −0.490791 0.871277i \(-0.663292\pi\)
−0.490791 + 0.871277i \(0.663292\pi\)
\(462\) 0 0
\(463\) −2.11214e6 −0.457899 −0.228949 0.973438i \(-0.573529\pi\)
−0.228949 + 0.973438i \(0.573529\pi\)
\(464\) 0 0
\(465\) 6.55008e6 1.40480
\(466\) 0 0
\(467\) −7.85838e6 −1.66740 −0.833702 0.552214i \(-0.813783\pi\)
−0.833702 + 0.552214i \(0.813783\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.21650e7 −2.52675
\(472\) 0 0
\(473\) 3.68874e6 0.758098
\(474\) 0 0
\(475\) −6.84400e6 −1.39180
\(476\) 0 0
\(477\) −7.53961e6 −1.51724
\(478\) 0 0
\(479\) −8.48745e6 −1.69020 −0.845101 0.534607i \(-0.820460\pi\)
−0.845101 + 0.534607i \(0.820460\pi\)
\(480\) 0 0
\(481\) −2.92176e6 −0.575813
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.42324e6 1.23994
\(486\) 0 0
\(487\) 2.75616e6 0.526602 0.263301 0.964714i \(-0.415189\pi\)
0.263301 + 0.964714i \(0.415189\pi\)
\(488\) 0 0
\(489\) 8.77658e6 1.65979
\(490\) 0 0
\(491\) 2.45533e6 0.459628 0.229814 0.973235i \(-0.426188\pi\)
0.229814 + 0.973235i \(0.426188\pi\)
\(492\) 0 0
\(493\) 108003. 0.0200132
\(494\) 0 0
\(495\) −1.62778e7 −2.98596
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.45849e6 −0.801561 −0.400781 0.916174i \(-0.631261\pi\)
−0.400781 + 0.916174i \(0.631261\pi\)
\(500\) 0 0
\(501\) −1.23778e6 −0.220318
\(502\) 0 0
\(503\) −2.64080e6 −0.465389 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(504\) 0 0
\(505\) 9.53856e6 1.66439
\(506\) 0 0
\(507\) −7.48503e6 −1.29322
\(508\) 0 0
\(509\) −4.71041e6 −0.805868 −0.402934 0.915229i \(-0.632010\pi\)
−0.402934 + 0.915229i \(0.632010\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.81066e6 0.807070
\(514\) 0 0
\(515\) −1.03412e7 −1.71812
\(516\) 0 0
\(517\) 1.05328e7 1.73307
\(518\) 0 0
\(519\) 7.41003e6 1.20754
\(520\) 0 0
\(521\) 2.80269e6 0.452356 0.226178 0.974086i \(-0.427377\pi\)
0.226178 + 0.974086i \(0.427377\pi\)
\(522\) 0 0
\(523\) 2.99755e6 0.479195 0.239598 0.970872i \(-0.422985\pi\)
0.239598 + 0.970872i \(0.422985\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −466423. −0.0731566
\(528\) 0 0
\(529\) −4.11765e6 −0.639750
\(530\) 0 0
\(531\) −1.29431e7 −1.99207
\(532\) 0 0
\(533\) 5.31851e6 0.810909
\(534\) 0 0
\(535\) 1.95221e6 0.294878
\(536\) 0 0
\(537\) 1.66816e7 2.49632
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.30504e6 0.485493 0.242747 0.970090i \(-0.421952\pi\)
0.242747 + 0.970090i \(0.421952\pi\)
\(542\) 0 0
\(543\) 4.45926e6 0.649027
\(544\) 0 0
\(545\) 2.27532e6 0.328135
\(546\) 0 0
\(547\) 3.51435e6 0.502201 0.251100 0.967961i \(-0.419208\pi\)
0.251100 + 0.967961i \(0.419208\pi\)
\(548\) 0 0
\(549\) −1.53898e7 −2.17923
\(550\) 0 0
\(551\) 1.31178e6 0.184070
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.25610e6 −0.999933
\(556\) 0 0
\(557\) −5.98187e6 −0.816956 −0.408478 0.912768i \(-0.633940\pi\)
−0.408478 + 0.912768i \(0.633940\pi\)
\(558\) 0 0
\(559\) 5.52817e6 0.748259
\(560\) 0 0
\(561\) 1.95406e6 0.262138
\(562\) 0 0
\(563\) −1.07384e7 −1.42781 −0.713903 0.700245i \(-0.753074\pi\)
−0.713903 + 0.700245i \(0.753074\pi\)
\(564\) 0 0
\(565\) 1.31647e7 1.73496
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.59548e6 −0.854016 −0.427008 0.904248i \(-0.640432\pi\)
−0.427008 + 0.904248i \(0.640432\pi\)
\(570\) 0 0
\(571\) −2.61577e6 −0.335745 −0.167873 0.985809i \(-0.553690\pi\)
−0.167873 + 0.985809i \(0.553690\pi\)
\(572\) 0 0
\(573\) −1.67060e7 −2.12562
\(574\) 0 0
\(575\) −5.89440e6 −0.743482
\(576\) 0 0
\(577\) 1.23898e6 0.154926 0.0774630 0.996995i \(-0.475318\pi\)
0.0774630 + 0.996995i \(0.475318\pi\)
\(578\) 0 0
\(579\) −2.31328e7 −2.86769
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.16872e7 −1.42409
\(584\) 0 0
\(585\) −2.43950e7 −2.94721
\(586\) 0 0
\(587\) −1.02896e7 −1.23254 −0.616270 0.787535i \(-0.711357\pi\)
−0.616270 + 0.787535i \(0.711357\pi\)
\(588\) 0 0
\(589\) −5.66510e6 −0.672852
\(590\) 0 0
\(591\) 4.50212e6 0.530211
\(592\) 0 0
\(593\) −1.53178e7 −1.78879 −0.894394 0.447280i \(-0.852393\pi\)
−0.894394 + 0.447280i \(0.852393\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.66699e6 0.191424
\(598\) 0 0
\(599\) 2.69496e6 0.306892 0.153446 0.988157i \(-0.450963\pi\)
0.153446 + 0.988157i \(0.450963\pi\)
\(600\) 0 0
\(601\) −1.54704e6 −0.174709 −0.0873547 0.996177i \(-0.527841\pi\)
−0.0873547 + 0.996177i \(0.527841\pi\)
\(602\) 0 0
\(603\) 1.78162e6 0.199536
\(604\) 0 0
\(605\) −1.17618e7 −1.30642
\(606\) 0 0
\(607\) −3.79138e6 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.57851e7 1.71058
\(612\) 0 0
\(613\) 6.19207e6 0.665556 0.332778 0.943005i \(-0.392014\pi\)
0.332778 + 0.943005i \(0.392014\pi\)
\(614\) 0 0
\(615\) 1.32084e7 1.40819
\(616\) 0 0
\(617\) −1.59349e7 −1.68514 −0.842571 0.538585i \(-0.818959\pi\)
−0.842571 + 0.538585i \(0.818959\pi\)
\(618\) 0 0
\(619\) 1.15732e7 1.21402 0.607011 0.794693i \(-0.292368\pi\)
0.607011 + 0.794693i \(0.292368\pi\)
\(620\) 0 0
\(621\) 4.14319e6 0.431128
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.87806e6 −0.704313
\(626\) 0 0
\(627\) 2.37337e7 2.41100
\(628\) 0 0
\(629\) 516699. 0.0520728
\(630\) 0 0
\(631\) 900933. 0.0900781 0.0450390 0.998985i \(-0.485659\pi\)
0.0450390 + 0.998985i \(0.485659\pi\)
\(632\) 0 0
\(633\) 2.91499e7 2.89153
\(634\) 0 0
\(635\) 2.11834e7 2.08479
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.23628e6 −0.216658
\(640\) 0 0
\(641\) −848770. −0.0815915 −0.0407958 0.999168i \(-0.512989\pi\)
−0.0407958 + 0.999168i \(0.512989\pi\)
\(642\) 0 0
\(643\) 1.37977e7 1.31607 0.658036 0.752986i \(-0.271387\pi\)
0.658036 + 0.752986i \(0.271387\pi\)
\(644\) 0 0
\(645\) 1.37291e7 1.29940
\(646\) 0 0
\(647\) 3.65350e6 0.343122 0.171561 0.985174i \(-0.445119\pi\)
0.171561 + 0.985174i \(0.445119\pi\)
\(648\) 0 0
\(649\) −2.00632e7 −1.86977
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.17912e7 1.08212 0.541058 0.840985i \(-0.318024\pi\)
0.541058 + 0.840985i \(0.318024\pi\)
\(654\) 0 0
\(655\) −9.66442e6 −0.880182
\(656\) 0 0
\(657\) 1.50937e7 1.36421
\(658\) 0 0
\(659\) −1.15208e7 −1.03340 −0.516700 0.856166i \(-0.672840\pi\)
−0.516700 + 0.856166i \(0.672840\pi\)
\(660\) 0 0
\(661\) −5.37215e6 −0.478238 −0.239119 0.970990i \(-0.576859\pi\)
−0.239119 + 0.970990i \(0.576859\pi\)
\(662\) 0 0
\(663\) 2.92848e6 0.258737
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.12978e6 0.0983281
\(668\) 0 0
\(669\) 4.90032e6 0.423311
\(670\) 0 0
\(671\) −2.38558e7 −2.04545
\(672\) 0 0
\(673\) 1.48042e7 1.25993 0.629966 0.776623i \(-0.283069\pi\)
0.629966 + 0.776623i \(0.283069\pi\)
\(674\) 0 0
\(675\) −1.05325e7 −0.889759
\(676\) 0 0
\(677\) 5.90707e6 0.495336 0.247668 0.968845i \(-0.420336\pi\)
0.247668 + 0.968845i \(0.420336\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.10648e6 0.587201
\(682\) 0 0
\(683\) 2.20159e7 1.80586 0.902932 0.429784i \(-0.141410\pi\)
0.902932 + 0.429784i \(0.141410\pi\)
\(684\) 0 0
\(685\) 1.73814e7 1.41533
\(686\) 0 0
\(687\) 2.30947e7 1.86690
\(688\) 0 0
\(689\) −1.75151e7 −1.40561
\(690\) 0 0
\(691\) −1.30651e7 −1.04092 −0.520460 0.853886i \(-0.674239\pi\)
−0.520460 + 0.853886i \(0.674239\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.42503e6 −0.190439
\(696\) 0 0
\(697\) −940553. −0.0733333
\(698\) 0 0
\(699\) −5.28848e6 −0.409391
\(700\) 0 0
\(701\) 1.20043e7 0.922658 0.461329 0.887229i \(-0.347373\pi\)
0.461329 + 0.887229i \(0.347373\pi\)
\(702\) 0 0
\(703\) 6.27574e6 0.478935
\(704\) 0 0
\(705\) 3.92018e7 2.97053
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.64794e7 −1.23119 −0.615597 0.788061i \(-0.711085\pi\)
−0.615597 + 0.788061i \(0.711085\pi\)
\(710\) 0 0
\(711\) 3.36857e7 2.49903
\(712\) 0 0
\(713\) −4.87908e6 −0.359430
\(714\) 0 0
\(715\) −3.78148e7 −2.76628
\(716\) 0 0
\(717\) 1.63458e7 1.18743
\(718\) 0 0
\(719\) 7.32353e6 0.528322 0.264161 0.964479i \(-0.414905\pi\)
0.264161 + 0.964479i \(0.414905\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.82533e7 2.01013
\(724\) 0 0
\(725\) −2.87203e6 −0.202929
\(726\) 0 0
\(727\) −1.83777e7 −1.28960 −0.644798 0.764353i \(-0.723059\pi\)
−0.644798 + 0.764353i \(0.723059\pi\)
\(728\) 0 0
\(729\) −2.31050e7 −1.61023
\(730\) 0 0
\(731\) −977630. −0.0676677
\(732\) 0 0
\(733\) 1.18498e7 0.814609 0.407305 0.913292i \(-0.366469\pi\)
0.407305 + 0.913292i \(0.366469\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.76169e6 0.187286
\(738\) 0 0
\(739\) −2.09511e7 −1.41123 −0.705613 0.708598i \(-0.749328\pi\)
−0.705613 + 0.708598i \(0.749328\pi\)
\(740\) 0 0
\(741\) 3.55688e7 2.37971
\(742\) 0 0
\(743\) −1.42524e7 −0.947141 −0.473570 0.880756i \(-0.657035\pi\)
−0.473570 + 0.880756i \(0.657035\pi\)
\(744\) 0 0
\(745\) 2.76837e7 1.82740
\(746\) 0 0
\(747\) 1.23938e7 0.812648
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.31969e6 0.0853832 0.0426916 0.999088i \(-0.486407\pi\)
0.0426916 + 0.999088i \(0.486407\pi\)
\(752\) 0 0
\(753\) −1.89595e6 −0.121854
\(754\) 0 0
\(755\) −9.10497e6 −0.581315
\(756\) 0 0
\(757\) 102138. 0.00647812 0.00323906 0.999995i \(-0.498969\pi\)
0.00323906 + 0.999995i \(0.498969\pi\)
\(758\) 0 0
\(759\) 2.04407e7 1.28793
\(760\) 0 0
\(761\) −2.19193e7 −1.37203 −0.686016 0.727586i \(-0.740642\pi\)
−0.686016 + 0.727586i \(0.740642\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.31414e6 0.266526
\(766\) 0 0
\(767\) −3.00680e7 −1.84551
\(768\) 0 0
\(769\) −6.44098e6 −0.392768 −0.196384 0.980527i \(-0.562920\pi\)
−0.196384 + 0.980527i \(0.562920\pi\)
\(770\) 0 0
\(771\) −6.84823e6 −0.414899
\(772\) 0 0
\(773\) −2.91160e6 −0.175260 −0.0876302 0.996153i \(-0.527929\pi\)
−0.0876302 + 0.996153i \(0.527929\pi\)
\(774\) 0 0
\(775\) 1.24032e7 0.741789
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.14238e7 −0.674477
\(780\) 0 0
\(781\) −3.46647e6 −0.203357
\(782\) 0 0
\(783\) 2.01876e6 0.117674
\(784\) 0 0
\(785\) −4.16323e7 −2.41133
\(786\) 0 0
\(787\) −2.54579e7 −1.46516 −0.732582 0.680679i \(-0.761685\pi\)
−0.732582 + 0.680679i \(0.761685\pi\)
\(788\) 0 0
\(789\) 6.59805e6 0.377331
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.57518e7 −2.01890
\(794\) 0 0
\(795\) −4.34984e7 −2.44093
\(796\) 0 0
\(797\) 2.04344e7 1.13950 0.569752 0.821817i \(-0.307039\pi\)
0.569752 + 0.821817i \(0.307039\pi\)
\(798\) 0 0
\(799\) −2.79152e6 −0.154694
\(800\) 0 0
\(801\) −3.56290e7 −1.96210
\(802\) 0 0
\(803\) 2.33968e7 1.28046
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.17584e7 1.17610
\(808\) 0 0
\(809\) 2.82831e7 1.51934 0.759672 0.650306i \(-0.225359\pi\)
0.759672 + 0.650306i \(0.225359\pi\)
\(810\) 0 0
\(811\) −1.58852e7 −0.848087 −0.424043 0.905642i \(-0.639390\pi\)
−0.424043 + 0.905642i \(0.639390\pi\)
\(812\) 0 0
\(813\) 9.39191e6 0.498342
\(814\) 0 0
\(815\) 3.00360e7 1.58397
\(816\) 0 0
\(817\) −1.18741e7 −0.622368
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.54440e7 0.799652 0.399826 0.916591i \(-0.369071\pi\)
0.399826 + 0.916591i \(0.369071\pi\)
\(822\) 0 0
\(823\) 2.97886e7 1.53303 0.766516 0.642225i \(-0.221989\pi\)
0.766516 + 0.642225i \(0.221989\pi\)
\(824\) 0 0
\(825\) −5.19628e7 −2.65801
\(826\) 0 0
\(827\) 1.66831e7 0.848230 0.424115 0.905608i \(-0.360585\pi\)
0.424115 + 0.905608i \(0.360585\pi\)
\(828\) 0 0
\(829\) 2.21137e7 1.11757 0.558785 0.829313i \(-0.311268\pi\)
0.558785 + 0.829313i \(0.311268\pi\)
\(830\) 0 0
\(831\) 2.66872e7 1.34060
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.23606e6 −0.210255
\(836\) 0 0
\(837\) −8.71826e6 −0.430146
\(838\) 0 0
\(839\) −539166. −0.0264434 −0.0132217 0.999913i \(-0.504209\pi\)
−0.0132217 + 0.999913i \(0.504209\pi\)
\(840\) 0 0
\(841\) −1.99607e7 −0.973162
\(842\) 0 0
\(843\) −1.88591e7 −0.914013
\(844\) 0 0
\(845\) −2.56160e7 −1.23415
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.32419e7 −0.630493
\(850\) 0 0
\(851\) 5.40499e6 0.255841
\(852\) 0 0
\(853\) −2.55452e6 −0.120209 −0.0601044 0.998192i \(-0.519143\pi\)
−0.0601044 + 0.998192i \(0.519143\pi\)
\(854\) 0 0
\(855\) 5.23988e7 2.45135
\(856\) 0 0
\(857\) −240078. −0.0111661 −0.00558303 0.999984i \(-0.501777\pi\)
−0.00558303 + 0.999984i \(0.501777\pi\)
\(858\) 0 0
\(859\) −6.67911e6 −0.308841 −0.154421 0.988005i \(-0.549351\pi\)
−0.154421 + 0.988005i \(0.549351\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.05060e7 −0.937245 −0.468622 0.883399i \(-0.655249\pi\)
−0.468622 + 0.883399i \(0.655249\pi\)
\(864\) 0 0
\(865\) 2.53593e7 1.15238
\(866\) 0 0
\(867\) 3.41839e7 1.54445
\(868\) 0 0
\(869\) 5.22164e7 2.34562
\(870\) 0 0
\(871\) 4.13884e6 0.184856
\(872\) 0 0
\(873\) −2.72105e7 −1.20837
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.52775e7 1.10978 0.554888 0.831925i \(-0.312761\pi\)
0.554888 + 0.831925i \(0.312761\pi\)
\(878\) 0 0
\(879\) 4.15006e7 1.81168
\(880\) 0 0
\(881\) 2.45932e7 1.06752 0.533759 0.845637i \(-0.320779\pi\)
0.533759 + 0.845637i \(0.320779\pi\)
\(882\) 0 0
\(883\) 2.78301e7 1.20120 0.600598 0.799551i \(-0.294929\pi\)
0.600598 + 0.799551i \(0.294929\pi\)
\(884\) 0 0
\(885\) −7.46731e7 −3.20484
\(886\) 0 0
\(887\) −3.49856e7 −1.49307 −0.746534 0.665347i \(-0.768284\pi\)
−0.746534 + 0.665347i \(0.768284\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.07664e7 −0.454334
\(892\) 0 0
\(893\) −3.39053e7 −1.42278
\(894\) 0 0
\(895\) 5.70892e7 2.38230
\(896\) 0 0
\(897\) 3.06337e7 1.27121
\(898\) 0 0
\(899\) −2.37732e6 −0.0981042
\(900\) 0 0
\(901\) 3.09747e6 0.127114
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.52609e7 0.619381
\(906\) 0 0
\(907\) −4.06601e7 −1.64116 −0.820578 0.571534i \(-0.806348\pi\)
−0.820578 + 0.571534i \(0.806348\pi\)
\(908\) 0 0
\(909\) −4.04078e7 −1.62202
\(910\) 0 0
\(911\) −2.87014e7 −1.14579 −0.572897 0.819627i \(-0.694180\pi\)
−0.572897 + 0.819627i \(0.694180\pi\)
\(912\) 0 0
\(913\) 1.92117e7 0.762761
\(914\) 0 0
\(915\) −8.87887e7 −3.50594
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.94829e7 1.15155 0.575773 0.817609i \(-0.304701\pi\)
0.575773 + 0.817609i \(0.304701\pi\)
\(920\) 0 0
\(921\) −7.04799e6 −0.273789
\(922\) 0 0
\(923\) −5.19506e6 −0.200718
\(924\) 0 0
\(925\) −1.37402e7 −0.528004
\(926\) 0 0
\(927\) 4.38081e7 1.67438
\(928\) 0 0
\(929\) 1.58822e7 0.603772 0.301886 0.953344i \(-0.402384\pi\)
0.301886 + 0.953344i \(0.402384\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 8.49549e6 0.319510
\(934\) 0 0
\(935\) 6.68736e6 0.250165
\(936\) 0 0
\(937\) −1.04452e7 −0.388656 −0.194328 0.980937i \(-0.562253\pi\)
−0.194328 + 0.980937i \(0.562253\pi\)
\(938\) 0 0
\(939\) −1.88289e7 −0.696884
\(940\) 0 0
\(941\) 2.68483e7 0.988421 0.494211 0.869342i \(-0.335457\pi\)
0.494211 + 0.869342i \(0.335457\pi\)
\(942\) 0 0
\(943\) −9.83877e6 −0.360298
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.52409e7 −0.552251 −0.276126 0.961122i \(-0.589051\pi\)
−0.276126 + 0.961122i \(0.589051\pi\)
\(948\) 0 0
\(949\) 3.50638e7 1.26384
\(950\) 0 0
\(951\) 4.93088e7 1.76796
\(952\) 0 0
\(953\) −1.29112e7 −0.460504 −0.230252 0.973131i \(-0.573955\pi\)
−0.230252 + 0.973131i \(0.573955\pi\)
\(954\) 0 0
\(955\) −5.71728e7 −2.02853
\(956\) 0 0
\(957\) 9.95966e6 0.351532
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.83624e7 −0.641389
\(962\) 0 0
\(963\) −8.27009e6 −0.287372
\(964\) 0 0
\(965\) −7.91672e7 −2.73670
\(966\) 0 0
\(967\) 4.60406e7 1.58334 0.791671 0.610948i \(-0.209211\pi\)
0.791671 + 0.610948i \(0.209211\pi\)
\(968\) 0 0
\(969\) −6.29017e6 −0.215205
\(970\) 0 0
\(971\) −1.87316e7 −0.637568 −0.318784 0.947827i \(-0.603274\pi\)
−0.318784 + 0.947827i \(0.603274\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.78746e7 −2.62352
\(976\) 0 0
\(977\) −2.89204e7 −0.969321 −0.484660 0.874702i \(-0.661057\pi\)
−0.484660 + 0.874702i \(0.661057\pi\)
\(978\) 0 0
\(979\) −5.52286e7 −1.84165
\(980\) 0 0
\(981\) −9.63886e6 −0.319781
\(982\) 0 0
\(983\) −2.17667e7 −0.718470 −0.359235 0.933247i \(-0.616962\pi\)
−0.359235 + 0.933247i \(0.616962\pi\)
\(984\) 0 0
\(985\) 1.54076e7 0.505992
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.02266e7 −0.332462
\(990\) 0 0
\(991\) −1.87867e7 −0.607667 −0.303833 0.952725i \(-0.598267\pi\)
−0.303833 + 0.952725i \(0.598267\pi\)
\(992\) 0 0
\(993\) −1.04099e7 −0.335023
\(994\) 0 0
\(995\) 5.70492e6 0.182680
\(996\) 0 0
\(997\) 1.47676e7 0.470514 0.235257 0.971933i \(-0.424407\pi\)
0.235257 + 0.971933i \(0.424407\pi\)
\(998\) 0 0
\(999\) 9.65799e6 0.306177
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.6.a.h.1.1 2
4.3 odd 2 784.6.a.bd.1.2 2
7.2 even 3 196.6.e.k.165.2 4
7.3 odd 6 28.6.e.b.9.1 4
7.4 even 3 196.6.e.k.177.2 4
7.5 odd 6 28.6.e.b.25.1 yes 4
7.6 odd 2 196.6.a.j.1.2 2
21.5 even 6 252.6.k.d.109.2 4
21.17 even 6 252.6.k.d.37.2 4
28.3 even 6 112.6.i.e.65.2 4
28.19 even 6 112.6.i.e.81.2 4
28.27 even 2 784.6.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.e.b.9.1 4 7.3 odd 6
28.6.e.b.25.1 yes 4 7.5 odd 6
112.6.i.e.65.2 4 28.3 even 6
112.6.i.e.81.2 4 28.19 even 6
196.6.a.h.1.1 2 1.1 even 1 trivial
196.6.a.j.1.2 2 7.6 odd 2
196.6.e.k.165.2 4 7.2 even 3
196.6.e.k.177.2 4 7.4 even 3
252.6.k.d.37.2 4 21.17 even 6
252.6.k.d.109.2 4 21.5 even 6
784.6.a.o.1.1 2 28.27 even 2
784.6.a.bd.1.2 2 4.3 odd 2