Properties

Label 252.6.k.d.37.2
Level $252$
Weight $6$
Character 252.37
Analytic conductor $40.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.2
Root \(2.86008 - 4.95380i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.6.k.d.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(41.8209 - 72.4360i) q^{5} +(28.0000 + 126.582i) q^{7} +(274.623 + 475.661i) q^{11} -823.135 q^{13} +(72.7837 + 126.065i) q^{17} +(-884.019 + 1531.17i) q^{19} +(-761.363 + 1318.72i) q^{23} +(-1935.48 - 3352.35i) q^{25} +741.943 q^{29} +(1602.09 + 2774.90i) q^{31} +(10340.1 + 3265.57i) q^{35} +(1774.77 - 3074.00i) q^{37} +6461.29 q^{41} +6716.00 q^{43} +(-9588.40 + 16607.6i) q^{47} +(-15239.0 + 7088.59i) q^{49} +(-10639.3 - 18427.8i) q^{53} +45940.0 q^{55} +(18264.3 + 31634.8i) q^{59} +(-21716.9 + 37614.7i) q^{61} +(-34424.3 + 59624.6i) q^{65} +(-2514.07 - 4354.50i) q^{67} +6311.32 q^{71} +(21299.0 + 36890.9i) q^{73} +(-52520.7 + 48080.9i) q^{77} +(-47534.6 + 82332.3i) q^{79} +34978.2 q^{83} +12175.5 q^{85} +(50276.7 - 87081.8i) q^{89} +(-23047.8 - 104194. i) q^{91} +(73940.9 + 128069. i) q^{95} +76794.5 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 42 q^{5} + 112 q^{7} + 660 q^{11} - 1288 q^{13} - 210 q^{17} - 3724 q^{19} + 24 q^{23} - 2480 q^{25} - 11064 q^{29} - 2800 q^{31} + 28644 q^{35} + 13238 q^{37} - 8232 q^{41} + 26864 q^{43} + 8064 q^{47}+ \cdots + 16520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 41.8209 72.4360i 0.748115 1.29577i −0.200610 0.979671i \(-0.564292\pi\)
0.948725 0.316103i \(-0.102374\pi\)
\(6\) 0 0
\(7\) 28.0000 + 126.582i 0.215980 + 0.976398i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 274.623 + 475.661i 0.684314 + 1.18527i 0.973652 + 0.228040i \(0.0732316\pi\)
−0.289338 + 0.957227i \(0.593435\pi\)
\(12\) 0 0
\(13\) −823.135 −1.35087 −0.675433 0.737421i \(-0.736043\pi\)
−0.675433 + 0.737421i \(0.736043\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 72.7837 + 126.065i 0.0610818 + 0.105797i 0.894949 0.446168i \(-0.147212\pi\)
−0.833867 + 0.551965i \(0.813878\pi\)
\(18\) 0 0
\(19\) −884.019 + 1531.17i −0.561794 + 0.973056i 0.435546 + 0.900167i \(0.356555\pi\)
−0.997340 + 0.0728898i \(0.976778\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −761.363 + 1318.72i −0.300104 + 0.519796i −0.976159 0.217055i \(-0.930355\pi\)
0.676055 + 0.736851i \(0.263688\pi\)
\(24\) 0 0
\(25\) −1935.48 3352.35i −0.619353 1.07275i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 741.943 0.163823 0.0819116 0.996640i \(-0.473897\pi\)
0.0819116 + 0.996640i \(0.473897\pi\)
\(30\) 0 0
\(31\) 1602.09 + 2774.90i 0.299421 + 0.518612i 0.976004 0.217755i \(-0.0698732\pi\)
−0.676583 + 0.736367i \(0.736540\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10340.1 + 3265.57i 1.42677 + 0.450597i
\(36\) 0 0
\(37\) 1774.77 3074.00i 0.213127 0.369147i −0.739564 0.673086i \(-0.764968\pi\)
0.952692 + 0.303939i \(0.0983018\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6461.29 0.600288 0.300144 0.953894i \(-0.402965\pi\)
0.300144 + 0.953894i \(0.402965\pi\)
\(42\) 0 0
\(43\) 6716.00 0.553910 0.276955 0.960883i \(-0.410675\pi\)
0.276955 + 0.960883i \(0.410675\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9588.40 + 16607.6i −0.633143 + 1.09664i 0.353763 + 0.935335i \(0.384902\pi\)
−0.986905 + 0.161300i \(0.948431\pi\)
\(48\) 0 0
\(49\) −15239.0 + 7088.59i −0.906706 + 0.421764i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10639.3 18427.8i −0.520263 0.901123i −0.999722 0.0235583i \(-0.992500\pi\)
0.479459 0.877564i \(-0.340833\pi\)
\(54\) 0 0
\(55\) 45940.0 2.04778
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 18264.3 + 31634.8i 0.683083 + 1.18314i 0.974035 + 0.226397i \(0.0726948\pi\)
−0.290952 + 0.956738i \(0.593972\pi\)
\(60\) 0 0
\(61\) −21716.9 + 37614.7i −0.747262 + 1.29430i 0.201869 + 0.979413i \(0.435299\pi\)
−0.949130 + 0.314883i \(0.898035\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −34424.3 + 59624.6i −1.01060 + 1.75042i
\(66\) 0 0
\(67\) −2514.07 4354.50i −0.0684212 0.118509i 0.829785 0.558083i \(-0.188463\pi\)
−0.898207 + 0.439574i \(0.855130\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6311.32 0.148585 0.0742923 0.997237i \(-0.476330\pi\)
0.0742923 + 0.997237i \(0.476330\pi\)
\(72\) 0 0
\(73\) 21299.0 + 36890.9i 0.467790 + 0.810236i 0.999323 0.0368015i \(-0.0117169\pi\)
−0.531532 + 0.847038i \(0.678384\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −52520.7 + 48080.9i −1.00949 + 0.924156i
\(78\) 0 0
\(79\) −47534.6 + 82332.3i −0.856923 + 1.48423i 0.0179267 + 0.999839i \(0.494293\pi\)
−0.874850 + 0.484395i \(0.839040\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 34978.2 0.557318 0.278659 0.960390i \(-0.410110\pi\)
0.278659 + 0.960390i \(0.410110\pi\)
\(84\) 0 0
\(85\) 12175.5 0.182785
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 50276.7 87081.8i 0.672809 1.16534i −0.304295 0.952578i \(-0.598421\pi\)
0.977104 0.212762i \(-0.0682458\pi\)
\(90\) 0 0
\(91\) −23047.8 104194.i −0.291760 1.31898i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 73940.9 + 128069.i 0.840574 + 1.45592i
\(96\) 0 0
\(97\) 76794.5 0.828707 0.414353 0.910116i \(-0.364008\pi\)
0.414353 + 0.910116i \(0.364008\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 57020.2 + 98761.9i 0.556193 + 0.963355i 0.997810 + 0.0661508i \(0.0210718\pi\)
−0.441617 + 0.897204i \(0.645595\pi\)
\(102\) 0 0
\(103\) 61818.5 107073.i 0.574150 0.994457i −0.421983 0.906604i \(-0.638666\pi\)
0.996133 0.0878533i \(-0.0280007\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11670.1 + 20213.2i −0.0985404 + 0.170677i −0.911081 0.412228i \(-0.864751\pi\)
0.812540 + 0.582905i \(0.198084\pi\)
\(108\) 0 0
\(109\) 13601.6 + 23558.6i 0.109654 + 0.189926i 0.915630 0.402022i \(-0.131692\pi\)
−0.805976 + 0.591948i \(0.798359\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 157394. 1.15955 0.579777 0.814775i \(-0.303140\pi\)
0.579777 + 0.814775i \(0.303140\pi\)
\(114\) 0 0
\(115\) 63681.8 + 110300.i 0.449025 + 0.777734i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13919.6 + 12742.9i −0.0901073 + 0.0824901i
\(120\) 0 0
\(121\) −70310.3 + 121781.i −0.436572 + 0.756165i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −62393.2 −0.357160
\(126\) 0 0
\(127\) −253263. −1.39336 −0.696679 0.717383i \(-0.745340\pi\)
−0.696679 + 0.717383i \(0.745340\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −57772.6 + 100065.i −0.294133 + 0.509453i −0.974783 0.223156i \(-0.928364\pi\)
0.680650 + 0.732609i \(0.261698\pi\)
\(132\) 0 0
\(133\) −218570. 69028.2i −1.07143 0.338374i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −103904. 179967.i −0.472966 0.819202i 0.526555 0.850141i \(-0.323483\pi\)
−0.999521 + 0.0309393i \(0.990150\pi\)
\(138\) 0 0
\(139\) −28993.1 −0.127279 −0.0636395 0.997973i \(-0.520271\pi\)
−0.0636395 + 0.997973i \(0.520271\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −226052. 391533.i −0.924417 1.60114i
\(144\) 0 0
\(145\) 31028.7 53743.4i 0.122559 0.212278i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −165490. + 286637.i −0.610668 + 1.05771i 0.380460 + 0.924798i \(0.375766\pi\)
−0.991128 + 0.132911i \(0.957567\pi\)
\(150\) 0 0
\(151\) −54428.3 94272.6i −0.194260 0.336468i 0.752398 0.658709i \(-0.228897\pi\)
−0.946658 + 0.322241i \(0.895564\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 268003. 0.896005
\(156\) 0 0
\(157\) 248873. + 431060.i 0.805801 + 1.39569i 0.915749 + 0.401752i \(0.131598\pi\)
−0.109947 + 0.993937i \(0.535068\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −188244. 59450.7i −0.572344 0.180756i
\(162\) 0 0
\(163\) 179551. 310992.i 0.529321 0.916811i −0.470094 0.882616i \(-0.655780\pi\)
0.999415 0.0341950i \(-0.0108867\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 50645.2 0.140523 0.0702614 0.997529i \(-0.477617\pi\)
0.0702614 + 0.997529i \(0.477617\pi\)
\(168\) 0 0
\(169\) 306258. 0.824841
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 151595. 262569.i 0.385095 0.667005i −0.606687 0.794941i \(-0.707502\pi\)
0.991782 + 0.127936i \(0.0408352\pi\)
\(174\) 0 0
\(175\) 370153. 338862.i 0.913664 0.836428i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −341272. 591100.i −0.796100 1.37889i −0.922138 0.386860i \(-0.873560\pi\)
0.126039 0.992025i \(-0.459774\pi\)
\(180\) 0 0
\(181\) 182455. 0.413961 0.206980 0.978345i \(-0.433636\pi\)
0.206980 + 0.978345i \(0.433636\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −148445. 257115.i −0.318888 0.552329i
\(186\) 0 0
\(187\) −39976.2 + 69240.8i −0.0835983 + 0.144796i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 341772. 591966.i 0.677879 1.17412i −0.297739 0.954647i \(-0.596232\pi\)
0.975618 0.219474i \(-0.0704342\pi\)
\(192\) 0 0
\(193\) −473251. 819696.i −0.914532 1.58402i −0.807586 0.589750i \(-0.799226\pi\)
−0.106946 0.994265i \(-0.534107\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 184209. 0.338178 0.169089 0.985601i \(-0.445918\pi\)
0.169089 + 0.985601i \(0.445918\pi\)
\(198\) 0 0
\(199\) −34103.3 59068.6i −0.0610469 0.105736i 0.833887 0.551936i \(-0.186111\pi\)
−0.894934 + 0.446199i \(0.852777\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20774.4 + 93916.6i 0.0353825 + 0.159957i
\(204\) 0 0
\(205\) 270217. 468030.i 0.449085 0.777837i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −971088. −1.53778
\(210\) 0 0
\(211\) −1.19270e6 −1.84427 −0.922134 0.386871i \(-0.873556\pi\)
−0.922134 + 0.386871i \(0.873556\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 280869. 486480.i 0.414389 0.717743i
\(216\) 0 0
\(217\) −306394. + 280493.i −0.441703 + 0.404364i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −59910.8 103769.i −0.0825134 0.142917i
\(222\) 0 0
\(223\) 200502. 0.269995 0.134998 0.990846i \(-0.456897\pi\)
0.134998 + 0.990846i \(0.456897\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 145384. + 251813.i 0.187264 + 0.324350i 0.944337 0.328980i \(-0.106705\pi\)
−0.757073 + 0.653330i \(0.773371\pi\)
\(228\) 0 0
\(229\) −472471. + 818344.i −0.595369 + 1.03121i 0.398125 + 0.917331i \(0.369661\pi\)
−0.993495 + 0.113879i \(0.963672\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 108192. 187394.i 0.130558 0.226134i −0.793334 0.608787i \(-0.791656\pi\)
0.923892 + 0.382653i \(0.124990\pi\)
\(234\) 0 0
\(235\) 801991. + 1.38909e6i 0.947327 + 1.64082i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 668807. 0.757366 0.378683 0.925526i \(-0.376377\pi\)
0.378683 + 0.925526i \(0.376377\pi\)
\(240\) 0 0
\(241\) −578006. 1.00114e6i −0.641047 1.11033i −0.985199 0.171413i \(-0.945167\pi\)
0.344152 0.938914i \(-0.388166\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −123840. + 1.40030e6i −0.131809 + 1.49041i
\(246\) 0 0
\(247\) 727666. 1.26036e6i 0.758909 1.31447i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 77574.9 0.0777207 0.0388604 0.999245i \(-0.487627\pi\)
0.0388604 + 0.999245i \(0.487627\pi\)
\(252\) 0 0
\(253\) −836351. −0.821462
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −140101. + 242662.i −0.132315 + 0.229176i −0.924569 0.381016i \(-0.875574\pi\)
0.792254 + 0.610192i \(0.208908\pi\)
\(258\) 0 0
\(259\) 438807. + 138583.i 0.406466 + 0.128369i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −134983. 233797.i −0.120334 0.208425i 0.799565 0.600579i \(-0.205063\pi\)
−0.919900 + 0.392154i \(0.871730\pi\)
\(264\) 0 0
\(265\) −1.77978e6 −1.55687
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 445133. + 770994.i 0.375068 + 0.649636i 0.990337 0.138681i \(-0.0442862\pi\)
−0.615270 + 0.788317i \(0.710953\pi\)
\(270\) 0 0
\(271\) −192140. + 332796.i −0.158926 + 0.275267i −0.934482 0.356012i \(-0.884136\pi\)
0.775556 + 0.631279i \(0.217470\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.06305e6 1.84126e6i 0.847664 1.46820i
\(276\) 0 0
\(277\) 545967. + 945642.i 0.427530 + 0.740504i 0.996653 0.0817484i \(-0.0260504\pi\)
−0.569123 + 0.822253i \(0.692717\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −771640. −0.582974 −0.291487 0.956575i \(-0.594150\pi\)
−0.291487 + 0.956575i \(0.594150\pi\)
\(282\) 0 0
\(283\) 270902. + 469217.i 0.201070 + 0.348263i 0.948873 0.315657i \(-0.102225\pi\)
−0.747804 + 0.663920i \(0.768892\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 180916. + 817883.i 0.129650 + 0.586120i
\(288\) 0 0
\(289\) 699334. 1.21128e6i 0.492538 0.853101i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.69804e6 −1.15552 −0.577762 0.816205i \(-0.696074\pi\)
−0.577762 + 0.816205i \(0.696074\pi\)
\(294\) 0 0
\(295\) 3.05532e6 2.04410
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 626704. 1.08548e6i 0.405401 0.702175i
\(300\) 0 0
\(301\) 188048. + 850125.i 0.119633 + 0.540837i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.81644e6 + 3.14617e6i 1.11808 + 1.93656i
\(306\) 0 0
\(307\) −288376. −0.174627 −0.0873137 0.996181i \(-0.527828\pi\)
−0.0873137 + 0.996181i \(0.527828\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 173801. + 301032.i 0.101894 + 0.176486i 0.912465 0.409154i \(-0.134176\pi\)
−0.810571 + 0.585641i \(0.800843\pi\)
\(312\) 0 0
\(313\) 385201. 667188.i 0.222242 0.384935i −0.733246 0.679963i \(-0.761996\pi\)
0.955489 + 0.295028i \(0.0953290\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.00876e6 + 1.74722e6i −0.563819 + 0.976564i 0.433339 + 0.901231i \(0.357335\pi\)
−0.997158 + 0.0753328i \(0.975998\pi\)
\(318\) 0 0
\(319\) 203755. + 352914.i 0.112107 + 0.194174i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −257369. −0.137262
\(324\) 0 0
\(325\) 1.59316e6 + 2.75943e6i 0.836664 + 1.44914i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.37070e6 748706.i −1.20750 0.381348i
\(330\) 0 0
\(331\) −212966. + 368868.i −0.106842 + 0.185055i −0.914489 0.404610i \(-0.867407\pi\)
0.807648 + 0.589666i \(0.200740\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −420563. −0.204748
\(336\) 0 0
\(337\) 1.15035e6 0.551767 0.275884 0.961191i \(-0.411030\pi\)
0.275884 + 0.961191i \(0.411030\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −879941. + 1.52410e6i −0.409796 + 0.709787i
\(342\) 0 0
\(343\) −1.32398e6 1.73050e6i −0.607640 0.794213i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −156568. 271184.i −0.0698039 0.120904i 0.829011 0.559232i \(-0.188904\pi\)
−0.898815 + 0.438328i \(0.855571\pi\)
\(348\) 0 0
\(349\) −3.01459e6 −1.32484 −0.662422 0.749131i \(-0.730471\pi\)
−0.662422 + 0.749131i \(0.730471\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.19230e6 + 3.79717e6i 0.936404 + 1.62190i 0.772111 + 0.635487i \(0.219201\pi\)
0.164292 + 0.986412i \(0.447466\pi\)
\(354\) 0 0
\(355\) 263945. 457166.i 0.111158 0.192532i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −96327.8 + 166845.i −0.0394471 + 0.0683244i −0.885075 0.465449i \(-0.845893\pi\)
0.845628 + 0.533773i \(0.179226\pi\)
\(360\) 0 0
\(361\) −324928. 562792.i −0.131226 0.227290i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.56297e6 1.39984
\(366\) 0 0
\(367\) 1.16991e6 + 2.02634e6i 0.453405 + 0.785320i 0.998595 0.0529924i \(-0.0168759\pi\)
−0.545190 + 0.838312i \(0.683543\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.03473e6 1.86272e6i 0.767488 0.702608i
\(372\) 0 0
\(373\) −1.96217e6 + 3.39857e6i −0.730237 + 1.26481i 0.226545 + 0.974001i \(0.427257\pi\)
−0.956782 + 0.290806i \(0.906077\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −610719. −0.221303
\(378\) 0 0
\(379\) −3.26556e6 −1.16778 −0.583889 0.811834i \(-0.698470\pi\)
−0.583889 + 0.811834i \(0.698470\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.21488e6 + 3.83628e6i −0.771529 + 1.33633i 0.165195 + 0.986261i \(0.447175\pi\)
−0.936725 + 0.350067i \(0.886159\pi\)
\(384\) 0 0
\(385\) 1.28632e6 + 5.81517e6i 0.442280 + 1.99945i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.55733e6 4.42943e6i −0.856867 1.48414i −0.874902 0.484300i \(-0.839074\pi\)
0.0180345 0.999837i \(-0.494259\pi\)
\(390\) 0 0
\(391\) −221659. −0.0733236
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.97588e6 + 6.88642e6i 1.28215 + 2.22076i
\(396\) 0 0
\(397\) 770944. 1.33531e6i 0.245497 0.425214i −0.716774 0.697306i \(-0.754382\pi\)
0.962271 + 0.272092i \(0.0877154\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.72114e6 4.71315e6i 0.845064 1.46369i −0.0405025 0.999179i \(-0.512896\pi\)
0.885566 0.464514i \(-0.153771\pi\)
\(402\) 0 0
\(403\) −1.31873e6 2.28411e6i −0.404478 0.700576i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.94958e6 0.583384
\(408\) 0 0
\(409\) −2.59241e6 4.49019e6i −0.766294 1.32726i −0.939560 0.342385i \(-0.888765\pi\)
0.173265 0.984875i \(-0.444568\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.49299e6 + 3.19771e6i −1.00768 + 0.922494i
\(414\) 0 0
\(415\) 1.46282e6 2.53368e6i 0.416938 0.722157i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.17093e6 0.604102 0.302051 0.953292i \(-0.402329\pi\)
0.302051 + 0.953292i \(0.402329\pi\)
\(420\) 0 0
\(421\) 6.61967e6 1.82025 0.910125 0.414334i \(-0.135986\pi\)
0.910125 + 0.414334i \(0.135986\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 281743. 487992.i 0.0756624 0.131051i
\(426\) 0 0
\(427\) −5.36942e6 1.69575e6i −1.42514 0.450083i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.44992e6 2.51134e6i −0.375968 0.651196i 0.614503 0.788914i \(-0.289357\pi\)
−0.990471 + 0.137718i \(0.956023\pi\)
\(432\) 0 0
\(433\) 4.71803e6 1.20932 0.604659 0.796484i \(-0.293309\pi\)
0.604659 + 0.796484i \(0.293309\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.34612e6 2.33154e6i −0.337194 0.584036i
\(438\) 0 0
\(439\) 1.73850e6 3.01117e6i 0.430540 0.745718i −0.566379 0.824145i \(-0.691656\pi\)
0.996920 + 0.0784267i \(0.0249896\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.64829e6 6.31902e6i 0.883243 1.52982i 0.0355278 0.999369i \(-0.488689\pi\)
0.847715 0.530452i \(-0.177978\pi\)
\(444\) 0 0
\(445\) −4.20524e6 7.28368e6i −1.00668 1.74362i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.65867e6 −0.856462 −0.428231 0.903669i \(-0.640863\pi\)
−0.428231 + 0.903669i \(0.640863\pi\)
\(450\) 0 0
\(451\) 1.77442e6 + 3.07339e6i 0.410786 + 0.711501i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.51127e6 2.68800e6i −1.92737 0.608697i
\(456\) 0 0
\(457\) −3.22031e6 + 5.57774e6i −0.721286 + 1.24930i 0.239199 + 0.970971i \(0.423115\pi\)
−0.960485 + 0.278333i \(0.910218\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.47898e6 −0.981583 −0.490791 0.871277i \(-0.663292\pi\)
−0.490791 + 0.871277i \(0.663292\pi\)
\(462\) 0 0
\(463\) −2.11214e6 −0.457899 −0.228949 0.973438i \(-0.573529\pi\)
−0.228949 + 0.973438i \(0.573529\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.92919e6 6.80556e6i 0.833702 1.44401i −0.0613806 0.998114i \(-0.519550\pi\)
0.895083 0.445900i \(-0.147116\pi\)
\(468\) 0 0
\(469\) 480808. 440162.i 0.100934 0.0924019i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.84437e6 + 3.19454e6i 0.379049 + 0.656532i
\(474\) 0 0
\(475\) 6.84400e6 1.39180
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.24373e6 + 7.35035e6i 0.845101 + 1.46376i 0.885533 + 0.464576i \(0.153793\pi\)
−0.0404324 + 0.999182i \(0.512874\pi\)
\(480\) 0 0
\(481\) −1.46088e6 + 2.53032e6i −0.287907 + 0.498669i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.21162e6 5.56269e6i 0.619968 1.07382i
\(486\) 0 0
\(487\) −1.37808e6 2.38691e6i −0.263301 0.456051i 0.703816 0.710382i \(-0.251478\pi\)
−0.967117 + 0.254331i \(0.918145\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.45533e6 −0.459628 −0.229814 0.973235i \(-0.573812\pi\)
−0.229814 + 0.973235i \(0.573812\pi\)
\(492\) 0 0
\(493\) 54001.3 + 93533.1i 0.0100066 + 0.0173320i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 176717. + 798899.i 0.0320913 + 0.145078i
\(498\) 0 0
\(499\) 2.22925e6 3.86117e6i 0.400781 0.694172i −0.593040 0.805173i \(-0.702072\pi\)
0.993820 + 0.111001i \(0.0354056\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.64080e6 −0.465389 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(504\) 0 0
\(505\) 9.53856e6 1.66439
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.35520e6 4.07933e6i 0.402934 0.697902i −0.591145 0.806566i \(-0.701324\pi\)
0.994079 + 0.108663i \(0.0346571\pi\)
\(510\) 0 0
\(511\) −4.07335e6 + 3.72901e6i −0.690080 + 0.631744i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.17061e6 8.95576e6i −0.859061 1.48794i
\(516\) 0 0
\(517\) −1.05328e7 −1.73307
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.40134e6 2.42720e6i −0.226178 0.391752i 0.730494 0.682919i \(-0.239290\pi\)
−0.956672 + 0.291167i \(0.905956\pi\)
\(522\) 0 0
\(523\) 1.49878e6 2.59596e6i 0.239598 0.414995i −0.721001 0.692934i \(-0.756318\pi\)
0.960599 + 0.277939i \(0.0896512\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −233212. + 403934.i −0.0365783 + 0.0633555i
\(528\) 0 0
\(529\) 2.05883e6 + 3.56599e6i 0.319875 + 0.554040i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.31851e6 −0.810909
\(534\) 0 0
\(535\) 976107. + 1.69067e6i 0.147439 + 0.255372i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.55675e6 5.30191e6i −1.12037 0.786069i
\(540\) 0 0
\(541\) −1.65252e6 + 2.86225e6i −0.242747 + 0.420450i −0.961496 0.274820i \(-0.911382\pi\)
0.718749 + 0.695270i \(0.244715\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.27532e6 0.328135
\(546\) 0 0
\(547\) 3.51435e6 0.502201 0.251100 0.967961i \(-0.419208\pi\)
0.251100 + 0.967961i \(0.419208\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −655891. + 1.13604e6i −0.0920350 + 0.159409i
\(552\) 0 0
\(553\) −1.17528e7 3.71172e6i −1.63428 0.516133i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.99093e6 5.18045e6i −0.408478 0.707505i 0.586241 0.810137i \(-0.300607\pi\)
−0.994719 + 0.102632i \(0.967274\pi\)
\(558\) 0 0
\(559\) −5.52817e6 −0.748259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.36921e6 + 9.29974e6i 0.713903 + 1.23652i 0.963381 + 0.268136i \(0.0864075\pi\)
−0.249478 + 0.968380i \(0.580259\pi\)
\(564\) 0 0
\(565\) 6.58235e6 1.14010e7i 0.867481 1.50252i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.29774e6 + 5.71186e6i −0.427008 + 0.739600i −0.996606 0.0823241i \(-0.973766\pi\)
0.569598 + 0.821924i \(0.307099\pi\)
\(570\) 0 0
\(571\) 1.30789e6 + 2.26533e6i 0.167873 + 0.290764i 0.937672 0.347522i \(-0.112977\pi\)
−0.769799 + 0.638286i \(0.779644\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.89440e6 0.743482
\(576\) 0 0
\(577\) 619490. + 1.07299e6i 0.0774630 + 0.134170i 0.902155 0.431413i \(-0.141985\pi\)
−0.824692 + 0.565583i \(0.808651\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 979391. + 4.42761e6i 0.120369 + 0.544164i
\(582\) 0 0
\(583\) 5.84360e6 1.01214e7i 0.712047 1.23330i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.02896e7 −1.23254 −0.616270 0.787535i \(-0.711357\pi\)
−0.616270 + 0.787535i \(0.711357\pi\)
\(588\) 0 0
\(589\) −5.66510e6 −0.672852
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.65889e6 1.32656e7i 0.894394 1.54914i 0.0598415 0.998208i \(-0.480940\pi\)
0.834553 0.550928i \(-0.185726\pi\)
\(594\) 0 0
\(595\) 340915. + 1.54120e6i 0.0394778 + 0.178471i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.34748e6 + 2.33391e6i 0.153446 + 0.265776i 0.932492 0.361190i \(-0.117630\pi\)
−0.779046 + 0.626967i \(0.784296\pi\)
\(600\) 0 0
\(601\) 1.54704e6 0.174709 0.0873547 0.996177i \(-0.472159\pi\)
0.0873547 + 0.996177i \(0.472159\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.88088e6 + 1.01860e7i 0.653212 + 1.13140i
\(606\) 0 0
\(607\) −1.89569e6 + 3.28343e6i −0.208831 + 0.361706i −0.951347 0.308123i \(-0.900299\pi\)
0.742516 + 0.669829i \(0.233633\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.89255e6 1.36703e7i 0.855291 1.48141i
\(612\) 0 0
\(613\) −3.09603e6 5.36249e6i −0.332778 0.576388i 0.650277 0.759697i \(-0.274653\pi\)
−0.983055 + 0.183308i \(0.941319\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.59349e7 1.68514 0.842571 0.538585i \(-0.181041\pi\)
0.842571 + 0.538585i \(0.181041\pi\)
\(618\) 0 0
\(619\) 5.78660e6 + 1.00227e7i 0.607011 + 1.05137i 0.991730 + 0.128341i \(0.0409651\pi\)
−0.384719 + 0.923034i \(0.625702\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.24307e7 + 3.92584e6i 1.28315 + 0.405240i
\(624\) 0 0
\(625\) 3.43903e6 5.95657e6i 0.352156 0.609953i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 516699. 0.0520728
\(630\) 0 0
\(631\) 900933. 0.0900781 0.0450390 0.998985i \(-0.485659\pi\)
0.0450390 + 0.998985i \(0.485659\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.05917e7 + 1.83454e7i −1.04239 + 1.80548i
\(636\) 0 0
\(637\) 1.25437e7 5.83487e6i 1.22484 0.569747i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −424385. 735057.i −0.0407958 0.0706604i 0.844907 0.534914i \(-0.179656\pi\)
−0.885702 + 0.464254i \(0.846323\pi\)
\(642\) 0 0
\(643\) −1.37977e7 −1.31607 −0.658036 0.752986i \(-0.728613\pi\)
−0.658036 + 0.752986i \(0.728613\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.82675e6 3.16402e6i −0.171561 0.297152i 0.767405 0.641163i \(-0.221548\pi\)
−0.938966 + 0.344011i \(0.888214\pi\)
\(648\) 0 0
\(649\) −1.00316e7 + 1.73753e7i −0.934887 + 1.61927i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.89558e6 1.02115e7i 0.541058 0.937140i −0.457786 0.889063i \(-0.651357\pi\)
0.998844 0.0480774i \(-0.0153094\pi\)
\(654\) 0 0
\(655\) 4.83221e6 + 8.36963e6i 0.440091 + 0.762260i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.15208e7 1.03340 0.516700 0.856166i \(-0.327160\pi\)
0.516700 + 0.856166i \(0.327160\pi\)
\(660\) 0 0
\(661\) −2.68607e6 4.65241e6i −0.239119 0.414166i 0.721343 0.692578i \(-0.243525\pi\)
−0.960462 + 0.278412i \(0.910192\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.41409e7 + 1.29455e7i −1.24001 + 1.13518i
\(666\) 0 0
\(667\) −564888. + 978414.i −0.0491640 + 0.0851546i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.38558e7 −2.04545
\(672\) 0 0
\(673\) 1.48042e7 1.25993 0.629966 0.776623i \(-0.283069\pi\)
0.629966 + 0.776623i \(0.283069\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.95353e6 + 5.11567e6i −0.247668 + 0.428974i −0.962878 0.269935i \(-0.912998\pi\)
0.715210 + 0.698909i \(0.246331\pi\)
\(678\) 0 0
\(679\) 2.15025e6 + 9.72080e6i 0.178984 + 0.809148i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.10080e7 + 1.90663e7i 0.902932 + 1.56392i 0.823670 + 0.567070i \(0.191923\pi\)
0.0792618 + 0.996854i \(0.474744\pi\)
\(684\) 0 0
\(685\) −1.73814e7 −1.41533
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.75757e6 + 1.51686e7i 0.702806 + 1.21730i
\(690\) 0 0
\(691\) −6.53254e6 + 1.13147e7i −0.520460 + 0.901463i 0.479257 + 0.877674i \(0.340906\pi\)
−0.999717 + 0.0237881i \(0.992427\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.21252e6 + 2.10014e6i −0.0952194 + 0.164925i
\(696\) 0 0
\(697\) 470276. + 814543.i 0.0366667 + 0.0635085i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.20043e7 −0.922658 −0.461329 0.887229i \(-0.652627\pi\)
−0.461329 + 0.887229i \(0.652627\pi\)
\(702\) 0 0
\(703\) 3.13787e6 + 5.43495e6i 0.239467 + 0.414770i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.09049e7 + 9.98307e6i −0.820491 + 0.751131i
\(708\) 0 0
\(709\) 8.23972e6 1.42716e7i 0.615597 1.06625i −0.374682 0.927153i \(-0.622248\pi\)
0.990279 0.139093i \(-0.0444185\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.87908e6 −0.359430
\(714\) 0 0
\(715\) −3.78148e7 −2.76628
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.66177e6 + 6.34237e6i −0.264161 + 0.457540i −0.967343 0.253469i \(-0.918428\pi\)
0.703183 + 0.711009i \(0.251762\pi\)
\(720\) 0 0
\(721\) 1.52844e7 + 4.82707e6i 1.09499 + 0.345816i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.43601e6 2.48725e6i −0.101464 0.175742i
\(726\) 0 0
\(727\) 1.83777e7 1.28960 0.644798 0.764353i \(-0.276941\pi\)
0.644798 + 0.764353i \(0.276941\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 488815. + 846653.i 0.0338338 + 0.0586019i
\(732\) 0 0
\(733\) 5.92488e6 1.02622e7i 0.407305 0.705472i −0.587282 0.809382i \(-0.699802\pi\)
0.994587 + 0.103910i \(0.0331354\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.38085e6 2.39170e6i 0.0936432 0.162195i
\(738\) 0 0
\(739\) 1.04756e7 + 1.81442e7i 0.705613 + 1.22216i 0.966470 + 0.256780i \(0.0826616\pi\)
−0.260857 + 0.965377i \(0.584005\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.42524e7 0.947141 0.473570 0.880756i \(-0.342965\pi\)
0.473570 + 0.880756i \(0.342965\pi\)
\(744\) 0 0
\(745\) 1.38419e7 + 2.39748e7i 0.913701 + 1.58258i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.88539e6 911253.i −0.187931 0.0593519i
\(750\) 0 0
\(751\) −659846. + 1.14289e6i −0.0426916 + 0.0739441i −0.886582 0.462572i \(-0.846927\pi\)
0.843890 + 0.536516i \(0.180260\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.10497e6 −0.581315
\(756\) 0 0
\(757\) 102138. 0.00647812 0.00323906 0.999995i \(-0.498969\pi\)
0.00323906 + 0.999995i \(0.498969\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.09596e7 1.89826e7i 0.686016 1.18821i −0.287100 0.957901i \(-0.592691\pi\)
0.973116 0.230314i \(-0.0739754\pi\)
\(762\) 0 0
\(763\) −2.60126e6 + 2.38136e6i −0.161760 + 0.148086i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.50340e7 2.60397e7i −0.922755 1.59826i
\(768\) 0 0
\(769\) 6.44098e6 0.392768 0.196384 0.980527i \(-0.437080\pi\)
0.196384 + 0.980527i \(0.437080\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.45580e6 + 2.52152e6i 0.0876302 + 0.151780i 0.906509 0.422187i \(-0.138737\pi\)
−0.818879 + 0.573966i \(0.805404\pi\)
\(774\) 0 0
\(775\) 6.20161e6 1.07415e7i 0.370894 0.642408i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.71190e6 + 9.89330e6i −0.337238 + 0.584114i
\(780\) 0 0
\(781\) 1.73323e6 + 3.00205e6i 0.101679 + 0.176113i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.16323e7 2.41133
\(786\) 0 0
\(787\) −1.27290e7 2.20472e7i −0.732582 1.26887i −0.955776 0.294095i \(-0.904982\pi\)
0.223195 0.974774i \(-0.428351\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.40702e6 + 1.99232e7i 0.250440 + 1.13219i
\(792\) 0 0
\(793\) 1.78759e7 3.09620e7i 1.00945 1.74842i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.04344e7 1.13950 0.569752 0.821817i \(-0.307039\pi\)
0.569752 + 0.821817i \(0.307039\pi\)
\(798\) 0 0
\(799\) −2.79152e6 −0.154694
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.16984e7 + 2.02622e7i −0.640231 + 1.10891i
\(804\) 0 0
\(805\) −1.21789e7 + 1.11494e7i −0.662398 + 0.606402i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.41416e7 + 2.44939e7i 0.759672 + 1.31579i 0.943018 + 0.332743i \(0.107974\pi\)
−0.183345 + 0.983049i \(0.558693\pi\)
\(810\) 0 0
\(811\) 1.58852e7 0.848087 0.424043 0.905642i \(-0.360610\pi\)
0.424043 + 0.905642i \(0.360610\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.50180e7 2.60119e7i −0.791987 1.37176i
\(816\) 0 0
\(817\) −5.93707e6 + 1.02833e7i −0.311184 + 0.538986i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.72198e6 1.33749e7i 0.399826 0.692519i −0.593878 0.804555i \(-0.702404\pi\)
0.993704 + 0.112036i \(0.0357372\pi\)
\(822\) 0 0
\(823\) −1.48943e7 2.57977e7i −0.766516 1.32764i −0.939441 0.342710i \(-0.888655\pi\)
0.172926 0.984935i \(-0.444678\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.66831e7 −0.848230 −0.424115 0.905608i \(-0.639415\pi\)
−0.424115 + 0.905608i \(0.639415\pi\)
\(828\) 0 0
\(829\) 1.10568e7 + 1.91510e7i 0.558785 + 0.967844i 0.997598 + 0.0692656i \(0.0220656\pi\)
−0.438813 + 0.898578i \(0.644601\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.00277e6 1.40517e6i −0.100004 0.0701644i
\(834\) 0 0
\(835\) 2.11803e6 3.66853e6i 0.105127 0.182086i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −539166. −0.0264434 −0.0132217 0.999913i \(-0.504209\pi\)
−0.0132217 + 0.999913i \(0.504209\pi\)
\(840\) 0 0
\(841\) −1.99607e7 −0.973162
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.28080e7 2.21841e7i 0.617076 1.06881i
\(846\) 0 0
\(847\) −1.73840e7 5.49015e6i −0.832608 0.262952i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.70249e6 + 4.68086e6i 0.127921 + 0.221565i
\(852\) 0 0
\(853\) 2.55452e6 0.120209 0.0601044 0.998192i \(-0.480857\pi\)
0.0601044 + 0.998192i \(0.480857\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 120039. + 207913.i 0.00558303 + 0.00967008i 0.868803 0.495157i \(-0.164890\pi\)
−0.863220 + 0.504827i \(0.831556\pi\)
\(858\) 0 0
\(859\) −3.33955e6 + 5.78428e6i −0.154421 + 0.267464i −0.932848 0.360270i \(-0.882684\pi\)
0.778427 + 0.627735i \(0.216018\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.02530e7 + 1.77587e7i −0.468622 + 0.811678i −0.999357 0.0358604i \(-0.988583\pi\)
0.530734 + 0.847538i \(0.321916\pi\)
\(864\) 0 0
\(865\) −1.26796e7 2.19618e7i −0.576192 0.997993i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.22164e7 −2.34562
\(870\) 0 0
\(871\) 2.06942e6 + 3.58434e6i 0.0924280 + 0.160090i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.74701e6 7.89786e6i −0.0771392 0.348730i
\(876\) 0 0
\(877\) −1.26387e7 + 2.18909e7i −0.554888 + 0.961093i 0.443025 + 0.896509i \(0.353905\pi\)
−0.997912 + 0.0645840i \(0.979428\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.45932e7 1.06752 0.533759 0.845637i \(-0.320779\pi\)
0.533759 + 0.845637i \(0.320779\pi\)
\(882\) 0 0
\(883\) 2.78301e7 1.20120 0.600598 0.799551i \(-0.294929\pi\)
0.600598 + 0.799551i \(0.294929\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.74928e7 3.02984e7i 0.746534 1.29304i −0.202940 0.979191i \(-0.565050\pi\)
0.949474 0.313844i \(-0.101617\pi\)
\(888\) 0 0
\(889\) −7.09137e6 3.20586e7i −0.300937 1.36047i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.69526e7 2.93629e7i −0.711392 1.23217i
\(894\) 0 0
\(895\) −5.70892e7 −2.38230
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.18866e6 + 2.05882e6i 0.0490521 + 0.0849607i
\(900\) 0 0
\(901\) 1.54873e6 2.68249e6i 0.0635572 0.110084i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.63044e6 1.32163e7i 0.309691 0.536400i
\(906\) 0 0
\(907\) 2.03300e7 + 3.52127e7i 0.820578 + 1.42128i 0.905252 + 0.424874i \(0.139682\pi\)
−0.0846741 + 0.996409i \(0.526985\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.87014e7 1.14579 0.572897 0.819627i \(-0.305820\pi\)
0.572897 + 0.819627i \(0.305820\pi\)
\(912\) 0 0
\(913\) 9.60584e6 + 1.66378e7i 0.381380 + 0.660570i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.42841e7 4.51115e6i −0.560956 0.177159i
\(918\) 0 0
\(919\) −1.47415e7 + 2.55330e7i −0.575773 + 0.997269i 0.420184 + 0.907439i \(0.361966\pi\)
−0.995957 + 0.0898297i \(0.971368\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.19506e6 −0.200718
\(924\) 0 0
\(925\) −1.37402e7 −0.528004
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.94112e6 + 1.37544e7i −0.301886 + 0.522881i −0.976563 0.215231i \(-0.930949\pi\)
0.674677 + 0.738113i \(0.264283\pi\)
\(930\) 0 0
\(931\) 2.61776e6 2.95999e7i 0.0989817 1.11922i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.34368e6 + 5.79143e6i 0.125082 + 0.216649i
\(936\) 0 0
\(937\) 1.04452e7 0.388656 0.194328 0.980937i \(-0.437747\pi\)
0.194328 + 0.980937i \(0.437747\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.34241e7 2.32513e7i −0.494211 0.855998i 0.505767 0.862670i \(-0.331209\pi\)
−0.999978 + 0.00667223i \(0.997876\pi\)
\(942\) 0 0
\(943\) −4.91938e6 + 8.52062e6i −0.180149 + 0.312027i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.62047e6 + 1.31990e7i −0.276126 + 0.478264i −0.970418 0.241429i \(-0.922384\pi\)
0.694293 + 0.719693i \(0.255717\pi\)
\(948\) 0 0
\(949\) −1.75319e7 3.03662e7i −0.631922 1.09452i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.29112e7 0.460504 0.230252 0.973131i \(-0.426045\pi\)
0.230252 + 0.973131i \(0.426045\pi\)
\(954\) 0 0
\(955\) −2.85864e7 4.95131e7i −1.01426 1.75676i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.98712e7 1.81914e7i 0.697716 0.638734i
\(960\) 0 0
\(961\) 9.18121e6 1.59023e7i 0.320694 0.555459i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.91672e7 −2.73670
\(966\) 0 0
\(967\) 4.60406e7 1.58334 0.791671 0.610948i \(-0.209211\pi\)
0.791671 + 0.610948i \(0.209211\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.36580e6 1.62220e7i 0.318784 0.552150i −0.661451 0.749989i \(-0.730059\pi\)
0.980235 + 0.197839i \(0.0633922\pi\)
\(972\) 0 0
\(973\) −811806. 3.67000e6i −0.0274897 0.124275i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.44602e7 2.50458e7i −0.484660 0.839456i 0.515184 0.857079i \(-0.327723\pi\)
−0.999845 + 0.0176231i \(0.994390\pi\)
\(978\) 0 0
\(979\) 5.52286e7 1.84165
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.08834e7 + 1.88505e7i 0.359235 + 0.622214i 0.987833 0.155517i \(-0.0497042\pi\)
−0.628598 + 0.777730i \(0.716371\pi\)
\(984\) 0 0
\(985\) 7.70379e6 1.33433e7i 0.252996 0.438202i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.11331e6 + 8.85651e6i −0.166231 + 0.287920i
\(990\) 0 0
\(991\) 9.39333e6 + 1.62697e7i 0.303833 + 0.526255i 0.977001 0.213235i \(-0.0684001\pi\)
−0.673168 + 0.739490i \(0.735067\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.70492e6 −0.182680
\(996\) 0 0
\(997\) 7.38382e6 + 1.27891e7i 0.235257 + 0.407477i 0.959347 0.282228i \(-0.0910734\pi\)
−0.724090 + 0.689705i \(0.757740\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.6.k.d.37.2 4
3.2 odd 2 28.6.e.b.9.1 4
7.4 even 3 inner 252.6.k.d.109.2 4
12.11 even 2 112.6.i.e.65.2 4
21.2 odd 6 196.6.a.j.1.2 2
21.5 even 6 196.6.a.h.1.1 2
21.11 odd 6 28.6.e.b.25.1 yes 4
21.17 even 6 196.6.e.k.165.2 4
21.20 even 2 196.6.e.k.177.2 4
84.11 even 6 112.6.i.e.81.2 4
84.23 even 6 784.6.a.o.1.1 2
84.47 odd 6 784.6.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.e.b.9.1 4 3.2 odd 2
28.6.e.b.25.1 yes 4 21.11 odd 6
112.6.i.e.65.2 4 12.11 even 2
112.6.i.e.81.2 4 84.11 even 6
196.6.a.h.1.1 2 21.5 even 6
196.6.a.j.1.2 2 21.2 odd 6
196.6.e.k.165.2 4 21.17 even 6
196.6.e.k.177.2 4 21.20 even 2
252.6.k.d.37.2 4 1.1 even 1 trivial
252.6.k.d.109.2 4 7.4 even 3 inner
784.6.a.o.1.1 2 84.23 even 6
784.6.a.bd.1.2 2 84.47 odd 6